Search results for: agent based web content mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33749

Search results for: agent based web content mining

33389 Histone Deacetylases Inhibitor - Valproic Acid Sensitizes Human Melanoma Cells for alkylating agent and PARP inhibitor

Authors: Małgorzata Drzewiecka, Tomasz Śliwiński, Maciej Radek

Abstract:

The inhibition of histone deacetyles (HDACs) holds promise as a potential anti-cancer therapy because histone and non-histone protein acetylation is frequently disrupted in cancer, leading to cancer initiation and progression. Additionally, histone deacetylase inhibitors (HDACi) such as class I HDAC inhibitor - valproic acid (VPA) have been shown to enhance the effectiveness of DNA-damaging factors, such as cisplatin or radiation. In this study, we found that, using of VPA in combination with talazoparib (BMN-637 – PARP1 inhibitor – PARPi) and/or Dacarabazine (DTIC - alkylating agent) resulted in increased DNA double strand break (DSB) and reduced survival (while not affecting primary melanocytes )and proliferation of melanoma cells. Furthermore, pharmacologic inhibition of class I HDACs sensitizes melanoma cells to apoptosis following exposure to DTIC and BMN-637. In addition, inhibition of HDAC caused sensitization of melanoma cells to dacarbazine and BMN-637 in melanoma xenografts in vivo. At the mRNA and protein level histone deacetylase inhibitor downregulated RAD51 and FANCD2. This study provides that combining HDACi, alkylating agent and PARPi could potentially enhance the treatment of melanoma, which is known for being one of the most aggressive malignant tumors. The findings presented here point to a scenario in which HDAC via enhancing the HR-dependent repair of DSBs created during the processing of DNA lesions, are essential nodes in the resistance of malignant melanoma cells to methylating agent-based therapies.

Keywords: melanoma, hdac, parp inhibitor, valproic acid

Procedia PDF Downloads 82
33388 Spatio-Temporal Data Mining with Association Rules for Lake Van

Authors: Tolga Aydin, M. Fatih Alaeddinoğlu

Abstract:

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatio-temporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newly-formed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

Keywords: apriori algorithm, association rules, data mining, spatio-temporal data

Procedia PDF Downloads 374
33387 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 518
33386 Antimicrobial Activity of Igusa and the Application to Foam Materials for Food Industry

Authors: I. Nanako, Mariko Era, Hiroshi Morita

Abstract:

Objectives: Japanese uses TATAMI rather than flooring at home. Igusa ( Juncus effuses var. decipiens ), which is commonly known in the forms of TATAMI. Juncus spp. grow at a relatively high humidity area (Japan, China and Southeast Asia ). Yatsushiro region in the southern part of Kumamoto prefecture is major produing area of Igusa. Igusa found to have honeycomb structure and was also shown to have the ability to control humidity. And Igusa has been used as a medicinal herb for diuretic and antiphlogistic agent. In previous study, we investigated antimicrobial effects of Igusa, and showed high antimicrobial activity against food poisoning bacteria. Therefore, the food trays blended Igusa can be kept clean by antimicrobial activity of Igusa. We focus on ‘Igusa foam materials’. In this study, we investigated the antibacterial and antifungal activity of Igusa, and new application to foam materials for food industry. Materials and method: We used Igusa foam materials (3 × 3 × 3 cm) as a sample. We set about fifteen types of samples combined with a commercial antibacterial agent A, a commercial antibacterial agent B, potassium laurate (C12K) and a commercial antifungal agent C, a commercial antifungal agent D and a commercial antifungal agent E. We selected four bacteria strains (Escherichia coli NBRC 3972, Staphylococus aureus NBRC 12732, Salmonella typhimurium NBRC 13245, Bacillus subtilis NBRC 3335 ) and three fungus strains (Penicillium pinophilum NBRC 6345, Cladosporium cladosporioides NBRC 30314, Aspergillus oryzae NBRC 5238 ). The fungus was cultured at 30 °C on Igusa foam materials after inoculation of the fungus for fourteen days. The bacteria was cultured at 30 °C on Igusa foam materials after inoculation of the bacteria for three days. And the Igusa foam materials were washed with 10 mL normal saline after three days. The normal saline washed Igusa foam materials plated the NA medium. After, It was cultured at 30 °C and used colony counting method. Result and Conclusion: The fifteen types of sample of Igusa foam materials had antifungal activity against C. cladosporioides, A. oryzae and P. pinophilum for fourteen days. The four types of sample contained potassium laurate and antibacterial agent A, sample contained antibacterial agent B and antifungal agent D, sample contained A and antifungal agent E, sample contained B and E had antibacterial activity against B. subtilis. The three types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E had antibacterial activity against S. typhimurium. The five types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E, sample contained B and E, sample contained B and antifungal agent C had antibacterial activity against E. coli and S. aureus. These results indicate that Igusa of Igusa foam materials had high antifungal activity. In addition, Igusa foam materials combined with a commercial antibacterial agent had antibacterial activity. In the future, we consider that use of Igusa foam materials may be spread from food industry.

Keywords: antibacterial, antifungal, foam materials, Igusa

Procedia PDF Downloads 245
33385 Green Crypto Mining: A Quantitative Analysis of the Profitability of Bitcoin Mining Using Excess Wind Energy

Authors: John Dorrell, Matthew Ambrosia, Abilash

Abstract:

This paper employs econometric analysis to quantify the potential profit wind farms can receive by allocating excess wind energy to power bitcoin mining machines. Cryptocurrency mining consumes a substantial amount of electricity worldwide, and wind energy produces a significant amount of energy that is lost because of the intermittent nature of the resource. Supply does not always match consumer demand. By combining the weaknesses of these two technologies, we can improve efficiency and a sustainable path to mine cryptocurrencies. This paper uses historical wind energy from the ERCOT network in Texas and cryptocurrency data from 2000-2021, to create 4-year return on investment projections. Our research model incorporates the price of bitcoin, the price of the miner, the hash rate of the miner relative to the network hash rate, the block reward, the bitcoin transaction fees awarded to the miners, the mining pool fees, the cost of the electricity and the percentage of time the miner will be running to demonstrate that wind farms generate enough excess energy to mine bitcoin profitably. Excess wind energy can be used as a financial battery, which can utilize wasted electricity by changing it into economic energy. The findings of our research determine that wind energy producers can earn profit while not taking away much if any, electricity from the grid. According to our results, Bitcoin mining could give as much as 1347% and 805% return on investment with the starting dates of November 1, 2021, and November 1, 2022, respectively, using wind farm curtailment. This paper is helpful to policymakers and investors in determining efficient and sustainable ways to power our economic future. This paper proposes a practical solution for the problem of crypto mining energy consumption and creates a more sustainable energy future for Bitcoin.

Keywords: bitcoin, mining, economics, energy

Procedia PDF Downloads 33
33384 Multi-Agent System Based Distributed Voltage Control in Distribution Systems

Authors: A. Arshad, M. Lehtonen. M. Humayun

Abstract:

With the increasing Distributed Generation (DG) penetration, distribution systems are advancing towards the smart grid technology for least latency in tackling voltage control problem in a distributed manner. This paper proposes a Multi-agent based distributed voltage level control. In this method a flat architecture of agents is used and agents involved in the whole controlling procedure are On Load Tap Changer Agent (OLTCA), Static VAR Compensator Agent (SVCA), and the agents associated with DGs and loads at their locations. The objectives of the proposed voltage control model are to minimize network losses and DG curtailments while maintaining voltage value within statutory limits as close as possible to the nominal. The total loss cost is the sum of network losses cost, DG curtailment costs, and voltage damage cost (which is based on penalty function implementation). The total cost is iteratively calculated for various stricter limits by plotting voltage damage cost and losses cost against varying voltage limit band. The method provides the optimal limits closer to nominal value with minimum total loss cost. In order to achieve the objective of voltage control, the whole network is divided into multiple control regions; downstream from the controlling device. The OLTCA behaves as a supervisory agent and performs all the optimizations. At first, a token is generated by OLTCA on each time step and it transfers from node to node until the node with voltage violation is detected. Upon detection of such a node, the token grants permission to Load Agent (LA) for initiation of possible remedial actions. LA will contact the respective controlling devices dependent on the vicinity of the violated node. If the violated node does not lie in the vicinity of the controller or the controlling capabilities of all the downstream control devices are at their limits then OLTC is considered as a last resort. For a realistic study, simulations are performed for a typical Finnish residential medium-voltage distribution system using Matlab ®. These simulations are executed for two cases; simple Distributed Voltage Control (DVC) and DVC with optimized loss cost (DVC + Penalty Function). A sensitivity analysis is performed based on DG penetration. The results indicate that costs of losses and DG curtailments are directly proportional to the DG penetration, while in case 2 there is a significant reduction in total loss. For lower DG penetration, losses are reduced more or less 50%, while for higher DG penetration, loss reduction is not very significant. Another observation is that the newer stricter limits calculated by cost optimization moves towards the statutory limits of ±10% of the nominal with the increasing DG penetration as for 25, 45 and 65% limits calculated are ±5, ±6.25 and 8.75% respectively. Observed results conclude that the novel voltage control algorithm proposed in case 1 is able to deal with the voltage control problem instantly but with higher losses. In contrast, case 2 make sure to reduce the network losses through proposed iterative method of loss cost optimization by OLTCA, slowly with time.

Keywords: distributed voltage control, distribution system, multi-agent systems, smart grids

Procedia PDF Downloads 312
33383 An Automatic Bayesian Classification System for File Format Selection

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.

Keywords: data mining, digital libraries, digital preservation, file format

Procedia PDF Downloads 499
33382 Improvement of Mechanical Properties of Saline Soils by Fly Ash: Effect of Freeze-Thaw Cycles

Authors: Zhuo Cheng, Gaohang Cui, Yang Zheng, Zhiqiang-Pan

Abstract:

To explore the effect of freeze-thaw cycles on saline soil mechanical properties of fly ash, this study examined the influence of different numbers of freezing and thawing cycles, fly ash content, and moisture content of saline soil in unconfined compression tests and triaxial shear tests. With increased fly ash content, the internal friction angle, cohesion, unconfined compressive strength, and shear strength of the improved soil increased at first and then decreased. Using the Desk-Expert 8.0 software and based on significance analysis theory, the number of freeze-thaw cycles, fly ash content, water content, and the interactions between various factors on the mechanical properties of saline soil were studied. The results showed that the number of freeze-thaw cycles had a significant effect on the mechanical properties of saline soil, while the fly ash content had a weakly significant effect. At the same time, interaction between the number of freeze-thaw cycles and the water content had a significant effect on the unconfined compressive strength and the cohesion of saline soil, and the interaction between fly ash content and the number of freeze-thaw cycles only had a significant effect on the unconfined compressive strength.

Keywords: fly ash, saline soil, seasonally frozen area, significance analysis, qualitative analysis

Procedia PDF Downloads 147
33381 Analysis of Causality between Defect Causes Using Association Rule Mining

Authors: Sangdeok Lee, Sangwon Han, Changtaek Hyun

Abstract:

Construction defects are major components that result in negative impacts on project performance including schedule delays and cost overruns. Since construction defects generally occur when a few associated causes combine, a thorough understanding of defect causality is required in order to more systematically prevent construction defects. To address this issue, this paper uses association rule mining (ARM) to quantify the causality between defect causes, and social network analysis (SNA) to find indirect causality among them. The suggested approach is validated with 350 defect instances from concrete works in 32 projects in Korea. The results show that the interrelationships revealed by the approach reflect the characteristics of the concrete task and the important causes that should be prevented.

Keywords: causality, defect causes, social network analysis, association rule mining

Procedia PDF Downloads 367
33380 Modeling Influence on Petty Corruption Attitudes

Authors: Nina Bijedic, Drazena Gaspar, Mirsad Hadzikadic

Abstract:

Corruption is an influential and widespread problem. One part of it is so-called petty corruption, related to large-scale bribe giving by ordinary citizens trying to influence the works of public administration or public services. As it is with all means of corruption, petty corruption is related to the level of democracy (or administration efficiency) in a society. The developed model captures some of the factors related to corruptive behavior, as well as people’s attitude towards petty corruption. It has four basic elements: user’s perception of corruption in the society of interest, the influence of social interactions, the influence of penalizing mechanism, and influence of campaigns against petty corruption. The model is agent-based, developed in NetLogo, with a lot of random settings that provide a wider scope of responses. Interactions of different settings for variables of elements provide insight into the influence of each element on attitude towards petty corruption, as well as petty corruptive behavior.

Keywords: agent-based model, attitude, influence, petty corruption, society

Procedia PDF Downloads 199
33379 A Principal-Agent Model for Sharing Mechanism in Integrated Project Delivery Context

Authors: Shan Li, Qiuwen Ma

Abstract:

Integrated project delivery (IPD) is a project delivery method distinguished by a shared risk/rewards mechanism and multiparty agreement. IPD has drawn increasingly attention from construction industry because of its efficiency of solving adversarial problems and reliability to deliver high-performing buildings. However, some evidence showed that some project participants obtained less profit from IPD projects than the typical projects. They attributed it to the unfair IPD sharing mechanism, which resulted in additional time and cost of negotiation on the sharing fractions among project participants. The study is aimed to investigate the reward distribution by constructing a principal-agent model. Based on cooperative game theory, it is examined how to distribute the shared project rewards between client and non-client parties, and identify the sharing fractions among non-client parties. It is found that at least half of the project savings should be allocated to the non-client parties to motivate them to create more project value. Second, the client should raise his sharing fractions when the integration among project participants is efficient. In addition, the client should allocate higher sharing fractions to the non-client party who is more able. This study can help the IPD project participants make fair and motivated sharing mechanisms.

Keywords: cooperative game theory, IPD, principal agent model, sharing mechanism

Procedia PDF Downloads 292
33378 Estimated Human Absorbed Dose of 111 In-BPAMD as a New Bone-Seeking Spect-Imaging Agent

Authors: H. Yousefnia, S. Zolghadri

Abstract:

An early diagnosis of bone metastases is very important for providing a profound decision on a subsequent therapy. A prerequisite for the clinical application of new diagnostic radiopharmaceutical is the measurement of organ radiation exposure dose from biodistribution data in animals. In this study, the dosimetric studies of a novel agent for SPECT-imaging of bone methastases, 111In-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been estimated in human organs based on mice data. The radiolabeled complex was prepared with high radiochemical purity at the optimal conditions. Biodistribution studies of the complex were investigated in male Syrian mice at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was performed based on mice data by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose to critical organs the complex is well within the acceptable considered range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastases in the near future.

Keywords: In-111, BPAMD, absorbed dose, RADAR

Procedia PDF Downloads 481
33377 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance

Procedia PDF Downloads 106
33376 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 138
33375 Design and Development of Data Mining Application for Medical Centers in Remote Areas

Authors: Grace Omowunmi Soyebi

Abstract:

Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.

Keywords: data mining, medical record system, systems programming, computing

Procedia PDF Downloads 209
33374 Suggestion for Malware Detection Agent Considering Network Environment

Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung

Abstract:

Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.

Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment

Procedia PDF Downloads 433
33373 Improved FP-Growth Algorithm with Multiple Minimum Supports Using Maximum Constraints

Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam

Abstract:

Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FP-growth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.

Keywords: association rules, FP-growth, multiple minimum supports, Weka tool

Procedia PDF Downloads 485
33372 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 54
33371 Artificial Intelligent Tax Simulator to Minimize Tax Liability for Multinational Corporations

Authors: Sean Goltz, Michael Mayo

Abstract:

The purpose of this research is to use Global-Regulation.com database of the world laws, focusing on tax treaties between countries, in order to create an AI-driven tax simulator that will run an AI agent through potential tax scenarios across countries. The AI agent goal is to identify the scenario that will result in minimum tax liability based on tax treaties between countries. The results will be visualized by a three dimensional matrix. This will be an online web application. Multinational corporations are running their business through multiple countries. These countries, in turn, have a tax treaty with many other countries to regulate the payment of taxes on income that is transferred between these countries. As a result, planning the best tax scenario across multiple countries and numerous tax treaties is almost impossible. This research propose to use Global-Regulation.com database of word laws in English (machine translated by Google and Microsoft API’s) in order to create a simulator that will include the information in the tax treaties. Once ready, an AI agent will be sent through the simulator to identify the scenario that will result in minimum tax liability. Identifying the best tax scenario across countries may save multinational corporations, like Google, billions of dollars annually. Given the nature of the raw data and the domain of taxes (i.e., numbers), this is a promising ground to employ artificial intelligence towards a practical and beneficial purpose.

Keywords: taxation, law, multinational, corporation

Procedia PDF Downloads 199
33370 Introduction to Multi-Agent Deep Deterministic Policy Gradient

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decisionmaking problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security). By modeling the multi-job collaborative cryptographic service scheduling problem as a multiobjective optimized job flow scheduling problem, and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing, and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: multi-agent reinforcement learning, non-stationary dynamics, multi-agent systems, cooperative and competitive agents

Procedia PDF Downloads 23
33369 A contribution to Phytochemical and Biological Studies of Ailanthus Alitssima Swingle Cultivated in Egypt

Authors: Ahmed Samy Elnoby

Abstract:

Ailanthus altissima native to Asia which belongs to the family Simaroubaceae was subjected to phytochemical screening and biological investigations. Phytochemical screening revealed the presence of carbohydrates, tannins, sterols, flavonoids and traces of saponins. In addition, quantitative determination of phenolics and flavonoid content were performed. The antimicrobial activity of methanolic extract of the leaves was determined against gram-positive, gram-negative bacteria in addition to fungi using a modified Kirby-Bauer disc diffusion method that was compared with standard discs ampicillin which acts as an antibacterial agent and amphotericin B which acts as an antifungal agent. A high potency was observed against gram-positive bacteria mainly staphylococcus aureus, gram-negative bacteria mainly Escherichia coli and showed no potency against fungi mainly Aspergillus flavus and candida albicans. On the other hand, the antioxidant activity of the extract was determined by 1, 1-diphenyl-2- diphenyl-2-picryl-hydrazil (DPPH). A very low potency was shown by using DPPH for the antioxidant effect so IC50 = 0 ug/ml, IC90 =0 ug /ml and remark gave 47.2 % at 100 ug/ml which is very weak. Cytotoxic activity was determined by using MTT assay (3-4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) against MCF7 (Human Caucasian breast adenocarcinoma) cell line. A moderate potency was shown by using MCF7 cell line for cytotoxic effect so LC50= 90.2 ug/ml, LC90=139.9 ug/ml and the remark gave 55.2% at 100 ug/ml which is of moderate activity so, Ailanthus altissima can be considered to be a promising antimicrobial agent from natural origin.

Keywords: Ailanthus altissima, TLC, HPLC, anti-microbial activity, antifungal activity, antioxidant, cytotoxic activity

Procedia PDF Downloads 174
33368 Influence of Physical Properties on Estimation of Mechanical Strength of Limestone

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah(Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Others correlations UCS-tensile strength, dynamic Young’s modulus-static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 454
33367 A Theoretical Model for Pattern Extraction in Large Datasets

Authors: Muhammad Usman

Abstract:

Pattern extraction has been done in past to extract hidden and interesting patterns from large datasets. Recently, advancements are being made in these techniques by providing the ability of multi-level mining, effective dimension reduction, advanced evaluation and visualization support. This paper focuses on reviewing the current techniques in literature on the basis of these parameters. Literature review suggests that most of the techniques which provide multi-level mining and dimension reduction, do not handle mixed-type data during the process. Patterns are not extracted using advanced algorithms for large datasets. Moreover, the evaluation of patterns is not done using advanced measures which are suited for high-dimensional data. Techniques which provide visualization support are unable to handle a large number of rules in a small space. We present a theoretical model to handle these issues. The implementation of the model is beyond the scope of this paper.

Keywords: association rule mining, data mining, data warehouses, visualization of association rules

Procedia PDF Downloads 223
33366 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 273
33365 Eucalyptus camendulensis and Its Drying Effect on Water and Essential Oil Content

Authors: Mehani Mouna, Segni Ladjel

Abstract:

Medicinal and aromatic plants are promising and are characterized by the biosynthesis of odorous molecules that make up the so-called essential oils (EO), which have long been known for their antiseptic and therapeutic activity in folk medicine. The objective of this study was to evaluate the influence of drying in the shade on the water content and on the content of essential oils extracted from leaves of Eucalyptus camendulensis for better quality control of medicinal and aromatic plants. The water content of the Eucalyptus camendulensis plant material decreases during the drying process. It increased from 100 % to 0.006 % for the drying in the shade after ten days. The moisture content is practically constant at the end of the drying period. The drying in the shade increases the concentration of essential oils of Eucalyptus camendulensis. When the leaves of Eucalyptus camendulensis plant are in the shade, the maximum of the essential oil content was obtained on the eighth days; the recorded value was 1.43% ± 0.01%. Beyond these periods, the content continuously drops in before stabilizing. The optimum drying time is between 6 and 9 days.

Keywords: Eucalyptus camendulensis, drying, essential oils, water, content

Procedia PDF Downloads 357
33364 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia

Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai

Abstract:

Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.

Keywords: coal mine, risk, trace elements, soil

Procedia PDF Downloads 260
33363 Blue Economy and Marine Mining

Authors: Fani Sakellariadou

Abstract:

The Blue Economy includes all marine-based and marine-related activities. They correspond to established, emerging as well as unborn ocean-based industries. Seabed mining is an emerging marine-based activity; its operations depend particularly on cutting-edge science and technology. The 21st century will face a crisis in resources as a consequence of the world’s population growth and the rising standard of living. The natural capital stored in the global ocean is decisive for it to provide a wide range of sustainable ecosystem services. Seabed mineral deposits were identified as having a high potential for critical elements and base metals. They have a crucial role in the fast evolution of green technologies. The major categories of marine mineral deposits are deep-sea deposits, including cobalt-rich ferromanganese crusts, polymetallic nodules, phosphorites, and deep-sea muds, as well as shallow-water deposits including marine placers. Seabed mining operations may take place within continental shelf areas of nation-states. In international waters, the International Seabed Authority (ISA) has entered into 15-year contracts for deep-seabed exploration with 21 contractors. These contracts are for polymetallic nodules (18 contracts), polymetallic sulfides (7 contracts), and cobalt-rich ferromanganese crusts (5 contracts). Exploration areas are located in the Clarion-Clipperton Zone, the Indian Ocean, the Mid Atlantic Ridge, the South Atlantic Ocean, and the Pacific Ocean. Potential environmental impacts of deep-sea mining include habitat alteration, sediment disturbance, plume discharge, toxic compounds release, light and noise generation, and air emissions. They could cause burial and smothering of benthic species, health problems for marine species, biodiversity loss, reduced photosynthetic mechanism, behavior change and masking acoustic communication for mammals and fish, heavy metals bioaccumulation up the food web, decrease of the content of dissolved oxygen, and climate change. An important concern related to deep-sea mining is our knowledge gap regarding deep-sea bio-communities. The ecological consequences that will be caused in the remote, unique, fragile, and little-understood deep-sea ecosystems and inhabitants are still largely unknown. The blue economy conceptualizes oceans as developing spaces supplying socio-economic benefits for current and future generations but also protecting, supporting, and restoring biodiversity and ecological productivity. In that sense, people should apply holistic management and make an assessment of marine mining impacts on ecosystem services, including the categories of provisioning, regulating, supporting, and cultural services. The variety in environmental parameters, the range in sea depth, the diversity in the characteristics of marine species, and the possible proximity to other existing maritime industries cause a span of marine mining impact the ability of ecosystems to support people and nature. In conclusion, the use of the untapped potential of the global ocean demands a liable and sustainable attitude. Moreover, there is a need to change our lifestyle and move beyond the philosophy of single-use. Living in a throw-away society based on a linear approach to resource consumption, humans are putting too much pressure on the natural environment. Applying modern, sustainable and eco-friendly approaches according to the principle of circular economy, a substantial amount of natural resource savings will be achieved. Acknowledgement: This work is part of the MAREE project, financially supported by the Division VI of IUPAC. This work has been partly supported by the University of Piraeus Research Center.

Keywords: blue economy, deep-sea mining, ecosystem services, environmental impacts

Procedia PDF Downloads 83
33362 Mine Project Evaluations in the Rising of Uncertainty: Real Options Analysis

Authors: I. Inthanongsone, C. Drebenstedt, J. C. Bongaerts, P. Sontamino

Abstract:

The major concern in evaluating the value of mining projects related to the deficiency of the traditional discounted cash flow (DCF) method. This method does not take uncertainties into account and, hence it does not allow for an economic assessment of managerial flexibility and operational adaptability, which are increasingly determining long-term corporate success. Such an assessment can be performed with the real options valuation (ROV) approach, since it allows for a comparative evaluation of unforeseen uncertainties in a project life cycle. This paper presents an economic evaluation model for open pit mining projects based on real options valuation approach. Uncertainties in the model are caused by metal prices and cost uncertainties and the system dynamics (SD) modeling method is used to structure and solve the real options model. The model is applied to a case study. It can be shown that that managerial flexibility reacting to uncertainties may create additional value to a mining project in comparison to the outcomes of a DCF method. One important insight for management dealing with uncertainty is seen in choosing the optimal time to exercise strategic options.

Keywords: DCF methods, ROV approach, system dynamics modeling methods, uncertainty

Procedia PDF Downloads 501
33361 RA-Apriori: An Efficient and Faster MapReduce-Based Algorithm for Frequent Itemset Mining on Apache Flink

Authors: Sanjay Rathee, Arti Kashyap

Abstract:

Extraction of useful information from large datasets is one of the most important research problems. Association rule mining is one of the best methods for this purpose. Finding possible associations between items in large transaction based datasets (finding frequent patterns) is most important part of the association rule mining. There exist many algorithms to find frequent patterns but Apriori algorithm always remains a preferred choice due to its ease of implementation and natural tendency to be parallelized. Many single-machine based Apriori variants exist but massive amount of data available these days is above capacity of a single machine. Therefore, to meet the demands of this ever-growing huge data, there is a need of multiple machines based Apriori algorithm. For these types of distributed applications, MapReduce is a popular fault-tolerant framework. Hadoop is one of the best open-source software frameworks with MapReduce approach for distributed storage and distributed processing of huge datasets using clusters built from commodity hardware. However, heavy disk I/O operation at each iteration of a highly iterative algorithm like Apriori makes Hadoop inefficient. A number of MapReduce-based platforms are being developed for parallel computing in recent years. Among them, two platforms, namely, Spark and Flink have attracted a lot of attention because of their inbuilt support to distributed computations. Earlier we proposed a reduced- Apriori algorithm on Spark platform which outperforms parallel Apriori, one because of use of Spark and secondly because of the improvement we proposed in standard Apriori. Therefore, this work is a natural sequel of our work and targets on implementing, testing and benchmarking Apriori and Reduced-Apriori and our new algorithm ReducedAll-Apriori on Apache Flink and compares it with Spark implementation. Flink, a streaming dataflow engine, overcomes disk I/O bottlenecks in MapReduce, providing an ideal platform for distributed Apriori. Flink's pipelining based structure allows starting a next iteration as soon as partial results of earlier iteration are available. Therefore, there is no need to wait for all reducers result to start a next iteration. We conduct in-depth experiments to gain insight into the effectiveness, efficiency and scalability of the Apriori and RA-Apriori algorithm on Flink.

Keywords: apriori, apache flink, Mapreduce, spark, Hadoop, R-Apriori, frequent itemset mining

Procedia PDF Downloads 294
33360 Accountant Strategists Challenge the Dominant Business Model: A Strategy-as-Practice Perspective

Authors: Lindie Grebe

Abstract:

This paper reports on a study that explored the strategizing practices of professional accountants in the mining industry, based on Jarratt and Stiles’ dominant strategizing practice models framework. Drawing on a strategy-as-practice perspective, the paper recognises qualified professional accountants in strategic management such as Chief Executive Officers, as strategy practitioners that perform their strategizing practices and praxis within a specific context. The main findings of this paper were produced through semi-structured individual interviews with accountants that perform strategy on a business level in the South African mining industry. Qualitative data were analysed through conversation analysis over two coding-cycles. Findings describe accountant strategists as practitioners who challenge the dominant business model when a disconnect seems to exist between international corporate level strategy and business level strategy in the South African mining industry. Accountant strategy practitioners described their dominant strategizing practice model as incremental change during strategic planning and as a lived experience during strategy implementation. Findings portrayed these strategists as taking initiative as strategy leaders in a dynamic and volatile environment to combine their accounting background with strategic management and challenge the dominant business model. Understanding how accountant strategists perform strategizing offers insight into the social practice of strategic management. This understanding contributes to the body of knowledge on strategizing in the South African mining industry. In addition, knowledge on the transformation of accountants as strategists could provide valuable practice relevant insights for accounting educators and the accounting profession alike.

Keywords: accountant strategists, dominant strategizing practice models framework, mining industry, strategy-as-practice

Procedia PDF Downloads 175