Search results for: model based engineering MBE
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 38431

Search results for: model based engineering MBE

361 Experimental Studies on Fly Ash-Waste Sludge Mix Reinforced with Geofibres

Authors: Malik Shoeb Ahmad

Abstract:

The aim of the present study is to carry out investigations on Class F fly ash obtained from NTPC thermal power plant, Dadri, U.P. (India) and electroplating waste sludge from Aligarh, U.P. (India) along with geofibre for its subsequent utilization in various geotechnical and highway engineering applications. The experimental studies such as California bearing ratio (CBR) tests were carried out to evaluate the strength of plain fly ash as well as fly ash-waste sludge mix reinforced with geofibre, as the CBR value is the vital parameters used in the design of flexible and rigid pavements. Results of the study show that the strength of the mix is highly dependent on the curing period and the sludge and geofibre content. The CBR values were determined for mix containing fly ash (83.5-93.5%), waste sludge (5-15%) and 1-2% geofibre. However, out of the various combinations of mixes the CBR value of the mix 88.5%FA+10%S+1.5%GF at 28 days of curing was found to be 53.52% when compared with the strength of plain fly ash. It has been observed that the fibre inclusion increases the strength of the plain fly ash and fly ash-waste sludge specimens by changing their brittle to ductile behavior. The TCLP leaching test was also conducted to determine the heavy metal concentration in the optimized mix. The results of TCLP test show that the heavy metal concentration in the mix 88.5%FA+10%S+1.5%G at 28 days of curing reduced substantially from 24 to 98% when compared with the concentration of heavy metals in the waste sludge collected from source. It has also been observed that the pH of the leachate of this mix is between 9-11, which ensures the proper stabilization of the heavy metals present in the mix. Hence, this study will certainly help in mass scale utilization of two industrial wastes viz., electroplating waste and fly ash, which are causing pollution to the environment to a great extent.

Keywords: Dadri fly ash, geofibre, electroplating waste sludge, CBR, TCLP

Procedia PDF Downloads 323
360 The Material Behavior in Curved Glulam Beam of Jabon Timber

Authors: Erma Desmaliana, Saptahari Sugiri

Abstract:

Limited availability of solid timber in large dimensions becomes a problem. The demands of timbers in Indonesia is more increasing compared to its supply from natural forest. It is associated with the issues of global warming and environmental preservation. The uses of timbers from HTI (Industrial Planting Forest) and HTR (Society Planting Forest), such as Jabon, is an alternative source that required to solve these problems. Having shorter lifespan is the benefit of HTI/HTR timbers, although they are relatively smaller in dimension and lower in strength. Engineering Wood Product (EWP) such as glulam (glue-laminated) timber, is required to overcome their losses. Glulam is fabricated by gluing the wooden planks that having a thickness of 20 to 45 mm with an adhesive material and a certain pressure. Glulam can be made a curved beam, is one of the advantages, thus making it strength is greater than a straight beam. This paper is aimed to know the material behavior of curved glue-laminated beam of Jabon timber. Preliminary methods was to gain physical and mechanical properties, and glue spread strength of Jabon timber, which following the ASTM D-143 standard test method. Dimension of beams were 50 mm wide, 760 mm span, 50 mm thick, and 50 mm rise. Each layer of Jabon has a thickness of 5 mm and is glued with polyurethane. Cold press will be applied to beam laminated specimens for more than 5 hours. The curved glue-laminated beams specimens will be tested about the bending behavior. This experiments aims to obtain the increasing of load carrying capacity and stiffness of curved glulam beam.

Keywords: curved glulam beam, HTR&HTI, load carrying, strength

Procedia PDF Downloads 283
359 Development of an Auxetic Tissue Implant

Authors: Sukhwinder K. Bhullar, M. B. G. Jun

Abstract:

The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam.

Keywords: auxetic materials, deformation mechanism, enhanced mechanical properties, soft tissues

Procedia PDF Downloads 449
358 Pedagogy to Involve Research Process in an Undergraduate Physical Fitness Course: A Case Study

Authors: Indhumathi Gopal

Abstract:

Undergraduate research is well documented in Science, Technology, Engineering, and Mathematics (STEM), neurosciences, and microbiology disciplines, though it is hardly part of a physical fitness & wellness discipline. However, students need experiential learning opportunities, like internships and research assistantships, to get ahead with graduate schools and be gainfully employed. The first step towards this goal is to have students do a simple research project in a semester-long course. The value of research experiences and how to integrate research activity in a physical fitness & wellness course are discussed. The investigator looks into a mini research project, “Awareness of Obesity among College Students” and explains how to guide students through the research process, including journal search, data collection, and basic statistics. Besides, students will be introduced to the statistical package program SPSS 22.0 to assist with data evaluation. The lab component of the combined lecture-physical activity course could include the measurement of student’s weight with respect to their height to obtain body mass index (BMI). Students could categorize themselves in accordance with the World Health Organization’s guidelines. Results obtained after completing the data analysis help students be aware of their own potential health risks associated with overweight and obesity. Overweight and obesity are risk factors for hypertension, hypercholesterolemia, heart disease, stroke, diabetes, and certain types of cancer. It is hoped that this experience will get students interested in scientific studies, gain confidence, think critically, and develop problem-solving and good communication skills.

Keywords: physical fitness, undergraduate research experience, obesity, BMI

Procedia PDF Downloads 55
357 Intellectual Property Rights on Plant Materials in Colombia: Legal Harmonization for Food Sovereignty

Authors: Medina Muñoz Lina Rocio

Abstract:

The purpose of this paper is to examine the debates related to the harmonization of intellectual property rights on plant material, the corporate governance of the seed market in Colombia and the political economy of seeds defended by indigenous communities. In recent years, the commodification of seeds through genetic engineering and political intellectual property, codified as a result of the implementation of the Free Trade Agreement with the United States, has come into conflict with the traditional production of seeds carried out by small farmers and indigenous populations. Agricultural and food practices. In order to understand the ontological dimension of conflicts over seeds, it is necessary to analyze the conceptions that indigenous communities have about good, which they consider a common element of their social organization and define them as sentient beings. Therefore, through a multiple approach, in which the intellectual property policy, the ecological aspects of seed production and the political ontology of indigenous communities are interwoven, I intend to present the discussions held by the actors involved and present the strategies of small producers to protect their interests. It demonstrates that communities have begun to organize social movements to protect such interests and have questioned the philosophy of GM corporate agriculture as a pro-life movement. Finally, it is argued that the conservation of 'traditional' seeds of the communities is an effective strategy to support their struggles for territory, identity, food sovereignty and self-determination.

Keywords: intellectual property rights, intellectual property, traditional knowledge, food safety

Procedia PDF Downloads 54
356 Investigation of Bending Behavior of Ultra High Performance Concrete with Steel and Glass Fiber Polymer Reinforcement

Authors: Can Otuzbir

Abstract:

It is one of the most difficult areas of civil engineering to provide long-lasting structures with the rapid development of concrete and reinforced concrete structures. Concrete is a living material, and the structure where the concrete is located is constantly exposed to external influences. One of these effects is reinforcement corrosion. Reinforcement corrosion of reinforced concrete structures leads to a significant decrease in the carrying capacity of the structural elements, as well as reduced service life. It is undesirable that the service life should be completed sooner than expected. In recent years, advances in glass fiber technology and its use with concrete have developed rapidly. As a result of inability to protect steel reinforcements against corrosion, fiberglass reinforcements have started to be investigated as an alternative material to steel reinforcements, and researches and experimental studies are still continuing. Glass fiber reinforcements have become an alternative material to steel reinforcement because they are resistant to corrosion, lightweight and simple to install compared to steel reinforcement. Glass fiber reinforcements are not corroded and have higher tensile strength, longer life, lighter and insulating properties compared to steel reinforcement. In experimental studies, glass fiber reinforcements have been shown to show superior mechanical properties similar to beams produced with steel reinforcement. The performance of long-term use of glass fiber fibers continues with accelerated experimental studies.

Keywords: glass fiber polymer reinforcement, steel fiber concrete, ultra high performance concrete, bending, GFRP

Procedia PDF Downloads 109
355 Energetics of Photosynthesis with Respect to the Environment and Recently Reported New Balanced Chemical Equation

Authors: Suprit Pradhan, Sushil Pradhan

Abstract:

Photosynthesis is a physiological process where green plants prepare their food from carbon dioxide from the atmosphere and water being absorbed from the soil in presence of sun light and chlorophyll. From this definition it is clear that four reactants (Carbon Dioxide, Water, Light and Chlorophyll) are essential for the process to proceed and the product is a sugar or carbohydrate ultimately stored as starch. The entire process has “Light Reaction” (Photochemical) and “Dark Reaction” (Biochemical). Biochemical reactions are very much complicated being catalysed by various enzymes and the path of carbon is known as “Calvin Cycle” according to the name of its discover. The overall reaction which is now universally accepted can be explained like this. Six molecules of carbon dioxide react with twelve molecules of water in presence of chlorophyll and sun light to give only one molecule of sugar (Carbohydrate) six molecules of water and six molecules of oxygen is being evolved in gaseous form. This is the accepted equation and also chemically balanced. However while teaching the subject the author came across a new balanced equation from among the students who happened to be the daughter of the author. In the new balanced equation in place of twelve water molecules in the reactant side seven molecules can be expressed and accordingly in place of six molecules of water in the product side only one molecule of water is produced. The energetics of the photosynthesis as related to the environment and the newly reported balanced chemical equation has been discussed in detail in the present research paper presentation in this international conference on energy, environmental and chemical engineering.

Keywords: biochemistry, enzyme , isotope, photosynthesis

Procedia PDF Downloads 494
354 Variation with Depth of Physico-Chemical, Mineralogical and Physical Properties of Overburden over Gneiss Basement Complex in Minna Metropolis, North Central Nigeria

Authors: M. M. Alhaji, M. Alhassan, A. M. Yahaya

Abstract:

Soil engineers pay very little or no attention to variation in the mineralogical and consequently, the geotechnical properties of overburden with depth on basement complexes, a situation which can lead to sudden failure of civil engineering structures. Soil samples collected at depths ranging from 0.5m to 4.0m at 0.5m intervals, from a trial pit dogged manually to depth of 4.0m on an overburden over gneiss basement complex, was evaluated for physico-chemical, mineralogical and physical properties. This is to determine the variation of these properties with depth within the profile of the strata. Results showed that sodium amphibolite and feldspar, which are both primary minerals dominate the overall profile of the overburden. Carbon which dominates the lower profile of the strata was observed to alter to gregorite at upper section of the profile. Organic matter contents and cation exchange capacity reduces with increase in depth while lost on ignition and pH were relatively constant with depth. The index properties, as well as natural moisture contents, increases from 0.5m to between 1.0m to 1.5m depth after which the values reduced to constant values at 3.0m depth. The grain size analysis shows high composition of sand sized particles with silts of low to non-plasticity. The maximum dry density (MDD) values are generally relatively high and increases from 2.262g/cm³ at 0.5m depth to 2.410g/cm³ at 4.0m depth while the optimum moisture content (OMC) reduced from 9.8% at 0.5m depth to 6.7% at 4.0m depth.

Keywords: Gneiss basement complex, mineralogical properties, North Central Nigeria, physico-chemical properties, physical properties, overburden soil

Procedia PDF Downloads 129
353 Artificial Intelligence in the Design of a Retaining Structure

Authors: Kelvin Lo

Abstract:

Nowadays, numerical modelling in geotechnical engineering is very common but sophisticated. Many advanced input settings and considerable computational efforts are required to optimize the design to reduce the construction cost. To optimize a design, it usually requires huge numerical models. If the optimization is conducted manually, there is a potentially dangerous consequence from human errors, and the time spent on the input and data extraction from output is significant. This paper presents an automation process introduced to numerical modelling (Plaxis 2D) of a trench excavation supported by a secant-pile retaining structure for a top-down tunnel project. Python code is adopted to control the process, and numerical modelling is conducted automatically in every 20m chainage along the 200m tunnel, with maximum retained height occurring in the middle chainage. Python code continuously changes the geological stratum and excavation depth under groundwater flow conditions in each 20m section. It automatically conducts trial and error to determine the required pile length and the use of props to achieve the required factor of safety and target displacement. Once the bending moment of the pile exceeds its capacity, it will increase in size. When the pile embedment reaches the default maximum length, it will turn on the prop system. Results showed that it saves time, increases efficiency, lowers design costs, and replaces human labor to minimize error.

Keywords: automation, numerical modelling, Python, retaining structures

Procedia PDF Downloads 38
352 Mechanical Analysis of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the field of material engineering, composites are in great concern for their nonbiodegradability and their cost. In order to reduce its cost and weight, plant derived fibers witnessed miraculous triumph. Plant fibers can be of different types like seed fibers, blast fibers, leaf fibers, etc. Composites can be reinforced with exclusively one type of natural fiber or also can be combined with two or more different types of natural or synthetic fibers to boost up their specific properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes like HDPE, LDPE, PET, epoxy, etc. Surface treatments like alkaline treatment in different concentrations were conducted to improve its adhesion and compatibility towards hydrophobic polymer matrix i.e. epoxy resin. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of fiber loading and surface treatments have been studied for different mechanical properties i.e. tensile strength, flexural strength and impact properties of pineapple leaf fiber composites. Analysis of fiber morphology has also been studied using FTIR, XRD. Scanning electron microscopy has also been used to study and compare the morphology of untreated and treated fibers. Also, the fracture surface has been reviewed comparing the reported literature of other eminent researchers of this field.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 242
351 Review of Comparison of Subgrade Soil Stabilised with Natural, Synthetic, and Waste Fibers

Authors: Jacqueline Michella Anak Nathen

Abstract:

Subgrade soil is an essential component in the design of road structures as it provides lateral support to the pavement. One of the main reasons for the failure of the pavement is the settlement of the subgrade and the high susceptibility to moisture, which leads to a loss of strength of the subgrade. Construction over weak or soft subgrade affects the performance of the pavement and causes instability of the pavement. If the mechanical properties of the subgrade soils are lower than those required, the soil stabilisation method can be an option to improve the soil properties of the weak subgrade. Soil stabilisation is one of the most popular techniques for improving poor subgrade soils, resulting in a significant improvement in the subgrade soil’s tensile strength, shear strength, and bearing capacity. Soil stabilisation encompasses the various methods used to alter the properties of soil to improve its engineering properties. Soil stabilisation can be broadly divided into four types: thermal, electrical, mechanical, and chemical. The most common method of improving the physical and mechanical properties of soils is stabilisation using binders such as cement and lime. However, soil stabilisation with conventional methods using cement and lime has become uneconomical in recent years, so there is a need to look for an alternative, such as fiber. Although not a new technique, adding fiber is a very practical alternative to soil stabilisation. Various types of fibers, such as natural, synthetic, and waste fibers, have been used as stabilising agents to improve the strength and durability of subgrade soils. This review provides a comprehensive comparison of the effectiveness of natural, synthetic, and waste fibers in stabilising subgrade soils.

Keywords: subgrade, soil stabilisation, pavement, fiber, stabiliser

Procedia PDF Downloads 78
350 Efficient Depolymerization of Polyethylene terephthalate (PET) Using Bimetallic Catalysts

Authors: Akmuhammet Karayev, Hassam Mazhar, Mamdouh Al Harthi

Abstract:

Polyethylene terephthalate (PET) recycling stands as a pivotal solution in combating plastic pollution and fostering a circular economy. This study addresses the catalytic glycolysis of PET, a key step in its recycling process, using synthesized catalysts. Our focus lies in elucidating the catalytic mechanism, optimizing reaction kinetics, and enhancing reactor design for efficient PET conversion. We synthesized anionic clays tailored for PET glycolysis and comprehensively characterized them using XRD, FT-IR, BET, DSC, and TGA techniques, confirming their suitability as catalysts. Through systematic parametric studies, we optimized reaction conditions to achieve complete PET conversion to bis hydroxy ethylene terephthalate (BHET) with over 75% yield within 2 hours at 200°C, employing a minimal catalyst concentration of 0.5%. These results underscore the catalysts' exceptional efficiency and sustainability, positioning them as frontrunners in catalyzing PET recycling processes. Furthermore, we demonstrated the recyclability of the obtained BHETs by repolymerizing them back to PET without the need for a catalyst. Heating the BHETs in a distillation unit facilitated their conversion back to PET, highlighting the closed-loop potential of our recycling approach. Our work embodies a significant leap in catalytic glycolysis kinetics, driven by sustainable catalysts, offering rapid and high-impact PET conversion while minimizing environmental footprint. This breakthrough not only sets new benchmarks for efficiency in PET recycling but also exemplifies the pivotal role of catalysis and reaction engineering in advancing sustainable materials management.

Keywords: polymer recycling, catalysis, circular economy, glycolysis

Procedia PDF Downloads 13
349 Geoelectrical Investigation Around Bomo Area, Kaduna State, Nigeria

Authors: B. S. Jatau, Baba Adama, S. I. Fadele

Abstract:

Electrical resistivity investigation was carried out around Bomo area, Zaria, Kaduna state in order to study the subsurface geologic layer with a view of determining the depth to the bedrock and thickness of the geologic layers. Vertical Electrical Sounding (VES) using Schlumberger array was carried out at fifteen (15) VES stations. ABEM terrameter (SAS 300) was used for the data acquisition. The field data obtained have been analyzed using computer software (IPI2win) which gives an automatic interpretation of the apparent resistivity. The VES results revealed heterogeneous nature of the subsurface geological sequence. The geologic sequence beneath the study area is composed of hard pan top soil (clayey and sandy-lateritic), weathered layer, partly weathered or fractured basement and fresh basement. The resistivity value for the topsoil layer varies from 40Ωm to 450Ωm with thickness ranging from 1.25 to 7.5 m. The weathered basement has resistivity values ranging from 50Ωm to 593Ωm and thickness between 1.37 and 20.1 m. The fractured basement has resistivity values ranging from 218Ωm to 520Ωm and thickness of between 12.9 and 26.3 m. The fresh basement (bedrock) has resistivity values ranging from 1215Ωm to 2150Ωm with infinite depth. However, the depth of the earth’s surface to the bedrock surface varies between 2.63 and 34.99 m. The study further stressed the importance of the findings in civil engineering structures and groundwater prospecting.

Keywords: electrical resistivity, CERT (CT), vertical electrical sounding (VES), top soil (TP), weathered basement (WB), partly weathered basement (PWB), fresh basement (FB)

Procedia PDF Downloads 312
348 On the Development of Medical Additive Manufacturing in Egypt

Authors: Khalid Abdelghany

Abstract:

Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans.

Keywords: additive manufacturing, dental and orthopeadic stents, patient specific surgical tools, titanium implants

Procedia PDF Downloads 294
347 The Friction Of Oil Contaminated Granular Soils; Experimental Study

Authors: Miron A, Tadmor R, Pinkert S

Abstract:

Soil contamination is a pressing environmental concern, drawing considerable focus due to its adverse ecological and health outcomes, and the frequent occurrence of contamination incidents in recent years. The interaction between the oil pollutant and the host soil can alter the mechanical properties of the soil in a manner that can crucially affect engineering challenges associated with the stability of soil systems. The geotechnical investigation of contaminated soils has gained momentum since the Gulf War in the 1990s, when a massive amount of oil was spilled into the ocean. Over recent years, various types of soil contaminations have been studied to understand the impact of pollution type, uncovering the mechanical complexity that arises not just from the pollutant type but also from the properties of the host soil and the interplay between them. This complexity is associated with diametrically opposite effects in different soil types. For instance, while certain oils may enhance the frictional properties of cohesive soils, they can reduce the friction in granular soils. This striking difference can be attributed to the different mechanisms at play: physico-chemical interactions predominate in the former case, whereas lubrication effects are more significant in the latter. this study introduces an empirical law designed to quantify the mechanical effect of oil contamination in granular soils, factoring the properties of both the contaminating oil and the host soil. This law is achieved by comprehensive experimental research that spans a wide array of oil types and soils with unique configurations and morphologies. By integrating these diverse data points, our law facilitates accurate predictions of how oil contamination modifies the frictional characteristics of general granular soils.

Keywords: contaminated soils, lubrication, friction, granular media

Procedia PDF Downloads 36
346 Haptic Robotic Glove for Tele-Exploration of Explosive Devices

Authors: Gizem Derya Demir, Ilayda Yankilic, Daglar Karamuftuoglu, Dante Dorantes

Abstract:

ABSTRACT HAPTIC ROBOTIC GLOVE FOR TELE-EXPLORATION OF EXPLOSIVE DEVICES Gizem Derya Demir, İlayda Yankılıç, Dağlar Karamüftüoğlu, Dante J. Dorantes-González Department of Mechanical Engineering, MEF University Ayazağa Cad. No.4, 34396 Maslak, Sarıyer, İstanbul, Turkey Nowadays, terror attacks are, unfortunately, a more common threat around the world. Therefore, safety measures have become much more essential. An alternative to providing safety and saving human lives is done by robots, such as disassembling and liquidation of bombs. In this article, remote exploration and manipulation of potential explosive devices from a safe-distance are addressed by designing a novel, simple and ergonomic haptic robotic glove. SolidWorks® Computer-Aided Design, computerized dynamic simulation, and MATLAB® kinematic and static analysis were used for the haptic robotic glove and finger design. Angle controls of servo motors were made using ARDUINO® IDE codes on a Makeblock® MegaPi control card. Simple grasping dexterity solutions for the fingers were obtained using one linear soft and one angle sensors for each finger, and six servo motors are used in total to remotely control a slave multi-tooled robotic hand. This project is still undergoing and presents current results. Future research steps are also presented.

Keywords: Dexterity, Exoskeleton, Haptics , Position Control, Robotic Hand , Teleoperation

Procedia PDF Downloads 155
345 Environmental Effects on Coconut Coir Fiber Epoxy Composites Having TiO₂ as Filler

Authors: Srikanth Korla, Mahesh Sharnangat

Abstract:

Composite materials are being widely used in Aerospace, Naval, Defence and other branches of engineering applications. Studies on natural fibers is another emerging research area as they are available in abundance, and also due to their eco-friendly in nature. India being one of the major producer of coir, there is always a scope to study the possibilities of exploring coir as reinforment, and with different combinations of other elements of the composite. In present investigation effort is made to utilize properties possessed by natural fiber and make them enable with polymer/epoxy resin. In natural fiber coconut coir is used as reinforcement fiber in epoxy resin with varying weight percentages of fiber and filler material. Titanium dioxide powder (TiO2) is used as filler material with varying weight percentage including 0%, 2% and 4% are considered for experimentation. Environmental effects on the performance of the composite plate are also studied and presented in this project work; Moisture absorption test for composite specimens is conducted using different solvents including Kerosene, Mineral Water and Saline Water, and its absorption capacity is evaluated. Analysis is carried out in different combinations of Coir as fiber and TiO2 as filler material, and the best suitable composite material considering the strength and environmental effects is identified in this work. Therefore, the significant combination of the composite material is with following composition: 2% TiO2 powder 15% of coir fibre and 83% epoxy, under unique mechanical and environmental conditions considered in the work.

Keywords: composite materials, moisture test, filler material, natural fibre composites

Procedia PDF Downloads 184
344 Towards Green(er) Cities: The Role of Spatial Planning in Realising the Green Agenda

Authors: Elizelle Juaneé Cilliers

Abstract:

The green hype is becoming stronger within various disciplines, modern practices and academic thinking, enforced by concepts such as eco-health, eco-tourism, eco-cities, and eco-engineering. There is currently also an expanded scientific understanding regarding the value and benefits relating to green infrastructure, for both communities and their host cities, linked to broader sustainability and resilience thinking. The integration and implementation of green infrastructure as part of spatial planning approaches and municipal planning, are, however, more complex, especially in South Africa, inflated by limitations of budgets and human resources, development pressures, inequities in terms of green space availability and political legacies of the past. The prevailing approach to spatial planning is further contributing to complexity, linked to misguided perceptions of the function and value of green infrastructure. As such, green spaces are often considered a luxury, and green infrastructure a costly alternative, resulting in green networks being susceptible to land-use changes and under-prioritized in local authority decision-making. Spatial planning, in this sense, may well be a valuable tool to realise the green agenda, encapsulating various initiatives of sustainability as provided by a range of disciplines. This paper aims to clarify the importance and value of green infrastructure planning as a component of spatial planning approaches, in order to inform and encourage local authorities to embed sustainability thinking into city planning and decision-making approaches. It reflects on the decisive role of land-use management to guide the green agenda and refers to some recent planning initiatives. Lastly, it calls for trans-disciplinary planning approaches to build a case towards green(er) cities.

Keywords: green infrastructure, spatial planning, transdisciplinary, integrative

Procedia PDF Downloads 231
343 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: dam, failure, limit-state, monte-carlo, reliability, probability, simulation, sliding, taylor

Procedia PDF Downloads 309
342 Spatio-Temporal Variation of Suspended Sediment Concentration in the near Shore Waters, Southern Karnataka, India

Authors: Ateeth Shetty, K. S. Jayappa, Ratheesh Ramakrishnan, A. S. Rajawat

Abstract:

Suspended Sediment Concentration (SSC) was estimated for the period of four months (November, 2013 to February 2014) using Oceansat-2 (Ocean Colour Monitor) satellite images to understand the coastal dynamics and regional sediment transport, especially distribution and budgeting in coastal waters. The coastal zone undergoes continuous changes due to natural processes and anthropogenic activities. The importance of the coastal zone, with respect to safety, ecology, economy and recreation, demands a management strategy in which each of these aspects is taken into account. Monitoring and understanding the sediment dynamics and suspended sediment transport is an important issue for coastal engineering related activities. A study of the transport mechanism of suspended sediments in the near shore environment is essential not only to safeguard marine installations or navigational channels, but also for the coastal structure design, environmental protection and disaster reduction. Such studies also help in assessment of pollutants and other biological activities in the region. An accurate description of the sediment transport, caused by waves and tidal or wave-induced currents, is of great importance in predicting coastal morphological changes. Satellite-derived SSC data have been found to be useful for Indian coasts because of their high spatial (360 m), spectral and temporal resolutions. The present paper outlines the applications of state‐of‐the‐art operational Indian Remote Sensing satellite, Oceansat-2 to study the dynamics of sediment transport.

Keywords: suspended sediment concentration, ocean colour monitor, sediment transport, case – II waters

Procedia PDF Downloads 237
341 The Impact of Cooperative Learning on Numerical Methods Course

Authors: Sara Bilal, Abdi Omar Shuriye, Raihan Othman

Abstract:

Numerical Methods is a course that can be conducted using workshops and group discussion. This study has been implemented on undergraduate students of level two at the Faculty of Engineering, International Islamic University Malaysia. The Numerical Method course has been delivered to two Sections 1 and 2 with 44 and 22 students in each section, respectively. Systematic steps have been followed to apply the student centered learning approach in teaching Numerical Method course. Initially, the instructor has chosen the topic which was Euler’s Method to solve Ordinary Differential Equations (ODE) to be learned. The students were then divided into groups with five members in each group. Initial instructions have been given to the group members to prepare their subtopics before meeting members from other groups to discuss the subtopics in an expert group inside the classroom. For the time assigned for the classroom discussion, the setting of the classroom was rearranged to accommodate the student centered learning approach. Teacher strength was by monitoring the process of learning inside and outside the class. The students have been assessed during the migrating to the expert groups, recording of a video explanation outside the classroom and during the final examination. Euler’s Method to solve the ODE was set as part of Question 3(b) in the final exam. It is observed that none of the students from both sections obtained a zero grade in Q3(b), compared to Q3(a) and Q3(c). Also, for Section 1(44 students), 29 students obtained the full mark of 7/7, while only 10 obtained 7/7 for Q3(a) and no students obtained 6/6 for Q3(c). Finally, we can recommend that the Numerical Method course be moved toward more student-centered Learning classrooms where the students will be engaged in group discussion rather than having a teacher one man show.

Keywords: teacher centered learning, student centered learning, mathematic, numerical methods

Procedia PDF Downloads 342
340 Designing, Preparation and Structural Evaluation of Co-Crystals of Oxaprozin

Authors: Maninderjeet K. Grewal, Sakshi Bhatnor, Renu Chadha

Abstract:

The composition of pharmaceutical entities and the molecular interactions can be altered to optimize drug properties such as solubility and bioavailability by the crystal engineering technique. The present work has emphasized on the preparation, characterization, and biopharmaceutical evaluation of co-crystal of BCS Class II anti-osteoarthritis drug, Oxaprozin (OXA) with aspartic acid (ASPA) as co-former. The co-crystals were prepared through the mechanochemical solvent drop grinding method. Characterization of the prepared co-crystal (OXA-ASPA) was done by using analytical tools such as differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD). DSC thermogram of OXA-ASPA cocrystal showed a single sharp melting endotherm at 235 ºC, which was between the melting peaks of the drug and the counter molecules suggesting the formation of a new phase which is a co-crystal that was further confirmed by using other analytical techniques. FT-IR analysis of OXA-ASPA cocrystal showed a shift in a hydroxyl, carbonyl, and amine peaks as compared to pure drugs indicating all these functional groups are participating in cocrystal formation. The appearance of new peaks in the PXRD pattern of cocrystals in comparison to individual components showed that a new crystalline entity has been formed. The Crystal structure of cocrystal was determined using material studio software (Biovia) from PXRD. The equilibrium solubility study of OXA-ASPA showed improvement in solubility as compared to pure drug. Therefore, it was envisioned to prepare the co-crystal of oxaprozin with a suitable conformer to modulate its physiochemical properties and consequently, the biopharmaceutical parameters.

Keywords: cocrystals, coformer, oxaprozin, solubility

Procedia PDF Downloads 97
339 Analysis to the Characterization of Self-Esteem of Students in Eulogio 'Amang' Rodriguez Institute of Science and Technology: A Foundation of Conceptualizing Substantial Plan of Action

Authors: Eriberto R. Astorga Jr., Herbert D. Vertucio, Evelyn M. Polison

Abstract:

This study was conducted in order to determine the analysis with regards to the Characterization of Self-Esteem of EARIST Students according to their origin of self-esteem and low self-esteem as well as its causes. The respondents of this study are three thousand three hundred twenty three (3,323) randomly selected students from eight colleges of EARIST such as Arts and Sciences, Education, Public Administration and Criminology, Business Administration, Hospitality Management, Architecture and Fine Arts, Engineering, and Industrial Technology. A survey was conducted by using a validated questionnaire for information gathering about respondents profile and different factors relating to self-esteem of students such as self-origin, familial and social relationship, financial situation and education. Frequency, percentage, ranking and standards deviation, standard t-test and ANOVA were applied to investigate the differences of the answers of the respondents to the origin of their self-esteem and the reasons for low self-esteem. The results revealed that there are no significant differences in the origin of their self-esteem and the reasons of low esteem as to the eight group of respondent’s. Moreover, most causes of low esteem are caused by hearing a comment or experiencing an incident that has a negative impact student mentally and emotionally, poor health, being bullied, lack of support from family, friends, and job loss, experiencing verbal and sexual abuse and are in a violent relationship, feelings of isolation, divorce, dysfunctional family, death and lack of achievement at work and at school, trying to conform to stereotypes and prove our independence from our parents.

Keywords: characterization, plan of action, profile, self-esteem

Procedia PDF Downloads 154
338 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts

Authors: Wei Sun, Yan Dong

Abstract:

There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.

Keywords: robotics, computational thinking, programming, young children, flow chart

Procedia PDF Downloads 129
337 Drastic Increase of Wave Dissipation within Metastructures Having Negative Stiffness Inclusions

Authors: D. Chronopoulos, I. Antoniadis, V. Spitas, D. Koulocheris, V. Polenta

Abstract:

A concept of a simple linear oscillator, incorporating a negative stiffness element is demonstrated to exhibit extraordinary damping properties. This oscillator shares the same overall (static) stiffness, the same mass and the same damping element with a reference classical linear SDOF oscillator. However, it differs from the original SDOF oscillator by appropriately redistributing the component spring stiffness elements and by re-allocating the damping element. Despite the fact that the proposed oscillator incorporates a negative stiffness element, it is designed to be both statically and dynamically stable. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDOF system, especially in cases where the original damping of the SDOF system is low. This damping behavior is not a result of a novel additional extraordinary energy dissipation mechanism, but a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper re-distribution of the stiffness and the damper elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Next, Acoustic or Phononic Meta-materials are considered, in which one atom is replaced by the concept of the above simple linear oscillator. The results indicate that not only the damping of the meta-material verifies and exceeds the one expected from the so-called "meta-damping" behavior, but also that the band gap of the meta-material can be significantly increased.

Keywords: wave propagation, periodic structures, wave damping, mechanical engineering

Procedia PDF Downloads 343
336 Microstructures and Chemical Compositions of Quarry Dust As Alternative Building Material in Malaysia

Authors: Abdul Murad Zainal Abidin, Tuan Suhaimi Salleh, Siti Nor Azila Khalid, Noryati Mustapa

Abstract:

Quarry dust is a quarry end product from rock crushing processes, which is a concentrated material used as an alternative to fine aggregates for concreting purposes. In quarrying activities, the rocks are crushed into aggregates of varying sizes, from 75mm until less than 4.5 mm, the size of which is categorized as quarry dust. The quarry dust is usually considered as waste and not utilized as a recycled aggregate product. The dumping of the quarry dust at the quarry plant poses the risk of environmental pollution and health hazard. Therefore, the research is an attempt to identify the potential of quarry dust as an alternative building material that would reduce the materials and construction costs, as well as contribute effort in mitigating depletion of natural resources. The objectives are to conduct material characterization and evaluate the properties of fresh and hardened engineering brick with quarry dust mix proportion. The microstructures of quarry dust and the bricks were investigated using scanning electron microscopy (SEM), and the results suggest that the shape and surface texture of quarry dust is a combination of hard and angular formation. The chemical composition of the quarry dust was also evaluated using X-ray fluorescence (XRF) and compared against sand and concrete. The quarry dust was found to have a higher presence of alumina (Al₂O₃), indicating the possibility of an early strength effect for brick. They are utilizing quarry dust waste as replacement material has the potential of conserving non-renewable resources as well as providing a viable alternative to disposal of current quarry waste.

Keywords: building materials, cement replacement, quarry microstructure, quarry product, sustainable materials

Procedia PDF Downloads 160
335 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt

Authors: Youssouf Benmeriem

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength

Procedia PDF Downloads 369
334 Research for Hollow Reinforced Concrete Bridge Piers in Korea

Authors: Ho Young Kim, Jae Hoon Lee, Do Kyu Hwang, Im Jong Kwahk, Tae Hoon Kim, Seung Hoon Lee

Abstract:

Hollow section for bridge columns has some advantages. However, current seismic design codes do not provide design regulations for hollow bridge piers. There have been many experimental studied for hollow reinforced concrete piers in the world. But, Study for hollow section for bridge piers in Korea has been begun with approximately 2000s. There has been conducted experimental study for hollow piers of flexural controlled sections by Yeungnam University, Sung kyunkwan University, Korea Expressway Corporation in 2009. This study concluded that flexural controlled sections for hollow piers showed the similar behavior to solid sections. And there have been conducted experimental study for hollow piers of compression controlled sections by Yeungnam University, Korea Institute of Construction Technology in 2012. This study concluded that compression controlled sections for hollow piers showed compression fracture of concrete in inside wall face. Samsung C&T Engineering & Construction Group has been conducted study with Yeungnam University for reduce the quantity of reinforcement details about hollow piers. Reduce the quantity of reinforcement details are triangular cross tie. This study concluded that triangular reinforcement details showed the similar behavior as compared with existing reinforcement details.

Keywords: hollow pier, flexural controlled section, compression controlled section, reduce the quantity of reinforcement, details

Procedia PDF Downloads 397
333 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall

Authors: Zhao Cai-qi, Ma Jun

Abstract:

Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that:(1)the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete,(2)both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of a 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.

Keywords: twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing

Procedia PDF Downloads 386
332 The Use of Sustainability Criteria on Infrastructure Design to Encourage Sustainable Engineering Solutions on Infrastructure Projects

Authors: Shian Saroop, Dhiren Allopi

Abstract:

In order to stay competitive and to meet upcoming stricter environmental regulations and customer requirements, designers have a key role in designing civil infrastructure so that it is environmentally sustainable. There is an urgent need for engineers to apply technologies and methods that deliver better and more sustainable performance of civil infrastructure as well as a need to establish a standard of measurement for greener infrastructure, rather than merely use tradition solutions. However, there are no systems in place at the design stage that assesses the environmental impact of design decisions on township infrastructure projects. This paper identifies alternative eco-efficient civil infrastructure design solutions and developed sustainability criteria and a toolkit to analyse the eco efficiency of infrastructure projects. The proposed toolkit is aimed at promoting high-performance, eco-efficient, economical and environmentally friendly design decisions on stormwater, roads, water and sanitation related to township infrastructure projects. These green solutions would bring a whole new class of eco-friendly solutions to current infrastructure problems, while at the same time adding a fresh perspective to the traditional infrastructure design process. A variety of projects were evaluated using the green infrastructure toolkit and their results are compared to each other, to assess the results of using greener infrastructure verses the traditional method of designing infrastructure. The application of ‘green technology’ would ensure a sustainable design of township infrastructure services assisting the design to consider alternative resources, the environmental impacts of design decisions, ecological sensitivity issues, innovation, maintenance and materials, at the design stage of a project.

Keywords: eco-efficiency, green infrastructure, infrastructure design, sustainable development

Procedia PDF Downloads 208