Search results for: damage scales
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3196

Search results for: damage scales

2836 Performance and Damage Detection of Composite Structural Insulated Panels Subjected to Shock Wave Loading

Authors: Anupoju Rajeev, Joanne Mathew, Amit Shelke

Abstract:

In the current study, a new type of Composite Structural Insulated Panels (CSIPs) is developed and investigated its performance against shock loading which can replace the conventional wooden structural materials. The CSIPs is made of Fibre Cement Board (FCB)/aluminum as the facesheet and the expanded polystyrene foam as the core material. As tornadoes are very often in the western countries, it is suggestable to monitor the health of the CSIPs during its lifetime. So, the composite structure is installed with three smart sensors located randomly at definite locations. Each smart sensor is fabricated with an embedded half stainless phononic crystal sensor attached to both ends of the nylon shaft that can resist the shock and impact on facesheet as well as polystyrene foam core and safeguards the system. In addition to the granular crystal sensors, the accelerometers are used in the horizontal spanning and vertical spanning with a definite offset distance. To estimate the health and damage of the CSIP panel using granular crystal sensor, shock wave loading experiments are conducted. During the experiments, the time of flight response from the granular sensors is measured. The main objective of conducting shock wave loading experiments on the CSIP panels is to study the effect and the sustaining capacity of the CSIP panels in the extreme hazardous situations like tornados and hurricanes which are very common in western countries. The effects have been replicated using a shock tube, an instrument that can be used to create the same wind and pressure intensity of tornado for the experimental study. Numerous experiments have been conducted to investigate the flexural strength of the CSIP. Furthermore, the study includes the damage detection using three smart sensors embedded in the CSIPs during the shock wave loading.

Keywords: composite structural insulated panels, damage detection, flexural strength, sandwich structures, shock wave loading

Procedia PDF Downloads 120
2835 Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery

Authors: Meet Bhatia

Abstract:

Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs.

Keywords: hydrogen peroxide, well stimulation, heavy oil recovery, steam injection

Procedia PDF Downloads 312
2834 Thorium-Doped PbS Thin Films for Radiation Damage Studies

Authors: Michael Shandalov, Tzvi Templeman, Michael Schmidt, Itzhak Kelson, Eyal Yahel

Abstract:

We present a new method to produce a model system for the study of radiation damage in non-radioactive materials. The method is based on homogeneously incorporating 228Th ions in PbS thin films using a small volume chemical bath deposition (CBD) technique. The common way to alloy metals with radioactive elements is by melting pure elements, which requires considerable amounts of radioactive material with its safety consequences such as high sample activity. Controlled doping of the thin films with (very) small amounts (100-200ppm) of radioactive elements such as thorium is expected to provide a unique path for studying radiation damage in materials due to decay processes without the need of sealed enclosure. As a first stage, we developed CBD process for controlled doping of PbS thin films (~100 nm thick) with the stable isotope (t1/2~106 years), 232Th. Next, we developed CBD process for controlled doping of PbS thin films with active 228Th isotope. This was achieved by altering deposition parameters such as temperature, pH, reagent concentrations and time. The 228Th-doped films were characterized using X-ray diffraction, which indicated a single phase material. Film morphology and thickness were determined using scanning electron microscopy (SEM). Energy dispersive spectroscopy (EDS) mapping in the analytical transmission electron microscope (A-TEM), X-ray photoelectron spectroscopy (XPS) depth profiles and autoradiography indicated that the Th ions were homogeneously distributed throughout the films, suggesting Pb substitution by Th ions in the crystal lattice. The properties of the PbS (228Th) film activity were investigated by using alpha-spectroscopy and gamma spectroscopy. The resulting films are applicable for isochronal annealing of resistivity measurements and currently under investigation. This work shows promise as a model system for the analysis of dilute defect systems in semiconductor thin films.

Keywords: thin films, doping, radiation damage, chemical bath deposition

Procedia PDF Downloads 368
2833 Monitoring and Analysis of Bridge Crossing Ground Fissures

Authors: Zhiqing Zhang, Xiangong Zhou, Zihan Zhou

Abstract:

Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling.

Keywords: bridge monitoring, ground fissures, typical disease, structural displacement

Procedia PDF Downloads 188
2832 Rheology and Structural Arrest of Dense Dairy Suspensions: A Soft Matter Approach

Authors: Marjan Javanmard

Abstract:

The rheological properties of dairy products critically depend on the underlying organisation of proteins at multiple length scales. When heated and acidified, milk proteins form particle gel that is viscoelastic, solvent rich, ‘soft’ material. In this work recent developments on the rheology of soft particles suspensions were used to interpret and potentially define the properties of dairy gel structures. It is discovered that at volume fractions below random close packing (RCP), the Maron-Pierce-Quemada (MPQ) model accurately predicts the viscosity of the dairy gel suspensions without fitting parameters; the MPQ model has been shown previously to provide reasonable predictions of the viscosity of hard sphere suspensions from the volume fraction, solvent viscosity and RCP. This surprising finding demonstrates that up to RCP, the dairy gel system behaves as a hard sphere suspension and that the structural aggregates behave as discrete particulates akin to what is observed for microgel suspensions. At effective phase volumes well above RCP, the system is a soft solid. In this region, it is discovered that the storage modulus of the sheared AMG scales with the storage modulus of the set gel. The storage modulus in this regime is reasonably well described as a function of effective phase volume by the Evans and Lips model. Findings of this work has potential to aid in rational design and control of dairy food structure-properties.

Keywords: dairy suspensions, rheology-structure, Maron-Pierce-Quemada Model, Evans and Lips Model

Procedia PDF Downloads 193
2831 Risk Analysis of Flood Physical Vulnerability in Residential Areas of Mathare Nairobi, Kenya

Authors: James Kinyua Gitonga, Toshio Fujimi

Abstract:

Vulnerability assessment and analysis is essential to solving the degree of damage and loss as a result of natural disasters. Urban flooding causes a major economic loss and casualties, at Mathare residential area in Nairobi, Kenya. High population caused by rural-urban migration, Unemployment, and unplanned urban development are among factors that increase flood vulnerability in Mathare area. This study aims to analyse flood risk physical vulnerabilities in Mathare based on scientific data, research data that includes the Rainfall data, River Mathare discharge rate data, Water runoff data, field survey data and questionnaire survey through sampling of the study area have been used to develop the risk curves. Three structural types of building were identified in the study area, vulnerability and risk curves were made for these three structural types by plotting the relationship between flood depth and damage for each structural type. The results indicate that the structural type with mud wall and mud floor is the most vulnerable building to flooding while the structural type with stone walls and concrete floor is least vulnerable. The vulnerability of building contents is mainly determined by the number of floors, where households with two floors are least vulnerable, and households with a one floor are most vulnerable. Therefore more than 80% of the residential buildings including the property in the building are highly vulnerable to floods consequently exposed to high risk. When estimating the potential casualties/injuries we discovered that the structural types of houses were major determinants where the mud/adobe structural type had casualties of 83.7% while the Masonry structural type had casualties of 10.71% of the people living in these houses. This research concludes that flood awareness, warnings and observing the building codes will enable reduce damage to the structural types of building, deaths and reduce damage to the building contents.

Keywords: flood loss, Mathare Nairobi, risk curve analysis, vulnerability

Procedia PDF Downloads 213
2830 A Comparative Assessment of Industrial Composites Using Thermography and Ultrasound

Authors: Mosab Alrashed, Wei Xu, Stephen Abineri, Yifan Zhao, Jörn Mehnen

Abstract:

Thermographic inspection is a relatively new technique for Non-Destructive Testing (NDT) which has been gathering increasing interest due to its relatively low cost hardware and extremely fast data acquisition properties. This technique is especially promising in the area of rapid automated damage detection and quantification. In collaboration with a major industry partner from the aerospace sector advanced thermography-based NDT software for impact damaged composites is introduced. The software is based on correlation analysis of time-temperature profiles in combination with an image enhancement process. The prototype software is aiming to a) better visualise the damages in a relatively easy-to-use way and b) automatically and quantitatively measure the properties of the degradation. Knowing that degradation properties play an important role in the identification of degradation types, tests and results on specimens which were artificially damaged have been performed and analyzed.

Keywords: NDT, correlation analysis, image processing, damage, inspection

Procedia PDF Downloads 518
2829 Environmental Quality, Dietary Pattern and Nutritional Status of School-Aged Children in Eti-Osa Local Government Area of Lagos State, Nigeria

Authors: Jummai Sekinat Seriki-Mosadolorun, Oyebamiji John Okesoto

Abstract:

School-aged children in Eti-Osa Local Government Area, Lagos State, were surveyed to determine their food habits, environmental exposures and nutritional status. The method used in this study was a descriptive survey. A systematic questionnaire and anthropometric measurement scales were utilized to compile the data. Information about the children's environment, diets, and demographics were collected using a questionnaire. The children's Body Mass Index (BMI) was calculated using anthropometric measuring scales. The sample size of 400 people was determined by a multi-stage sampling procedure. Chi-square test mean, and Analysis of Variance were used to examine the data. The study's findings suggested that the quality of the children’s natural environments was fairly satisfactory. The youngsters had an unhealthy diet consisting mostly of high-calorie items, including fufu/yam/Eba/pounded yam, biscuits, bread, vegetables, soups, meat, and sweetened drinks. The incidence of malnutrition among school-aged children varied dramatically. The children's environmental quality, eating pattern, and nutritional status were also significantly related to one another (p <0.005). The research came to the conclusion that historic structures should be updated with current technology to promote healthy growth in children, and it suggests that this be done as a matter of strategy.

Keywords: environmental quality, dietary pattern, nutritional status, school-aged children., dietary pattern, school-aged children, nutritional status

Procedia PDF Downloads 56
2828 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network

Procedia PDF Downloads 252
2827 Rehabilitation and Conservation of Mangrove Forest as Pertamina Corporate Social Responsibility Approach in Prevention Damage Climate in Indonesia

Authors: Nor Anisa

Abstract:

This paper aims to describe the use of conservation and rehabilitation of Mangrove forests as an alternative area in protecting the natural environment and ecosystems and ecology, community education and innovation of sustainable industrial development such as oil companies, gas and coal. The existence of globalization encourages energy needs such as gas, diesel and coal as an unaffected resource which is a basic need for human life while environmental degradation and natural phenomena continue to occur in Indonesia, especially global warming, sea water pollution, extinction of animal steps. The phenomenon or damage to nature in Indonesia is caused by a population explosion in Indonesia that causes unemployment, the land where the residence will disappear so that this will encourage the exploitation of nature and the environment. Therefore, Pertamina as a state-owned oil and gas company carries out its social responsibility efforts, namely to carry out conservation and rehabilitation and management of Mangrove fruit seeds which will provide an educational effect on the benefits of Mangrove seed maintenance. The method used in this study is a qualitative method and secondary data retrieval techniques where data is taken based on Pertamina activity journals and websites that can be accounted for. So the conclusion of this paper is: the benefits and function of conservation of mangrove forests in Indonesia physically, chemically, biologically and socially and economically and can provide innovation to the CSR (Corporate Social Responsibility) of the company in continuing social responsibility in the scope of environmental conservation and social education.

Keywords: mangrove, environmental damage, conservation and rehabilitation, innovation of corporate social responsibility

Procedia PDF Downloads 108
2826 Resilience among Children with and without Hearing Loss: A Comparative Study in Pakistan

Authors: Bushra Akram, Amina Tariq

Abstract:

Objective: This cross-sectional descriptive study aimed to compare the level of resilience among children with and without hearing loss. Methodology: In this descriptive cross sectional study total 500 children (with hearing loss = 250 and without hearing loss = 250) were recruited conveniently. Children with hearing loss were recruited from the special schools whereas children without hearing loss were selected from regular schools located in cities of Gujrat and Jhelum of Pakistan. Respondents’ age ranged from 9-14 years. Resiliency scale named RSCA (Resiliency Scales for children and adolescents) developed by Sandra Prince Embury (2006) was used. RSCA consist of three core theoretical areas: MAS (Sense of Mastery Scale), REL (Sense of Relatedness Scale) and REA (Emotional Reactivity Scale). Results: Findings indicated that there was a significant difference in the resilience level of participants with and without hearing loss. The mean comparison showed that the children with hearing loss showed lower scores on MAS (X̅ = 43.32, SD = 7.55) as well as on REL (X̅ = 49.96, SD = 7.65) as compared to their counterparts on MAS (X̅ = 53.96, SD = 9.90, t= -7.31***) and on REL (X̅ = 68.43, SD = 14.57,t= -10.18***). However children with hearing loss showed higher scores on REA (X̅ = 42.12, SD = 5.84) as compared to hearing participants (X̅ = 28.84, SD = 13.97, t = -8.20***). The findings revealed no significance difference in the resilience level of hearing and deaf children on the basis of their gender and age. Research Outcomes and Future Scope: Children with hearing loss showed a lower level of resilience, therefore, needs a program to develop resilience for better social-emotional adjustment and enhancement of their psychological well-being. In the end, the researcher gave recommendations for future research.

Keywords: children with hearing loss, psychological Wellbeing, resiliency scales for children and adolescents, resilience

Procedia PDF Downloads 158
2825 Effect of Sulfur on the High-Temperature Oxidation of DIN1.4091

Authors: M. J. Kim, D. B. Lee

Abstract:

Centrifugal casting is a metal casting method that uses forces make by centripetal acceleration to distribute molten material in mold. Centrifugal cast parts manufactured in industry contain gas pipes and water supply lines, moreover rings, turbocharger, bushings, brake drums. Turbochargers were exposed to exhaust temperatures of 900-1050°C require a material for the corrosion resistance that will withstand such high component temperatures during the entire service life of the vehicle. Hence, the study of corrosion resistance for turbocharger is important for practical application. DIN1.4091 steels were used widely. The DIN1.4091 steels whose compositions were Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) were centrifugally cast, and oxidized at 900°C for 50-200 h in order to find the effect of sulfur on the high-temperature oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) alloys. These alloys formed oxide scales that consisted primarily of Cr₂O₃ as the major oxide and Cr₂MnO₄ as the minor one through preferential oxidation of Cr and Mn. Cr formed a thin CrOx oxide film on the surface to prevent further oxidation, and when it is added more than 20%, the sulphide decreased corrosion rate. The high affinity of Mn with S, led to the formation of scattered MnS inclusions, particularly in the 0.35S-containing cast alloy. Sulfur was harmful to the oxidation resistance because it deteriorated the scale/alloy adherence so as to accelerate the adherence and compactness of the formed scales. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A2B1013169).

Keywords: centrifugal casting, turbocharger, sulfur, oxidation, Fe-34.4Cr-14.5Ni alloy

Procedia PDF Downloads 173
2824 Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink

Authors: Diala Bitar, Emmanuel Gourdon, Claude H. Lamarque, Manuel Collet

Abstract:

Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained.

Keywords: electroacoustic absorber, multiple-time-scale with small finite parameter, nonlinear energy sink, nonlinear passive shunt

Procedia PDF Downloads 200
2823 A Computational Framework for Load Mediated Patellar Ligaments Damage at the Tropocollagen Level

Authors: Fadi Al Khatib, Raouf Mbarki, Malek Adouni

Abstract:

In various sport and recreational activities, the patellofemoral joint undergoes large forces and moments while accommodating the significant knee joint movement. In doing so, this joint is commonly the source of anterior knee pain related to instability in normal patellar tracking and excessive pressure syndrome. One well-observed explanation of the instability of the normal patellar tracking is the patellofemoral ligaments and patellar tendon damage. Improved knowledge of the damage mechanism mediating ligaments and tendon injuries can be a great help not only in rehabilitation and prevention procedures but also in the design of better reconstruction systems in the management of knee joint disorders. This damage mechanism, specifically due to excessive mechanical loading, has been linked to the micro level of the fibred structure precisely to the tropocollagen molecules and their connection density. We argue defining a clear frame starting from the bottom (micro level) to up (macro level) in the hierarchies of the soft tissue may elucidate the essential underpinning on the state of the ligaments damage. To do so, in this study a multiscale fibril reinforced hyper elastoplastic Finite Element model that accounts for the synergy between molecular and continuum syntheses was developed to determine the short-term stresses/strains patellofemoral ligaments and tendon response. The plasticity of the proposed model is associated only with the uniaxial deformation of the collagen fibril. The yield strength of the fibril is a function of the cross-link density between tropocollagen molecules, defined here by a density function. This function obtained through a Coarse-graining procedure linking nanoscale collagen features and the tissue level materials properties using molecular dynamics simulations. The hierarchies of the soft tissues were implemented using the rule of mixtures. Thereafter, the model was calibrated using a statistical calibration procedure. The model then implemented into a real structure of patellofemoral ligaments and patellar tendon (OpenKnee) and simulated under realistic loading conditions. With the calibrated material parameters the calculated axial stress lies well with the experimental measurement with a coefficient of determination (R2) equal to 0.91 and 0.92 for the patellofemoral ligaments and the patellar tendon respectively. The ‘best’ prediction of the yielding strength and strain as compared with the reported experimental data yielded when the cross-link density between the tropocollagen molecule of the fibril equal to 5.5 ± 0.5 (patellofemoral ligaments) and 12 (patellar tendon). Damage initiation of the patellofemoral ligaments was located at the femoral insertions while the damage of the patellar tendon happened in the middle of the structure. These predicted finding showed a meaningful correlation between the cross-link density of the tropocollagen molecules and the stiffness of the connective tissues of the extensor mechanism. Also, damage initiation and propagation were documented with this model, which were in satisfactory agreement with earlier observation. To the best of our knowledge, this is the first attempt to model ligaments from the bottom up, predicted depending to the tropocollagen cross-link density. This approach appears more meaningful towards a realistic simulation of a damaging process or repair attempt compared with certain published studies.

Keywords: tropocollagen, multiscale model, fibrils, knee ligaments

Procedia PDF Downloads 105
2822 Exploring the Process of Change in the Identity Constructs of Adolescents Exposed to Family Violence

Authors: Charlene Petersen, Herman Grobler, Karel Botha

Abstract:

Exposure to family violence has an impact on adolescent development, more specifically the identity process. This article explores the process of change in identity constructs of adolescents’ exposed to family violence in a Cape Town community in South Africa. In order to understand the process of identity formation the article explores and describes how the meaning that these adolescents give to family violence can contribute to change in their identity constructs. A mixed method approached was used in the study. A psycho-education strategy was implemented as the intervention and pretest-post-test scales were used to assess for change after the intervention process. Twelve participants were purposely selected for the study and included both male and female adolescents with ages ranging from 15 to 18 years from three secondary schools. The research data for this article were mainly extracted from the pre-test post-test design and the psycho-education strategy of the overall research study. The research results of the psycho-education strategy were thematically analyzed and a statistical procedure was used to measure for significant change within pre-test-post-test scales. The research merely refers to the outcome of psycho-education strategy and how it correlates with the outcome of the pre-test post-test design. Adolescents’ exposure to a psycho-education strategy, as well the pre-test post-test findings reveal a change within identity construct in terms of how they perceive themselves and interaction with others in the context of family violence.

Keywords: process of change in adolescent identity, family violence, psycho-education strategy, pre and post assessment

Procedia PDF Downloads 450
2821 Damage Micromechanisms of Coconut Fibers and Chopped Strand Mats of Coconut Fibers

Authors: Rios A. S., Hild F., Deus E. P., Aimedieu P., Benallal A.

Abstract:

The damage micromechanisms of chopped strand mats manufactured by compression of Brazilian coconut fiber and coconut fibers in different external conditions (chemical treatment) were used in this study. Mechanical analysis testing uniaxial traction were used with Digital Image Correlation (DIC). The images captured during the tensile test in the coconut fibers and coconut fiber mats showed an uncertainty of measurement in order centipixels. The initial modulus (modulus of elasticity) and tensile strength decreased with increasing diameter for the four conditions of coconut fibers. The DIC showed heterogeneous deformation fields for coconut fibers and mats and the displacement fields showed the rupture process of coconut fiber. The determination of poisson’s ratio of the mat was performed through of transverse and longitudinal deformations found in the elastic region.

Keywords: coconut fiber, mechanical behavior, digital image correlation, micromechanism

Procedia PDF Downloads 437
2820 Functional Characterization of Rv1019, a Putative TetR Family Transcriptional Regulator of Mycobacterium Tuberculosis H37Rv

Authors: Akhil Raj Pushparajan, Ranjit Ramachandran, Jijimole Gopi Reji, Ajay Kumar Ramakrishnan

Abstract:

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the leading causes of death by an infectious disease. In spite of the availability of effective drugs and a vaccine, TB is a major health concern and was declared a global emergency by the World Health Organization (WHO). The success of intracellular pathogens like Mtb depends on its ability to overcome the challenging environment in the host. Gene regulation controlled by transcriptional regulators (TRs) plays a crucial role for the bacteria to adapt to the host environment. In vitro studies on gene regulatory mechanisms during dormancy and reactivation have provided insights into the adaptations employed by Mtb to survive in the host. Here we present our efforts to functionally characterize Rv1019, a putative TR of Mtb H37Rv which was found to be present at significantly varying levels during dormancy and reactivation in vitro. The expression of this protein in the dormancy-reactivation model was validated by qRT-PCR and western blot. By DNA- protein interaction studies and reporter assays we found that under normal laboratory conditions of growth this protein behaves as an auto-repressor and tetracycline was found to abrogate this repression by interfering with its ability to bind DNA. Further, by cDNA analysis, we found that this TR is co-transcribed with its downstream genes Rv1020 (mfd) and Rv1021 (mazG) which are involved in DNA damage response in Mtb. Constitutive expression of this regulator in the surrogate host M. smegmatis showed downregulation of the orthologues of downstream genes suggested that Rv1019 could negatively regulate these genes. Our finds also show that M. smegmatis expressing Rv1019 is sensitive to DNA damage suggests the role of this protein in regulating DNA damage response induced by oxidative stress. Because of its role in regulating DNA damage response which may help in the persistence of Mtb, Rv1019 could be used as a prospective target for therapeutic intervention to fight TB.

Keywords: auto-repressor, DNA repair, mycobacterium smegmatis, mycobacterium tuberculosis, tuberculosis

Procedia PDF Downloads 110
2819 Experimental Investigation and Constitutive Modeling of Volume Strain under Uniaxial Strain Rate Jump Test in HDPE

Authors: Rida B. Arieby, Hameed N. Hameed

Abstract:

In this work, tensile tests on high density polyethylene have been carried out under various constant strain rate and strain rate jump tests. The dependency of the true stress and specially the variation of volume strain have been investigated, the volume strain due to the phenomena of damage was determined in real time during the tests by an optical extensometer called Videotraction. A modified constitutive equations, including strain rate and damage effects, are proposed, such a model is based on a non-equilibrium thermodynamic approach called (DNLR). The ability of the model to predict the complex nonlinear response of this polymer is examined by comparing the model simulation with the available experimental data, which demonstrate that this model can represent the deformation behavior of the polymer reasonably well.

Keywords: strain rate jump tests, volume strain, high density polyethylene, large strain, thermodynamics approach

Procedia PDF Downloads 236
2818 Creep Analysis and Rupture Evaluation of High Temperature Materials

Authors: Yuexi Xiong, Jingwu He

Abstract:

The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.

Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines

Procedia PDF Downloads 261
2817 The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study

Authors: C. Paglia, C. Mosca

Abstract:

Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground.

Keywords: resin, floor, damage, durability

Procedia PDF Downloads 141
2816 Urban Search, Rescue and Rapid Field Assessment of Damaged and Collapsed Building Structures

Authors: Abid I. Abu-Tair, Gavin M. Wilde, John M. Kinuthia

Abstract:

Urban Search and Rescue (USAR) is a functional capability that has been developed to allow the United Kingdom Fire and Rescue Service to deal with ‘major incidents’ primarily involving structural collapse. The nature of the work undertaken by USAR means that staying out of a damaged or collapsed building structure is not usually an option for search and rescue personnel. As a result, there is always a risk that they could become victims. For this paper, a systematic and investigative review using desk research was undertaken to explore the role which structural engineering can play in assisting search and rescue personnel to conduct structural assessments when in the field. The focus is on how search and rescue personnel can assess damaged and collapsed building structures, not just in terms of the structural damage that may be countered, but also in relation to structural stability. Natural disasters, accidental emergencies, acts of terrorism and other extreme events can vary significantly in nature and ferocity, and can cause a wide variety of damage to building structures. It is not possible or, even realistic, to provide search and rescue personnel with definitive guidelines and procedures to assess damaged and collapsed building structures as there are too many variables to consider. However, understanding what implications damage may have upon the structural stability of a building structure will enable search and rescue personnel to judge better and quantify the risk from a life-safety standpoint. It is intended that this will allow search and rescue personnel to make informed decisions and ensure every effort is made to mitigate risk so that they do not become victims.

Keywords: damaged and collapsed building structures, life safety, quantifying risk, search and rescue personnel, structural assessments in the field

Procedia PDF Downloads 368
2815 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 74
2814 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice

Authors: Chiling Chen, Chiaoying Chou, Siyang Wu

Abstract:

Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.

Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy

Procedia PDF Downloads 281
2813 Beware the Trolldom: Speculative Interests and Policy Implications behind the Circulation of Damage Claims

Authors: Antonio Davola

Abstract:

Moving from the evaluations operated by Richard Posner in his judgment on the case Carhart v. Halaska, the paper seeks to analyse the so-called ‘litigation troll’ phenomenon and the development of a damage claims market, i.e. a market in which the right to propose claims is voluntary exchangeable for money and can be asserted by private buyers. The aim of our study is to assess whether the implementation of a ‘damage claims market’ might represent a resource for victims or if, on the contrary, it might operate solely as a speculation tool for private investors. The analysis will move from the US experience, and will then focus on the EU framework. Firstly, the paper will analyse the relation between the litigation troll phenomenon and the patent troll activity: even though these activities are considered similar by Posner, a comparative study shows how these practices significantly differ in their impact on the market and on consumer protection, even moving from similar economic perspectives. The second part of the paper will focus on the main specific concerns related to the litigation trolling activity. The main issues that will be addressed are the risk that the circulation of damage claims might spur non-meritorious litigation and the implications of the misalignment between the victim of a tort and the actual plaintiff in court arising from the sale of a claim. In its third part, the paper will then focus on the opportunities and benefits that the introduction and regulation of a claims market might imply both for potential claims sellers and buyers, in order to ultimately assess whether such a solution might actually increase individual’s legal empowerment. Through the damage claims market compensation would be granted more quickly and easily to consumers who had suffered harm: tort victims would, in fact, be compensated instantly upon the sale of their claims without any burden of proof. On the other hand, claim-buyers would profit from the gap between the amount that a consumer would accept for an immediate refund and the compensation awarded in court. In the fourth part of the paper, the analysis will focus on the legal legitimacy of the litigation trolling activity in the US and the EU framework. Even though there is no express provision that forbids the sale of the right to pursue a claim in court - or that deems such a right to be non-transferable – procedural laws of single States (especially in the EU panorama) must be taken into account in evaluating this aspect. The fifth and final part of the paper will summarize the various data collected to suggest an evaluation on if, and through which normative solutions, the litigation trolling might comport benefits for competition and which would be its overall effect over consumer’s protection.

Keywords: competition, claims, consumer's protection, litigation

Procedia PDF Downloads 214
2812 Investigation of Ezetimibe Administration on Cell Survival Markers in Kidney Ischemia

Authors: Zahra Heydari

Abstract:

Introduction: One of the major clinical issues is acute renal failure, which is caused by ischemia-reperfusion of the kidney and is associated with high mortality. Despite advances in this area, important issues such as tissue necrosis, cell apoptosis, and so on in damaged tissue are suggestive for more researches and study on this subject. Objective: Evaluation of the potential utility of Ezetimibe in reducing injuries and cell death induced by kidney ischemia/ reperfusion through inducing expression changes of different cellular pathways in adult Sprague-Dawley rats. Materials and methods: Forty rats weighing 180-200g were divided into 4 groups. For this purpose, the first right kidneys of the rats were removed during surgery. After 20 days, the left renal artery was closed with a soft clamp and reperfusion was performed. After 24 hours, blood samples were collected and sent to the laboratory with kidneys to measure bax and bcl-2 by Western blotting and histopathological tests. Results: Quantitative damage reviews of Kidney tissue indicates damage Acute and severe tubular lesions were observed in the ischemia group. Also, the amount of injury was significantly reduced in the treatment group. There was also a significant difference between the ischemia and sham groups. In general, the results show that a single dose of 1.2 mg/kg of ezetimibe can reduce the bax/ bcl-2 ratio compared to the ischemia group. In general, the results showed Ezetimibe is effective in reducing cell damage and death due to ischemia/ reperfusion after renal ischemia through changes in the expression of various cellular pathways in rats.

Keywords: acute renal failure, renal ischemia-reperfusion injury, ezetimibe, apoptosis

Procedia PDF Downloads 168
2811 Synthesis of Cationic Bleach Activator for Textile Industry

Authors: Pelin Altay, Ahmed El-Shafei, Peter J. Hauser, Nevin Cigdem Gursoy

Abstract:

Exceedingly high temperatures are used (around 95 °C) to perform hydrogen peroxide bleaching of cotton fabrics in textile industry, which results in high energy consumption and also gives rise to significant fiber damage. Activated bleach systems have the potential to produce more efficient bleaching through increased oxidation rates with reducing energy cost, saving time and causing less fiber damage as compared to conventional hot peroxide bleaching. In this study, a cationic bleach activator was synthesized using caprolactam as a leaving group and triethylamine as a cationic group to establish an activated peroxide system for low temperature bleaching. Cationic bleach activator was characterized by FTIR, 1H NMR and mass spectrometry. The bleaching performance of the prototype cationic bleach activator was evaluated and optimizing the bleach recipe was performed.

Keywords: bleach activator, cotton bleaching, hydrogen peroxide bleaching, low temperature bleaching

Procedia PDF Downloads 242
2810 Assessing Social Vulnerability and Policy Adaption Application Responses Based on Landslide Risk Map

Authors: Z. A. Ahmad, R. C. Omar, I. Z. Baharuddin, R. Roslan

Abstract:

Assessments of social vulnerability, carried out holistically, can provide an important guide to the planning process and to decisions on resource allocation at various levels, and can help to raise public awareness of geo-hazard risks. The assessments can help to provide answers for basic questions such as the human vulnerability at the geo-hazard prone or disaster areas causing health damage, economic loss, loss of natural heritage and vulnerability impact of extreme natural hazard event. To overcome these issues, integrated framework for assessing the increasing human vulnerability to environmental changes caused by geo-hazards will be introduced using an indicator from landslide risk map that is related to agent based modeling platform. The indicators represent the underlying factors, which influence a community’s ability to deal with and recover from the damage associated with geo-hazards. Scope of this paper is particularly limited to landslides.

Keywords: social, vulnerability, geo-hazard, methodology, indicators

Procedia PDF Downloads 256
2809 Piezo-Extracted Model Based Chloride/ Carbonation Induced Corrosion Assessment in Reinforced Concrete Structures

Authors: Gupta. Ashok, V. talakokula, S. bhalla

Abstract:

Rebar corrosion is one of the main causes of damage and premature failure of the reinforced concrete (RC) structures worldwide, causing enormous costs for inspection, maintenance, restoration and replacement. Therefore, early detection of corrosion and timely remedial action on the affected portion can facilitate an optimum utilization of the structure, imparting longevity to it. The recent advent of the electro-mechanical impedance (EMI) technique using piezo sensors (PZT) for structural health monitoring (SHM) has provided a new paradigm to the maintenance engineers to diagnose the onset of the damage at the incipient stage itself. This paper presents a model based approach for corrosion assessment based on the equivalent parameters extracted from the impedance spectrum of concrete-rebar system using the EMI technique via the PZT sensors.

Keywords: impedance, electro-mechanical, stiffness, mass, damping, equivalent parameters

Procedia PDF Downloads 515
2808 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity

Procedia PDF Downloads 258
2807 A Single-Channel BSS-Based Method for Structural Health Monitoring of Civil Infrastructure under Environmental Variations

Authors: Yanjie Zhu, André Jesus, Irwanda Laory

Abstract:

Structural Health Monitoring (SHM), involving data acquisition, data interpretation and decision-making system aim to continuously monitor the structural performance of civil infrastructures under various in-service circumstances. The main value and purpose of SHM is identifying damages through data interpretation system. Research on SHM has been expanded in the last decades and a large volume of data is recorded every day owing to the dramatic development in sensor techniques and certain progress in signal processing techniques. However, efficient and reliable data interpretation for damage detection under environmental variations is still a big challenge. Structural damages might be masked because variations in measured data can be the result of environmental variations. This research reports a novel method based on single-channel Blind Signal Separation (BSS), which extracts environmental effects from measured data directly without any prior knowledge of the structure loading and environmental conditions. Despite the successful application in audio processing and bio-medical research fields, BSS has never been used to detect damage under varying environmental conditions. This proposed method optimizes and combines Ensemble Empirical Mode Decomposition (EEMD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) together to separate structural responses due to different loading conditions respectively from a single channel input signal. The ICA is applying on dimension-reduced output of EEMD. Numerical simulation of a truss bridge, inspired from New Joban Line Arakawa Railway Bridge, is used to validate this method. All results demonstrate that the single-channel BSS-based method can recover temperature effects from mixed structural response recorded by a single sensor with a convincing accuracy. This will be the foundation of further research on direct damage detection under varying environment.

Keywords: damage detection, ensemble empirical mode decomposition (EEMD), environmental variations, independent component analysis (ICA), principal component analysis (PCA), structural health monitoring (SHM)

Procedia PDF Downloads 282