Search results for: EGFR kinase inhibitor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 555

Search results for: EGFR kinase inhibitor

195 MiR-103 Inhibits Osteoblast Proliferation Mainly through Suppressing Cav 1.2 Expression in Simulated Microgravity

Authors: Zhongyang Sun, Shu Zhang, Manjiang Xie

Abstract:

Emerging evidence indicates that microRNAs (miRNAs) play important roles in modulating osteoblast function and bone formation. However, the influence of miRNA on osteoblast proliferation and the possible mechanisms underlying remain to be defined. In this study, we aimed to investigate whether miR-103 regulates osteoblast proliferation under simulated microgravity condition through regulating Cav1.2, the primary subunit of L-type voltage sensitive calcium channels (LTCCs). We first investigated the effect of simulated microgravity on osteoblast proliferation and the outcomes clearly demonstrated that the mechanical unloading inhibits MC3T3-E1 osteoblast-like cells proliferation. Using quantitative Real-Time PCR (qRT-PCR), we provided data showing that miR-103 was up-regulated in response to simulated microgravity. In addition, we observed that up-regulation of miR-103 inhibited and down-regulation of miR-103 promoted osteoblast proliferation under simulated microgravity condition. Furthermore, knocking-down or over-expressing miR-103, respectively, up- or down-regulated the level of Cav1.2 expression and LTCCs currents, suggesting that miR-103 acts as an endogenous attenuator of Cav1.2 in osteoblasts under the condition of simulated microgravity. More importantly, we showed that the effect of miR-103 on osteoblast proliferation was diminished in simulated microgravity, when co-transfecting miR-103 mimic or inhibitor with Cav1.2 siRNA. Taken together, our data suggest that miR-103 inhibits osteoblast proliferation mainly through suppression of Cav1.2 expression under simulated microgravity condition. This work may provide a novel mechanism of microgravity-induced detrimental effects on osteoblast, identifying miR-103 as a novel possible therapeutic target in bone remodeling disorders in this mechanical unloading.

Keywords: microRNA, osteoblasts, cell proliferation, Cav1.2, simulated microgravity

Procedia PDF Downloads 344
194 Effect of Goat Milk Kefir and Soy Milk Kefir on IL-6 in Diabetes Mellitus Wistar Mice Models Induced by Streptozotocin and Nicotinamide

Authors: Agatha Swasti Ayuning Tyas

Abstract:

Hyperglycemia in Diabetes Mellitus (DM) is an important factor in cellular and vascular damage, which is caused by activation of C Protein Kinase, polyol and hexosamine track, and production of Advanced Glycation End-Products (AGE). Those mentioned before causes the accumulation of Reactive Oxygen Species (ROS). Oxidative stress increases the expression of proinflammatory factors IL-6 as one of many signs of endothelial disfunction. Genistein in soy milk has a high immunomodulator potential. Goat milk contains amino acids which have antioxidative potential. Fermented kefir has an anti-inflammatory activity which believed will also contribute in potentiating goat milk and soy milk. This study is a quasi-experimental posttest-only research to 30 Wistar mice. This study compared the levels of IL-6 between healthy Wistar mice group (G1) and 4 DM Wistar mice with intervention and grouped as follows: mice without treatment (G2), mice treated with 100% goat milk kefir (G3), mice treated with combination of 50% goat milk kefir and 50% soy milk kefir (G4), and mice treated with 100% soy milk kefir (G5). DM animal models were induced with Streptozotocin & Nicotinamide to achieve hyperglycemic condition. Goat milk kefir and soy milk kefir are given at a dose of 2 mL/kg body weight/day for four weeks to intervention groups. Blood glucose was analyzed by the GOD-POD principle. IL-6 was analyzed by enzyme-linked sandwich ELISA. The level of IL-6 in DM untreated control group (G2) showed a significant difference from the group treated with the combination of 50% goat milk kefir and 50% soy milk kefir (G3) (p=0,006) and the group treated with 100% soy milk kefir (G5) (p=0,009). Whereas the difference of IL-6 in group treated with 100% goat milk kefir (G3) was not significant (p=0,131). There is also synergism between glucose level and IL-6 in intervention groups treated with combination of 50% goat milk kefir and 50% soy milk kefir (G3) and the group treated with 100% soy milk kefir (G5). Combination of 50 % goat milk kefir and 50% soy milk kefir and administration of 100% soy milk kefir alone can control the level of IL-6 remained low in DM Wistar mice induced with streptozocin and nicotinamide.

Keywords: diabetes mellitus, goat milk kefir, soy milk kefir, interleukin 6

Procedia PDF Downloads 262
193 The Transcriptional Regulation of Human LRWD1 through DNA Methylation

Authors: Yen-Ni Teng, Hsing-Yi Chen, Hsien-An Pan, Yung-Ming Lin, Hany A. Omar, Jui-Hsiang Hung

Abstract:

Leucine-rich repeats and WD repeat domain containing 1 (LRWD1) is highly expressed in the testes of healthy males. On the other hand, LRWD1 is significantly down-regulated in the testicular tissues of patients with severe spermatogenic defects. In our study, the downregulation of LRWD1 expression by shRNA caused a significant reduction of cell growth and mitosis and a noteworthy increase in the cell microtubule atrophy rate. Here, we used EMBOSS CpG plot analysis to explore the promoter region of LRWD1 gene. We found that CpG islands are located between positions -253 to +5 nucleotides upstream from the LRWD1 transcription start site. Luciferase reporter assay revealed that the hypermethylation of the LRWD1 promoter reduced the transcription activity in cells. In addition, quantitative methylation-specific PCR and immunostaining showed that the methylation inhibitor, 5-Aza-2'-deoxycytidine, increased LRWD1 promoter activity, LRWD1 mRNA, protein expression and cell viability. Whereas, the methylation activator, S-adenosylmethionine, caused opposite effects. The overexpression of p53 and Nrf2 in NT2/D1 cells increased LRWD1 promoter activity while 5-fluorodeoxyuridine decreased it. In conclusion, this study highlights evidence that the methylation status of LRWD1 promoter is associated with LRWD1 expression. Since the expression level of LRWD1 plays an important role in spermatogenesis, the methylation status of LRWD1 may serve as a novel molecular diagnostic or therapeutic approach in male's infertility.

Keywords: LRWD1, DNA methylation, p53, Nrf2

Procedia PDF Downloads 121
192 Formulation and Evaluation of Lisinopril Microspheres for Nasal Delivery

Authors: S. S. Patil, R. M. Mhetre, S. V. Patil

Abstract:

Lisinopril is an angiotensin converting enzyme inhibitor used in the treatment of hypertension and heart failure in prophylactic treatment after myocardial infarction and in diabetic nephropathy. However, it is very poorly absorbed from gastro-intestinal tract. Intranasal administration is an ideal alternative to the parenteral route for systemic drug delivery. Formulating multiparticulate system with mucoadhesive polymers provide a significant increase in the nasal residence time. The aim of the present approach was to overcome the drawbacks of the conventional dosage forms of lisinopril by formulating intranasal microspheres with Carbopol 974P NF and HPMC K4 M along with film forming polymer ethyl cellulose.The microspheres were prepared by emulsion solvent evaporation method. The prepared microspheres were characterized for encapsulation efficiency, drug loading, particle size, and surface morphology, degree of swelling, ex vivo mucoadhesion, drug release, ex vivo diffusion studies. All formulations has shown entrapment efficiency between 80 to more than 95%, mucoadhesion was more than 80 % and drug release up to 90 %. Ex vivo studies revealed tht the improved bioavailability of drug compared to oral drug administration. Both in vitro and in vivo studies conclude that combination of Carbopol and HPMC based microspheres shown better results than single carbopol based microspheres for the delivery of lisinopril.

Keywords: microspheres, lisinopril, nasal delivery, solvent evaporation method

Procedia PDF Downloads 510
191 The Effects of Highly Active Antiretroviral Therapy (HAART) on the Expression of Muc1 and P65 in a Cervical Cancer Cell Line, HCS-2

Authors: K. R. Thabethe, G. A. Adefolaju, M. J. Hosie

Abstract:

Cervical cancer is the third most commonly diagnosed cancer globally and it is one of three AIDS defining malignancies. Highly active antiretroviral therapy (HAART) is a combination of three or more antiretroviral drugs and has been shown to play a significant role in reducing the incidence of some AIDS defining malignancies, although its effect on cervical cancer is still unclear. The aim of this study was to investigate the relationship between cervical cancer and HAART. This was achieved by studying the expression of two signalling molecules expressed in cervical cancer; MUC1 and P65. Following the 24 hour treatment of a cervical cancer cell line, HCS-2, with drugs which are commonly used as part of HAART at their clinical plasma concentrations, real-time qPCR and immunofluorescence were used in order to study gene and protein expression. A one way ANOVA followed by a Tukey Kramer Post Hoc test was conducted using JMP 11 software on both sets of data. The drug classified as a protease inhibitor (PI) (i.e. LPV/r) reduced MUC1 and P65 gene and protein expression more than the other drug tested. PIs are known to play a significant role in cell death, therefore the cells were thought to be more susceptible to cell death following treatment with PIs. In conclusion, the drugs used, especially the PI showed some anticancer effects by facilitating cell death through decreased gene and protein expression of MUC1 and P65 and present promising agents for cancer treatment.

Keywords: cervical cancer, haart, MUC1, P65

Procedia PDF Downloads 315
190 Research on the Role of Platelet Derived Growth Factor Receptor Beta in Promoting Dedifferentiation and Pulmonary Metastasis of Osteosarcoma Under Hypoxic Microenvironment

Authors: Enjie Xu, Zhen Huang, Kunpeng Zhu, Jianping Hu, Xiaolong Ma, Yongjie Wang, Jiazhuang Zhu, Chunlin Zhang

Abstract:

Abstract: Hypoxia and dedifferentiation of osteosarcoma (OS) cells leads to poor prognosis. We plan to identify the role of hypoxia on dedifferentiation and the associated signaling pathways. We performed a sphere formation assay and determined spheroid cells as dedifferentiated cells by detecting stem cell-like markers. RNAi assay was used to explore the expression relationship between hypoxia inducible factor 1 subunit alpha (HIF1A) and platelet derived growth factor receptor beta (PDGFRB). We obtained PDGFRB knockdown and overexpression cells through lentiviral infection experiments and the effects of PDGFRB on cytoskeleton rearrangement and cell adhesion were explored by immunocytochemistry. Wound-healing experiments, transwell assays, and animal trials were employed to investigate the effect of PDGFRB on OS metastasis. Dedifferentiated OS cells were found to exhibit high expression of HIF1A and PDGFRB, and HIF1A promoted the expression of PDGFRB, subsequently activated ras homolog family member A (RhoA), and increased the phosphorylation of myosin light chain (MLC). PDGFRB also enhanced the phosphorylation of focal adhesion kinase (FAK). The OS cell morphology and vinculin distribution were altered by PDGFRB. PDGFRB also promoted cell dedifferentiation and had a significant impact on the metastasis of OS cells both in vitro and in vivo. Our results demonstrated that HIF1A up-regulated PDGFRB under hypoxic conditions, and PDGFRB regulated the actin cytoskeleton by activating RhoA and subsequently phosphorylating MLC, thereby promoting OS dedifferentiation and pulmonary metastasis.

Keywords: osteosarcoma, dedifferentiation, metastasis, cytoskeleton rearrangement, PDGFRB, hypoxia

Procedia PDF Downloads 24
189 Beta-Carotene Attenuates Cognitive and Hepatic Impairment in Thioacetamide-Induced Rat Model of Hepatic Encephalopathy via Mitigation of MAPK/NF-κB Signaling Pathway

Authors: Marawan Abd Elbaset Mohamed, Hanan A. Ogaly, Rehab F. Abdel-Rahman, Ahmed-Farid O.A., Marwa S. Khattab, Reham M. Abd-Elsalam

Abstract:

Liver fibrosis is a severe worldwide health concern due to various chronic liver disorders. Hepatic encephalopathy (HE) is one of its most common complications affecting liver and brain cognitive function. Beta-Carotene (B-Car) is an organic, strongly colored red-orange pigment abundant in fungi, plants, and fruits. The study attempted to know B-Car neuroprotective potential against thioacetamide (TAA)-induced neurotoxicity and cognitive decline in HE in rats. Hepatic encephalopathy was induced by TAA (100 mg/kg, i.p.) three times per week for two weeks. B-Car was given orally (10 or 20 mg/kg) daily for two weeks after TAA injections. Organ body weight ratio, Serum transaminase activities, liver’s antioxidant parameters, ammonia, and liver histopathology were assessed. Also, the brain’s mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), antioxidant parameters, adenosine triphosphate (ATP), adenosine monophosphate (AMP), norepinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) cAMP response element-binding protein (CREB) expression and B-cell lymphoma 2 (Bcl-2) expression were measured. The brain’s cognitive functions (Spontaneous locomotor activity, Rotarod performance test, Object recognition test) were assessed. B-Car prevented alteration of the brain’s cognitive function in a dose-dependent manner. The histopathological outcomes supported these biochemical evidences. Based on these results, it could be established that B-Car could be assigned to treat the brain’s neurotoxicity consequences of HE via downregualtion of MAPK/NF-κB signaling pathways.

Keywords: beta-carotene, liver injury, MAPK, NF-κB, rat, thioacetamide

Procedia PDF Downloads 134
188 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 300
187 The Effect of Low Power Laser on CK and Some of Markers Delayed Onset Muscle Soreness (DOMS)

Authors: Bahareh Yazdanparast Chaharmahali

Abstract:

The study showed effect of low power laser therapy on knee range of motion (flexion and extension), resting angle of knee joint, knee circumference and rating of delayed onset muscle soreness induced pain, 24 and 48 hours after eccentric training of knee flexor muscle (hamstring muscle). We investigate the effects of pulsed ultrasound on swelling, relaxed, flexion and extension knee angle and pain. 20 volunteers among girl students of college voluntary participated in this research. After eccentric training, subjects were randomly divided into two groups, control and laser therapy. In day 1 and in order to induce delayed onset muscle soreness, subjects eccentrically trained their knee flexor muscles. In day 2, subjects were randomly divided into two groups: control and low power laser therapy. 24 and 48 hours after eccentric training. Variables (knee flexion and extension, srang of motion, resting knee joint angle and knee circumferences) were measured and analyzed. Data are reported as means ± standard error (SE) and repeated measured was used to assess differences within groups. Methods of treatment (low power laser therapy) have significant effects on delayed onset muscle soreness markers. 24 and 48 hours after training a significant difference was observed between mean pains of 2 groups. This difference was significant between low power laser therapy and C groups. The Bonferroni post hock is significant. Low power laser therapy trophy as used in this study did significantly diminish the effects of delayed – onset muscle soreness on swelling, relaxed – knee extension and flexion angle.

Keywords: creatine kinase, DOMS, eccentric training, low power laser

Procedia PDF Downloads 223
186 Muscle Relaxant Dantrolene Repurposed to Treat Alzheimer's Disease

Authors: Huafeng Wei

Abstract:

Failures of developing new drugs primarily based on the amyloid pathology hypothesis after decades of efforts internationally lead to changes of focus targeting alternative pathways of pathology in Alzheimer’s disease (AD). Disruption of intracellular Ca2+ homeostasis, especially the pathological and excessive Ca2+ release from the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) Ca2+ channels, has been considered an upstream pathology resulting in major AD pathologies, such as amyloid and Tau pathology, mitochondria damage and inflammation, etc. Therefore, dantrolene, an inhibitor of RyRs that reduces the pathological Ca2+ release from ER and a clinically available drug for the treatment of malignant hyperthermia and muscle spasm, is expected to ameliorate AD multiple pathologies synapse and cognitive dysfunction. Our own studies indicated that dantrolene ameliorated impairment of neurogenesis and synaptogenesis in neurons developed from induced pluripotent stem cells (iPSCs) originated from skin fibroblasts of either familiar (FAD) or sporadic (SAD) AD by restoring intracellular Ca2+ homeostasis. Intranasal administration of dantrolene significantly increased its passage across the blood-brain barrier (BBB) and, therefore its brain concentrations and durations. This can render dantrolene a more effective therapeutic drug with fewer side effects for chronic AD treatment. This review summarizes the potential therapeutic and side effects of dantrolene and repurposes intranasal dantrolene as a disease-modifying drug for future AD treatment.

Keywords: Alzheimer's disease, calcium, drug development, dementia, neurodegeneration, neurogenesis

Procedia PDF Downloads 188
185 In-silico Target Identification and Molecular Docking of Withaferin A and Withanolide D to Understand their Anticancer Therapeutic Potential

Authors: Devinder Kaur Sugga, Ekamdeep Kaur, Jaspreet Kaur, C. Rajesh, Preeti Rajesh, Harsimran Kaur

Abstract:

Withanolides are steroidal lactones and are highly oxygenated phytoconstituents that can be developed as potential anti-carcinogenic agents. The two main withanolides, namely Withaferin A and Withanolides D, have been extensively studied for their pharmacological activities. Both these withanolides are present in the Withania somnifera (WS) leaves belonging to the family Solanaceae, also known as “Indian ginseng .”In this study effects of WS leaf extract on the MCF7 breast cancer cell line were investigated by performing a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to evaluate the cytotoxic effects and in vitro wound-healing assay to study the effect on cancer cell migration. Our data suggest WS extracts have cytotoxic effects and are effective anti-migrating agents and thus can be a source of potential candidates for the development of potential agents against metastasis. Thus, it can be a source of potential candidates for the development of potential agents against metastasis. Insight into these results, the in-silico approach to identify the possible protein targets interacting with withanolides was taken. Protein kinase C alpha (PKCα) was among the selected 5 top-ranked target proteins identified by the Swiss Target Prediction tool. PKCα is known to promote the growth and invasion of cancer cells and is being evaluated as a prognostic biomarker and therapeutic target in clinically aggressive tumors. Molecular docking of Withaferin A and Withanolides D was performed using AutoDock Vina. Both the bioactive compounds interacted with PKCα. The targets predicted using this approach will serve as leads for the possible therapeutic potential of withanolides, the bioactive ingredients of WS extracts, as anti-cancer drugs.

Keywords: withania somnifera, withaferin A, withanolides D, PKCα

Procedia PDF Downloads 114
184 Antidiabetic and Admet Pharmacokinetic Properties of Grewia Lasiocarpa E. Mey. Ex Harv. Stem Bark Extracts: An in Vitro and in Silico Study

Authors: Akwu N. A., Naidoo Y., Salau V. F., Olofinsan K. A.

Abstract:

Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is a Southern African medicinal plant indigenously used with other plants for birthing problems. The anti-diabetic properties of the hexane, chloroform, and methanol extracts of Grewia lasiocarpa stem bark were assessed using in vitro α-glucosidase enzyme inhibition assay. The predictive in silico drug-likeness and toxicity properties of the phytocompounds were conducted using the pKCSM, ADMElab, and SwissADME computer-aided online tools. The highest α-glucosidase percentage inhibition was observed in the hexane extract (86.76%, IC50= 0.24 mg/mL), followed by chloroform (63.08%, IC50= 4.87 mg/mL) and methanol (53.22%, IC50= 9.41 mg/mL); while acarbose, the standard anti-diabetic drug was (84.54%, IC50= 1.96 mg/mL). The α-glucosidase assay revealed that the hexane extract exhibited the strongest carbohydrate inhibiting capacity and is a better inhibitor than the standard reference drug-acarbose. The computational studies also affirm the results observed in the in vitroα-glucosidaseassay. Thus, the extracts of G. lasiocarpa may be considered a potential plant-sourced compound for treating type 2 diabetes mellitus. This is the first study on the anti-diabetic properties of Grewia lasiocarpa hexane, chloroform, and methanol extracts using in vitro and in silico models.

Keywords: grewia lasiocarpa, α-glucosidase inhibition, anti-diabetes, ADMET

Procedia PDF Downloads 80
183 Reduction of Transient Receptor Potential Vanilloid 1 for Chronic Pain and Depression Co-Morbidity through Electroacupuncture and Gene Deletion in Mice Brain

Authors: Bernice Lottering, Yi-Wen Lin

Abstract:

Chronic pain and depression have an estimated 80% rate of comorbidity with unsatisfactory treatment interventions signifying the importance of developing effective therapeutic interventions for a serious chronic condition affecting a large majority of the global population. Chronic pain is defined as persistent pain presenting for over 3 months. This disease state increases the risk of developing depression in comparison to healthy individuals. In the current study, complete Freund’s adjuvant (CFA) was used to induce cell-mediated chronic inflammatory pain in a murine model. Significant mechanical and thermal hyperalgesia was induced, alongside observable depression-like behaviors. These conditions were attenuated through the use of electroacupuncture (EA). Similarly, these effects were also investigated with respect to the transient receptor potential vanilloid 1 (TRPV1), by analyzing the effects of TRPV1 gene deletion on the comorbidity of chronic pain and depression. The expression of the TRPV1 inflammatory response, and related downstream molecules, including protein kinases (PKs), mitogen-activated protein kinase (MAPKs), and transcriptional factors, were significantly reduced in the thalamus, prefrontal cortex (PFC), hippocampus, and periaqueductal gray (PAG) of CFA-treated mice. In addition, phosphorylated N-methyl-D-aspartate (NMDA) receptor 1 was also found to be reduced in the aforementioned areas, suggesting potential application and validity in a clinical setting. Our study determined the prospective therapeutic effects of EA in the treatment of chronic inflammatory pain and depression comorbidity and provides a novel and detailed mechanism underlying EA-mediated analgesia. These findings may be relevant in the utilization of clinical intervention approaches related to chronic pain and depression comorbidity.

Keywords: chronic pain, depression, NMDA, prefrontal cortex, TRPV1

Procedia PDF Downloads 114
182 Depressant Effects of 2-PMPA through Reduction of p-CREB (Ser133) and mGluR5 Level in Prefrontal Cortex of C57BL/6 Mice

Authors: Sang-Sun Yoon, Yea-Hyun Leem, Sangmee Ahn Jo

Abstract:

The N-acetylated-alpha-linked-acidic (NAAG) peptidase inhibitor 2-phosphonomethyl pentanedioic acid (2-PMPA) has demonstrated to be neuroprotective against glutamate-mediated neuron degeneration and neurological disorders such as ischemia. Several studies have demonstrated impaired psychiatric function by altered glutamate carboxypeptidase II expression, although 2-PMPA has not yet been studied. Thus, we investigated effect of 2-PMPA on depressive-like phenotype using C57BL/6 mice. Treatment of 2-PMPA (10 mg/kg for 6 days/daily, ip injection) on C57BL/6 naïve mice showed depressive-like symptoms such as decreased social preference, but did not affect the immobility measured by tail suspension test. Reduction of phosphorylated cAMP-responsive element binding (p-CREB) known as a representative marker of depressive-like behavior was observed in layer 1 and piriform cortex subregions of the prefrontal cortex of 2-PMPA-treated mice. The immunoreactivity of metabotropic glutamate receptors 5 (mGluR5) that mediate phosphorylation of CREB was also decreased in layer 1 and piriform cortex subregions of the prefrontal cortex of 2-PMPA injected mice. Thus, our results suggest that dysregulation of the GCPII or NAAG by 2-PMPA treatment is likely to be associated with pathogenesis of depression and further studies are needed to understand whether the reduced NAAG level or enhanced glutamate level in the brain is involved in this response.

Keywords: depression, GCPII, 2-PMPA, p-CREB, mGluR5

Procedia PDF Downloads 245
181 Effect of Far Infrared and Endothelial Cell Growth Supplement on Human Umbilical Vascular Endothelial Cells

Authors: Ming-Tzu Tsai, Jui-Ting Hsu, Chia-Chieh Lin, Feng-Tsai Chiang, Cheng-Chin Huang

Abstract:

Far infrared (FIR), an invisible and short electromagnetic waves ranges from 6-14 μm also defines as the “growth ray.” Although the mechanism of FIR is still unknown, most data have suggested that FIR could accelerate the skin microcirculation by elevating the blood flow and nitric-oxide (NO) synthesis. In this present work, the effect of FIR irradiation and endothelial cell growth supplement (ECGS) on human umbilical vascular endothelial cells (HUVECs) was evaluated. To understand whether the cell viability and NO production of HUVECs affected by NO, cells with/without ECGS were treated in the presence or absence of L-NAME, an eNOS inhibitor. For FIR exposure, FIR-emitted ceramic powders consisted of a variety of well-mixed metal oxides were developed. The results showed that L-NAME did had a strong effect on the inhibition of NO production, especially in the ECGS-treated group. However, the cell viability of each group was rarely affected in the presence of L-NAME. Cells with the incubation of ECGS showed much higher cell viability compared to the control. Moreover, NO production of HUVECs exposed to FIR irradiation was significantly inhibited in the presence of L-NAME. It suggested that NO could play a role modulating the downstream signals of HUVECs during FIR exposure.

Keywords: far-infrared irradiation (FIR), nitric oxide (NO), endothelial nitric oxide synthase (eNOS), endothelial cell growth supplement (ECGS)

Procedia PDF Downloads 405
180 Synthesis of a Library of Substituted Isoquinolines Based on a Triazolization Strategy, and Their Anti-HIV and C-X-C Chemokine Receptor Type 4 Antagonist Activity

Authors: Mastaneh Safarnejad Shad, Wim Dehaen, Steven De Jonghe

Abstract:

Since CXCR4 is the main coreceptor of HIV-1 and plays an important role in human immunodeficiency virus (HIV) entry, numerous efforts were directed towards the discovery of new classes of small molecules that act as CXCR4 antagonists. In addition, CXCR4 antagonists are potentially useful in the treatment of several other disorders, such as cancer cell metastasis, leukemia cell proliferation, rheumatoid arthritis, and pulmonary fibrosis. Since AMD3100 (plerixafor) is the only CXCR4 antagonist which obtained approval by the Food and Drug Administration (FDA), we were motivated to investigate a new category of molecules as CXCR4 antagonists. Most of the scaffolds which have been studied so far as CXCR4 antagonists are based on the tetrahydroquinoline (THQ) moiety in which AMD11070 (mavorixafor), GSK-812394, and TIQ15 displayed the most potent CXCR4 antagonism. Due to the high potency of these scaffolds, two different series of compounds were prepared in this work. In the first set, the THQ moiety is coupled to an amine chain and various isoquinoline derivatives (prepared by an in-house developed triazolization strategy), of which the upper part of molecules is identical to AMD11070 and TIQ15. In the second category of compounds, the THQ moiety was simplified by the synthesis of a substituted pyridine moiety. In order to investigate if CXCR4 antagonism requires the presence of an isoquinoline moiety, the corresponding pyridine analogues were also prepared. In both series of compounds, potent CXCR4 antagonism was noticed.

Keywords: CXCR4 coreceptor, CXCR4 antagonists, HIV inhibitor, tetrahydroquinoline

Procedia PDF Downloads 173
179 Breast Cancer: The Potential of miRNA for Diagnosis and Treatment

Authors: Abbas Pourreza

Abstract:

MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance.

Keywords: breast cancer, HER2 positive, miRNA, TNBC

Procedia PDF Downloads 70
178 Assessing Digestive Enzymes Inhibitory Properties of Anthocyanins and Procyanidins from Apple, Red Grape, Cinnamon

Authors: Pinar Ercan, Sedef N. El

Abstract:

The goals of this study were to determine the total anthocyanin and procyanidin contents and their in vitro bioaccessibilities of apple, red grape and cinnamon by a static in vitro digestion method reported by the COST FA1005 Action INFOGEST, as well as in vitro inhibitory effects of these food samples on starch and lipid digestive enzymes. While the highest total anthocyanin content was found in red grape (164.76 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432.54±177.31 mg/100 g) among the selected food samples (p<0.05). The anthocyanin bioaccessibilities were found as 10.23±1 %, 8.23±0.64 %, and 8.73±0.70 % in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57±0.71 %, 14.08±0.74 % and 18.75±1.49 %, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544.27±21.94, 445.63±15.67, 1592±17.58 μg/mL, respectively), α-amylase (IC50 38.41±7.26, 56.12±3.60, 3.54±0.86 μg/mL, respectively), and lipase (IC50 52.65±2.05, 581.70±54.14, 49.63±2.72 μg/mL, respectively). Red grape sample showed the highest inhibitory activity against α-glucosidase, cinnamon showed the highest inhibitory activity against α-amylase and lipase according to IC50 (concentration of inhibitor required to produce a 50% inhibition of the initial rate of reaction) and Catechin equivalent inhibition capacity (CEIC50) values. This study reported that apple, grape and cinnamon samples can inhibit the activity of digestive enzymes in vitro. The consumption of these samples would be used in conjunction with a low-calorie diet for body weight management.

Keywords: anthocyanin, α-amylase, α-glucosidase, lipase, procyanidin

Procedia PDF Downloads 155
177 A Rare Entity: Case Report on Anaesthetic Management in Robinow Syndrome

Authors: Vidhi Chandra, Arshpreet Singh Grewal

Abstract:

A five-year-old male child born from non-consanguineous marriage, who presented with complaints of growth retardation and no appreciable increase in the penile size since birth and he was posted for de-gloving of penis with dissection of corpora under anaesthesia. After thorough preoperative evaluation it was revealed that patient had peculiar facial dysmorphism that of Robinow Syndrome, high arched palate, Mallampati grade III, mesomelic limbs, scoliotic spine and short stature. All routine investigation were within normal limit, electrocardiography (ECG) and 2D-Echocardiography (ECHO) were normal. In antero-posterior roentgenogram chest showed butterfly and hemivertebrae at multiple levels. The patient was considered to be ASA II. On the day of surgery after ensuring fasting of 6 hours, patient was taken in operation theatre, all standard ASA monitoring was done with ECG, non-invasive blood pressure, peripheral oxygen saturation (SpO2) and body temperature. The patient was pre-oxygenated with 100% oxygen with anatomical face mask. General anaesthesia was induced with Sevoflurane 1-8%, and airway was secured with an appropriate size supraglottic airway and anaesthesia was maintained with nitrous oxide and oxygen in 1:1 ratio along with sevoflurane 2%. An ultrasound guided caudal block was given owing to the skeletal deformities making it difficult even under USG guidance. Post operatively patient was given supportive care with proper hydration, antibiotics, anti-inflammatory and analgesics. He was discharged the next day and followed up weekly for a month. DISCUSSION Robinow syndrome is genetically inherited as autosomal dominant, autosomal recessive or heterogenous disorder involving tyrosine kinase ROR2 gene located on chromosome 9. It has low incidence with no preponderance for any gender. Though intelligence is normal but developmental delay and mental retardation occurs in 20%cases

Keywords: Robinow Syndrome, dwarfism, paediatric, anaesthesia

Procedia PDF Downloads 88
176 Binding Studies of Complexes of Anticancer Drugs with DNA and Enzymes Involved in DNA Replication Using Molecular Docking and Cell Culture Techniques

Authors: Fouzia Perveen, Rumana Qureshi

Abstract:

The presently studied twelve anticancer drugs are the cytotoxic agents which inhibit the replication of DNA and activity of enzymes involved in DNA replication namely topoisomerase-II, polymerase and helicase and have shown remarkable anticancer activity in clinical trials. In this study, we performed molecular docking studies of twelve antitumor drugs against DNA and DNA enzymes in the presence and absence of ascorbic acid (AA) and developed the quantitative structure-activity relationship (QSAR) model for anticancer activity screening. A number of electronic and steric descriptors were calculated using MOE software package. QSAR was established showing a correlation of binding strength with various physicochemical descriptors. Out of these twelve, eight cytotoxic drugs were tested on Non-Small Cell Lung Cancer cell lines (H-157 and H-1299) in the absence and presence of ascorbic acid and experimental IC50 values were calculated. From the docking studies, binding constants were calculated indicating the strength of drug-DNA and drug-enzyme complex formation and it was correlated to the IC50 values (both experimental and theoretical). These results can offer useful references for directing the molecular design of DNA enzyme inhibitor with improved anticancer activity.

Keywords: ascorbic acid, binding constant, cytotoxic agents, cell culture, DNA, DNA enzymes, molecular docking

Procedia PDF Downloads 403
175 Hybrid Sol-Gel Coatings for Corrosion Protection of AA6111-T4 Aluminium Alloy

Authors: Shadatul Hanom Rashid, Xiaorong Zhou

Abstract:

Hybrid sol-gel coatings are the blend of both advantages of inorganic and organic networks have been reported as environmentally friendly anti-corrosion surface pre-treatment for several metals, including aluminum alloys. In this current study, Si-Zr hybrid sol-gel coatings were synthesized from (3-glycidoxypropyl)trimethoxysilane (GPTMS), tetraethyl orthosilicate (TEOS) and zirconium(IV) propoxide (TPOZ) precursors and applied on AA6111 aluminum alloy by dip coating technique. The hybrid sol-gel coatings doped with different concentrations of cerium nitrate (Ce(NO3)3) as a corrosion inhibitor were also prepared and the effect of Ce(NO3)3 concentrations on the morphology and corrosion resistance of the coatings were examined. The surface chemistry and morphology of the hybrid sol-gel coatings were analyzed by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The corrosion behavior of the coated aluminum alloy samples was evaluated by electrochemical impedance spectroscopy (EIS). Results revealed that good corrosion resistance of hybrid sol-gel coatings were prepared from hydrolysis and condensation reactions of GPTMS, TEOS and TPOZ precursors deposited on AA6111 aluminum alloy. When the coating doped with cerium nitrate, the properties were improved significantly. The hybrid sol-gel coatings containing lower concentration of cerium nitrate offer the best inhibition performance. A proper doping concentration of Ce(NO3)3 can effectively improve the corrosion resistance of the alloy, while an excessive concentration of Ce(NO3)3 would reduce the corrosion protection properties, which is associated with defective morphology and instability of the sol-gel coatings.

Keywords: AA6111, Ce(NO3)3, corrosion, hybrid sol-gel coatings

Procedia PDF Downloads 127
174 Regression of Fibrosis by Apigenin in Thioacetamide-Induced Liver Fibrosis Rat Model through Suppression of HIF-1/FAK Pathway

Authors: Hany M. Fayed, Rehab F. Abdel-Rahman, Alyaa F. Hessin, Hanan A. Ogaly, Gihan F. Asaad, Abeer A. A. Salama, Sahar Abdelrahman, Mahmoud S. Arbid, Marwan Abd Elbaset Mohamed

Abstract:

Liver fibrosis is a serious global health problem that occurs as a result of a variety of chronic liver disorders. Apigenin, a flavonoid found in many plants, has several pharmacological properties. The aim of this study was to evaluate the antifibrotic efficacy of apigenin (APG) against experimentally induced hepatic fibrosis in rats via using thioacetamide (TAA) and to explore the possible underlying mechanisms. TAA (100 mg/kg, i.p.) was given three times each week for two weeks to induce liver fibrosis. After TAA injections, APG was given orally (5 and 10 mg/kg) daily for two weeks. Biochemical, molecular, histological and immunohistochemical analyses were performed on blood and liver tissue samples. The functioning of the liver, oxidative stress, inflammation, and liver fibrosis indicators were all evaluated. The findings showed that TAA markedly increased the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), as well as the levels of malondialdehyde (MDA), focal adhesion kinase (FAK), hypoxia-inducible factor-1 (HIF-1), nuclear factor-κB (NF-κB), transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β) with a reduction in albumin, total protein, A/G ratio, GSH content and interleukin-10 (IL-10). Moreover, TAA elevated the content of collagen I, α -smooth muscle actin (α-SMA), and hydroxyproline in the liver. The treatment with APG in a dose-dependent manner has obviously prevented these alterations and amended the harmful effects induced by TAA. The histopathological and immunohistochemical observations supported this biochemical evidence. The higher dose of APG produced the most significant antifibrotic effect. As a result of these data, APG appears to be a promising antifibrotic drug and could be used as a new herbal medication or dietary supplement in the future for the treatment of liver fibrosis. This effect might be related to the inhibition of the HIF-1/FAK signaling pathway.

Keywords: apigenin, FAK, HIF-1, liver fibrosis, rat, thioacetamide

Procedia PDF Downloads 108
173 Supply Chain Technology Adoption in Textile and Apparel Industry

Authors: Zulkifli Mohamed Udin, Lee Khai-Loon, Mohamad Ghozali Hassan

Abstract:

In today’s dynamic business environment, the competition is no longer between firms, but between supply chains to gain competitive advantages. The global manufacturing sector, especially the textile and apparel industry are essentially known for its supply chain dependency. The delicate nature of its business leads to emphasis on the smooth movement of upstream and downstream supply chain. The nature of this industry, however, result in huge dynamic flow of physical, information, and financial. The dynamic management of these flows requires adoption of supply chain technologies. Even though technology is widely implemented and studied in many industries by researchers, adoption of supply chain technologies in Malaysian textile and apparel industry is limited. There is relatively a handful academic study conducted on recent developments in Malaysian textile and apparel industry and supply chain technology adoption indicate a major gap in supply chain performance studies. Considering the importance given to Third Industrial Master Plan by the government Malaysia, it is necessary to understand the power of supply chain technology adoptions. This study aims to investigate supply chain technology adoption by textile and apparel companies in Malaysia. The result highlighted the benefits perceived by textile and apparel companies from supply chain technologies. The indifference of small and medium enterprises to operation management acts as a major inhibitor to the adoption of supply chain technologies, since they have resource limitations. This study could be used as a precursor for further detailed studies on this issue.

Keywords: supply chain technology adoption, supply chain performance, textile, apparel industry

Procedia PDF Downloads 467
172 Structure-Based Virtual Screening and in Silico Toxicity Test of Compounds against Mycobacterium tuberculosis 7,8-Diaminopelargonic Acid Aminotransferase (MtbBioA)

Authors: Junie B. Billones, Maria Constancia O. Carrillo, Voltaire G. Organo, Stephani Joy Y. Macalino, Inno A. Emnacen, Jamie Bernadette A. Sy

Abstract:

One of the major interferences in the Philippines’ tuberculosis control program is the widespread prevalence of Mtb strains that are resistant to known drugs, such as the MDR-TB (Multi Drug Resistant Tuberculosis) and XDR-TB (Extensively Drug Resistant Tuberculosis). Therefore, there is a pressing need to search for novel Mtb drug targets in order to be able to combat these drug resistant strains. The enzyme 7,8-diaminopelargonic acid aminotransferase enzyme, or more commonly known as BioA, is one such ideal target, as it is known that humans do not possess this enzyme. BioA primarily plays a key role in Mtb’s lipid biosynthesis pathway; more specifically in the synthesis of the enzyme cofactor biotin. In this study, structure-based pharmacophore screening, docking, and ADMET evaluation of compounds obtained from the DrugBank chemical database were performed against the MtbBioA enzyme. Results of the screening, docking, ADMET, and TOPKAT calculations revealed that out of the 6,516 compounds in the library, only 7 compounds indicated more favorable binding energies as compared to the enzyme’s known inhibitor, amiclenomycin (ACM), as well as good solubility and toxicity properties. Moreover, out of these 7 compounds, Molecule 6 exhibited the best solubility and toxicity properties. In the future, these lead compounds may then be subjected to bioactivity assays in vitro or in vivo for further evaluation of its therapeutic efficacy.

Keywords: 7, 8-diaminopelargonic acid aminotransferase, BioA, pharmacophore, molecular docking, ADMET, TOPKAT

Procedia PDF Downloads 433
171 The Angiogenic Activity of α-Mangostin in the Development of Zebrafish Embryo In Vivo

Authors: Titis Indah Adi Rahayu

Abstract:

Angiogenesis is the process of generating new capillary from pre-existing blood vessels. VEGFA is a major regulator in angiogenesis that binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1/KDR) which regulate pathological and physiological angiogenesis. Disruption of VEGFA and VEGFR2 regulation lead to many diseases. The study of α-Mangostin (derivate of xanthone) as anti-oxidant and anti inflammation has been explored recently and both of them have relation to vasculature however the effect of α-Mangostin in blood vessel formation in healthy tissue in vivo has not been studied. Zebrafish is a powerful model in studying angiogenesis and shared many advantages that is a viable whole animal model for screening small molecules that affect blood vessel formation. Therefore the aim of this study is to evaluate angiogenic activity of α-Mangostin in healthy tissue in vivo in zebrafish embryo in relation of patterning blood vessel. Blood vessel patterning is highly characteristic in the developing of zebrafish embryo and the subintestinal vessel (SIV) can be stained and visualized microscopically as a primary screen for α-Mangostin that effect angiogenesis. The zebrafish embryos are divided into 2 groups. Group one consists of the zebrafish embryos at 1 dpf for 4 days which are tested to α-Mangostin in several concentration 2 µM, 4 µM, 6 µM, 8 µM and 10 µM whereas in group two the zebrafish larva at 4 dpf are exposed to α-Mangostin 1,75 µM, 2,3 µM, 2,9 µM, 3,8 µM dan 5 µM for 2 days. DMSO is served as a control for each group. The level expression of vegfa and vegfr2 are observed quantitatively using real time q-PCR and patterning of SIV are then analized via alkaline phospatase staining. Result shows that the level expression of vegfa and vegfr2 is repressed quantitatively as shown in real time q-PCR in the group of 1-4 days of α-Mangostin exposure where it is increased in the group of 4-6 days of α-Mangostin exposure. The result is then compared to alkaline phospatase staining of SIV using stereo microscope. It indicates that α-Mangostin does not disturb the patterning of SIV formation in zebrafish.

Keywords: angiogenesis, Danio rerio, α-Mangostin, SIV, vegfa, vegfr2

Procedia PDF Downloads 324
170 Effect of Media Osmolarity on Vi Biosynthesis on Salmonella enterica serovar Typhi Strain C6524 Cultured on Batch System

Authors: Dwi Arisandi Wijaya, Ernawati Arifin Giri-Rachman, Neni Nurainy

Abstract:

Typhoid fever disease can be prevented by using a polysaccharide-based vaccine Vi which is a virulence factor of S.typhi. To produce high yield Vi polysaccharide from bacteria, it is important to know the biosynthesis of Vi polysaccharide and the regulators involved. In the In vivo condition, S. typhi faces different osmolarity, and the bacterial two-component system OmpR-EnvZ, regulate by up and down Capsular Vi polysaccharide biosynthesis. A high yielded Vi Polysaccharide strain, S. typhi strain C6524 used to study the effect of media osmolarity on Vi polysaccharide biosynthesis and the osmoregulation pattern of S. typhi strain C6524. The methods were performed by grown S. typhi strain C6524 grown on medium with 50 mM, 100 mM, and 150 mM osmolarity with the batch system. Vi polysaccharide concentration was measured by ELISA method. For further investigation of the osmoregulation pattern of strain C6524, the osmoregulator gene, OmpR, has been isolated and sequenced using the specific primer of the OmpR gene. Nucleotide sequence analysis is done with BLAST and Lallign. Amino Acid sequence analysis is done with Prosite and Multiple Sequence Alignment. The results of cultivation showed the average content of polysaccharide Vi for 50 mM, 100 mM, and 150 mM osmolarities 11.49 μg/mL, 12.06 μg/mL, and 14.53 μg/mL respectively. Analysis using Anova stated that the osmolarity treatment of 150 mM significantly affects Vi content. Analysis of nucleotide sequences shows 100% identity between S. typhi strain C6524 and Ty2. Analysis of amino acid sequences shows that the OmpR response regulator protein of the C6524 strain also has a α4-β5-α5 motif which is important for the regulatory activation system when phosphorylation occurs by domain kinase. This indicates that the regulator osmolarity response of S. typhi strain C6524 has no difference with the response regulator owned by S. typhi strain Ty2. A high Vi response rate in the 150 mM osmolarity treatment requires further research for RcsB-RcsC, another two-component system involved in Vi Biosynthesis.

Keywords: osmoregulator, OmpR, Salmonella, Vi polysaccharide

Procedia PDF Downloads 173
169 Antidepressant-Like Effects of EQC-34, a 5HT3 Receptor Antagonist in Neurobehavioral Mouse Model of Depression

Authors: D: Gupta, M. Radhakrishnan, Y. Kurhe, D. Thangaraj

Abstract:

Depression is among the leading causes of death worldwide. The current pharmacotherapy is associated with poor compliance, resistance and relapse, which necessitate the development of novel compounds with better efficacy. The present study designed and synthesized EQC-34 (N-cyclohexyl-3-ethoxyquinoxalin-2-carboxamide) as novel serotonin type-3 (5HT3) antagonist and evaluated its antidepressant-like effects using neurobehavioral mouse model. 5HT3 antagonism (as pA2 value) was determined on the longitudinal smooth muscle of guinea-pig ileum against 2-methyl-5HT (a 5HT3 agonist). The doses were calculated by dose response of basal locomotor activity. Consequently, effects of EQC-34 on neurobehavioral parameters were measured in forced swim (FST) and tail suspension test (TST). The possible mechanism was estimated by interaction study with fluoxetine (a selective serotonin reuptake inhibitor) and mCPBG (1-(m-chlorophenyl)-biguanide, a selective 5HT3 agonist), and confirmed by potentiation of head twitch response by 5hydroxy-L-tryptophan (5HTP). EQC-34 (1-4 mg/kg, i.p.) produced significant decreased behavioral despair effects in FST and TST. It potentiated fluoxetine response, while mCPBG reduced EQC-34 activity in FST. Further, EQC-34 potentiated 5HTP induced head twitch response. EQC-34 revealed potential antidepressant-like effects, which may involve 5HT3 receptor mediated facilitation of 5HT neurotransmission, thereby reversing the pathological deficiency of monoamines (5HT) observed in depression. Thus, it may be further investigated as promising agent to improve therapeutics of depression.

Keywords: depression, forced swim test, 5HT3 receptor antagonist, serotonin

Procedia PDF Downloads 413
168 Hydrofracturing for Low Temperature Waxy Reservoirs: Problems and Solutions

Authors: Megh Patel, Arjun Chauhan, Jay Thakkar

Abstract:

Hydrofracturing is the most prominent but at the same time expensive, highly skilled and time consuming well stimulation technique. Due to high cost and skilled labor involved, it is generally carried out as the consummate solution among other well stimulation techniques. Considering today’s global petroleum market, no gaffe or complications could be entertained during fracturing, as it would further hamper the current dwindling economy. The literature would be dealing with the challenges encountered during fracturing low temperature waxy reservoirs and the prominent solutions to overcome such teething troubles. During fracturing treatment for, shallow and high freezing point waxy oil reservoirs, the first line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid (fluid at ambient conditions). Injecting fracturing fluids at ambient conditions have the tendency to decrease the near wellbore reservoir temperature below the freezing point of oil reservoir and hence leading to wax deposition around the wellbore thereby hampering the fluid production as well as fracture propagation. To overcome such problems, solutions such as hot fracturing fluid injection, encapsulated heat generating hydraulic fracturing fluid system, and injection of wax inhibitor techniques would be discussed. The paper would also be throwing light on changes in rheological properties occurred during heating fracturing fluids and solutions to deal with it taking economic considerations into account.

Keywords: hydrofracturing, waxy reservoirs, low temperature, viscosity, crosslinkers

Procedia PDF Downloads 227
167 An Inverse Docking Approach for Identifying New Potential Anticancer Targets

Authors: Soujanya Pasumarthi

Abstract:

Inverse docking is a relatively new technique that has been used to identify potential receptor targets of small molecules. Our docking software package MDock is well suited for such an application as it is both computationally efficient, yet simultaneously shows adequate results in binding affinity predictions and enrichment tests. As a validation study, we present the first stage results of an inverse-docking study which seeks to identify potential direct targets of PRIMA-1. PRIMA-1 is well known for its ability to restore mutant p53's tumor suppressor function, leading to apoptosis in several types of cancer cells. For this reason, we believe that potential direct targets of PRIMA-1 identified in silico should be experimentally screened for their ability to inhibitcancer cell growth. The highest-ranked human protein of our PRIMA-1 docking results is oxidosqualene cyclase (OSC), which is part of the cholesterol synthetic pathway. The results of two followup experiments which treat OSC as a possible anti-cancer target are promising. We show that both PRIMA-1 and Ro 48-8071, a known potent OSC inhibitor, significantly reduce theviability of BT-474 breast cancer cells relative to normal mammary cells. In addition, like PRIMA-1, we find that Ro 48-8071 results in increased binding of mutant p53 to DNA in BT- 474cells (which highly express p53). For the first time, Ro 48-8071 is shown as a potent agent in killing human breast cancer cells. The potential of OSC as a new target for developing anticancer therapies is worth further investigation.

Keywords: inverse docking, in silico screening, protein-ligand interactions, molecular docking

Procedia PDF Downloads 417
166 Regulating Nanocarrier and Mononuclear Phagocyte System Interactions through Esomeprazole-Based Preconditioning Strategy

Authors: Zakia Belhadj, Bing He, Hua Zhang, Xueqing Wang, Wenbing Dai, Qiang Zhang

Abstract:

Mononuclear phagocyte system (MPS) forms an abominable obstacle hampering the tumor delivery efficiency of nanoparticles. Passively targeted nanocarriers have received clinical approval over the past 20 years. However, none of the actively targeted nanocarriers have entered clinical trials. Thus it is important to endue effective targeting ability to actively targeted approaches by overcoming biological barriers to nanoparticle drug delivery. Here, it presents that an Esomeprazole-based preconditioning strategy for regulating nanocarrier-MPS interaction to substantially prolong circulation time and enhance tumor targeting of nanoparticles. In vitro, the clinically approved proton pump inhibitor Esomeprazole “ESO” was demonstrated to reduce interactions between macrophages and subsequently injected targeted vesicles by interfering with their lysosomal trafficking. Of note, in vivo studies demonstrated that ESO pretreatment greatly decreased the liver and spleen uptake of c(RGDm7)-modified vesicles, highly enhanced their tumor accumulation, thereby provided superior therapeutic efficacy of c(RGDm7)-modified vesicles co-loaded with Doxorubicin (DOX) and Gefitinib (GE). This MPS-preconditioning strategy using ESO provides deeper insights into regulating nanoparticles interaction with the phagocytic system and enhancing their cancer cells' accessibility for anticancer therapy.

Keywords: esomeprazole (ESO), mononuclear phagocyte system (MPS), preconditioning strategy, targeted lipid vesicles

Procedia PDF Downloads 153