Search results for: 5) genetic algorithm
991 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation
Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich
Abstract:
Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance
Procedia PDF Downloads 160990 Damage Identification Using Experimental Modal Analysis
Authors: Niladri Sekhar Barma, Satish Dhandole
Abstract:
Damage identification in the context of safety, nowadays, has become a fundamental research interest area in the field of mechanical, civil, and aerospace engineering structures. The following research is aimed to identify damage in a mechanical beam structure and quantify the severity or extent of damage in terms of loss of stiffness, and obtain an updated analytical Finite Element (FE) model. An FE model is used for analysis, and the location of damage for single and multiple damage cases is identified numerically using the modal strain energy method and mode shape curvature method. Experimental data has been acquired with the help of an accelerometer. Fast Fourier Transform (FFT) algorithm is applied to the measured signal, and subsequently, post-processing is done in MEscopeVes software. The two sets of data, the numerical FE model and experimental results, are compared to locate the damage accurately. The extent of the damage is identified via modal frequencies using a mixed numerical-experimental technique. Mode shape comparison is performed by Modal Assurance Criteria (MAC). The analytical FE model is adjusted by the direct method of model updating. The same study has been extended to some real-life structures such as plate and GARTEUR structures.Keywords: damage identification, damage quantification, damage detection using modal analysis, structural damage identification
Procedia PDF Downloads 120989 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 193988 Identifying the Structural Components of Old Buildings from Floor Plans
Authors: Shi-Yu Xu
Abstract:
The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence
Procedia PDF Downloads 94987 Optimal Tetra-Allele Cross Designs Including Specific Combining Ability Effects
Authors: Mohd Harun, Cini Varghese, Eldho Varghese, Seema Jaggi
Abstract:
Hybridization crosses find a vital role in breeding experiments to evaluate the combining abilities of individual parental lines or crosses for creation of lines with desirable qualities. There are various ways of obtaining progenies and further studying the combining ability effects of the lines taken in a breeding programme. Some of the most common methods are diallel or two-way cross, triallel or three-way cross, tetra-allele or four-way cross. These techniques help the breeders to improve the quantitative traits which are of economical as well as nutritional importance in crops and animals. Amongst these methods, tetra-allele cross provides extra information in terms of the higher specific combining ability (sca) effects and the hybrids thus produced exhibit individual as well as population buffering mechanism because of the broad genetic base. Most of the common commercial hybrids in corn are either three-way or four-way cross hybrids. Tetra-allele cross came out as the most practical and acceptable scheme for the production of slaughter pigs having fast growth rate, good feed efficiency, and carcass quality. Tetra-allele crosses are mostly used for exploitation of heterosis in case of commercial silkworm production. Experimental designs involving tetra-allele crosses have been studied extensively in literature. Optimality of designs has also been considered as a researchable issue. In practical situations, it is advisable to include sca effects in the model as this information is needed by the breeder to improve economically and nutritionally important quantitative traits. Thus, a model that provides information regarding the specific traits by utilizing sca effects along with general combining ability (gca) effects may help the breeders to deal with the problem of various stresses. In this paper, a model for experimental designs involving tetra-allele crosses that incorporates both gca and sca has been defined. Optimality aspects of such designs have been discussed incorporating sca effects in the model. Orthogonality conditions have been derived for block designs ensuring estimation of contrasts among the gca effects, after eliminating the nuisance factors, independently from sca effects. User friendly SAS macro and web solution (webPTC) have been developed for the generation and analysis of such designs.Keywords: general combining ability, optimality, specific combining ability, tetra-allele cross, webPTC
Procedia PDF Downloads 139986 IEEE802.15.4e Based Scheduling Mechanisms and Systems for Industrial Internet of Things
Authors: Ho-Ting Wu, Kai-Wei Ke, Bo-Yu Huang, Liang-Lin Yan, Chun-Ting Lin
Abstract:
With the advances in advanced technology, wireless sensor network (WSN) has become one of the most promising candidates to implement the wireless industrial internet of things (IIOT) architecture. However, the legacy IEEE 802.15.4 based WSN technology such as Zigbee system cannot meet the stringent QoS requirement of low powered, real-time, and highly reliable transmission imposed by the IIOT environment. Recently, the IEEE society developed IEEE 802.15.4e Time Slotted Channel Hopping (TSCH) access mode to serve this purpose. Furthermore, the IETF 6TiSCH working group has proposed standards to integrate IEEE 802.15.4e with IPv6 protocol smoothly to form a complete protocol stack for IIOT. In this work, we develop key network technologies for IEEE 802.15.4e based wireless IIoT architecture, focusing on practical design and system implementation. We realize the OpenWSN-based wireless IIOT system. The system architecture is divided into three main parts: web server, network manager, and sensor nodes. The web server provides user interface, allowing the user to view the status of sensor nodes and instruct sensor nodes to follow commands via user-friendly browser. The network manager is responsible for the establishment, maintenance, and management of scheduling and topology information. It executes centralized scheduling algorithm, sends the scheduling table to each node, as well as manages the sensing tasks of each device. Sensor nodes complete the assigned tasks and sends the sensed data. Furthermore, to prevent scheduling error due to packet loss, a schedule inspection mechanism is implemented to verify the correctness of the schedule table. In addition, when network topology changes, the system will act to generate a new schedule table based on the changed topology for ensuring the proper operation of the system. To enhance the system performance of such system, we further propose dynamic bandwidth allocation and distributed scheduling mechanisms. The developed distributed scheduling mechanism enables each individual sensor node to build, maintain and manage the dedicated link bandwidth with its parent and children nodes based on locally observed information by exchanging the Add/Delete commands via two processes. The first process, termed as the schedule initialization process, allows each sensor node pair to identify the available idle slots to allocate the basic dedicated transmission bandwidth. The second process, termed as the schedule adjustment process, enables each sensor node pair to adjust their allocated bandwidth dynamically according to the measured traffic loading. Such technology can sufficiently satisfy the dynamic bandwidth requirement in the frequently changing environments. Last but not least, we propose a packet retransmission scheme to enhance the system performance of the centralized scheduling algorithm when the packet delivery rate (PDR) is low. We propose a multi-frame retransmission mechanism to allow every single network node to resend each packet for at least the predefined number of times. The multi frame architecture is built according to the number of layers of the network topology. Performance results via simulation reveal that such retransmission scheme is able to provide sufficient high transmission reliability while maintaining low packet transmission latency. Therefore, the QoS requirement of IIoT can be achieved.Keywords: IEEE 802.15.4e, industrial internet of things (IIOT), scheduling mechanisms, wireless sensor networks (WSN)
Procedia PDF Downloads 167985 Motion Detection Method for Clutter Rejection in the Bio-Radar Signal Processing
Authors: Carolina Gouveia, José Vieira, Pedro Pinho
Abstract:
The cardiopulmonary signal monitoring, without the usage of contact electrodes or any type of in-body sensors, has several applications such as sleeping monitoring and continuous monitoring of vital signals in bedridden patients. This system has also applications in the vehicular environment to monitor the driver, in order to avoid any possible accident in case of cardiac failure. Thus, the bio-radar system proposed in this paper, can measure vital signals accurately by using the Doppler effect principle that relates the received signal properties with the distance change between the radar antennas and the person’s chest-wall. Once the bio-radar aim is to monitor subjects in real-time and during long periods of time, it is impossible to guarantee the patient immobilization, hence their random motion will interfere in the acquired signals. In this paper, a mathematical model of the bio-radar is presented, as well as its simulation in MATLAB. The used algorithm for breath rate extraction is explained and a method for DC offsets removal based in a motion detection system is proposed. Furthermore, experimental tests were conducted with a view to prove that the unavoidable random motion can be used to estimate the DC offsets accurately and thus remove them successfully.Keywords: bio-signals, DC component, Doppler effect, ellipse fitting, radar, SDR
Procedia PDF Downloads 145984 Prediction of Cardiovascular Markers Associated With Aromatase Inhibitors Side Effects Among Breast Cancer Women in Africa
Authors: Jean Paul M. Milambo
Abstract:
Purpose: Aromatase inhibitors (AIs) are indicated in the treatment of hormone-receptive breast cancer in postmenopausal women in various settings. Studies have shown cardiovascular events in some developed countries. To date the data is sparce for evidence-based recommendations in African clinical settings due to lack of cancer registries, capacity building and surveillance systems. Therefore, this study was conducted to assess the feasibility of HyBeacon® probe genotyping adjunctive to standard care for timely prediction and diagnosis of Aromatase inhibitors (AIs) associated adverse events in breast cancer survivors in Africa. Methods: Cross sectional study was conducted to assess the knowledge of POCT among six African countries using online survey and telephonically contacted. Incremental cost effectiveness ratio (ICER) was calculated, using diagnostic accuracy study. This was based on mathematical modeling. Results: One hundred twenty-six participants were considered for analysis (mean age = 61 years; SD = 7.11 years; 95%CI: 60-62 years). Comparison of genotyping from HyBeacon® probe technology to Sanger sequencing showed that sensitivity was reported at 99% (95% CI: 94.55% to 99.97%), specificity at 89.44% (95% CI: 87.25 to 91.38%), PPV at 51% (95%: 43.77 to 58.26%), and NPV at 99.88% (95% CI: 99.31 to 100.00%). Based on the mathematical model, the assumptions revealed that ICER was R7 044.55. Conclusion: POCT using HyBeacon® probe genotyping for AI-associated adverse events maybe cost effective in many African clinical settings. Integration of preventive measures for early detection and prevention guided by different subtype of breast cancer diagnosis with specific clinical, biomedical and genetic screenings may improve cancer survivorship. Feasibility of POCT was demonstrated but the implementation could be achieved by improving the integration of POCT within primary health cares, referral cancer hospitals with capacity building activities at different level of health systems. This finding is pertinent for a future envisioned implementation and global scale-up of POCT-based initiative as part of risk communication strategies with clear management pathways.Keywords: breast cancer, diagnosis, point of care, South Africa, aromatase inhibitors
Procedia PDF Downloads 83983 Inbreeding and Its Effect on Growth Performance in a Closed Herd of New Zealand White Rabbits
Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi
Abstract:
The influence of inbreeding on growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India was studied in a closed herd. Data were collected over a period of 15 years (1998 to 2012). The traits studied were body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing. The effects of inbreeding along with other non-genetic factors (sex of the kit, season and period of birth of the kit) were analyzed using least-squares method. The inbreeding (F) and equivalent inbreeding (EF) coefficients were taken as fixed classes as well as covariates in separate analyses. When taken as covariate, the effect was analyzed as partial regression of respective growth trait on individual inbreeding coefficient (F or EF). The mean body weights at weaning, post-weaning and marketing were 0.715, 1.276 and 2.187 kg, respectively. The maximum growth efficiency was noticed between weaning and post-weaning. Season and period had highly significant influence on all the growth parameters studied and sex of the kit had significant influence on certain growth efficiency traits only. The average coefficients of inbreeding and equivalent inbreeding in the population were 13.233 and 17.585 percent, respectively. About 11.17 percent of total matings were highly inbred in which full-sib, half-sib and parent-offspring matings were 1.20, 6.30 and 3.67 percent, respectively. The regression of body weight traits on F and EF showed negative effect whereas most of the growth efficiency traits showed positive effects. Significant inbreeding depression was observed in W42 and W70. The depression in W42 was 0.214 kg and 0.139 kg and in W70 was 0.269 kg and 0.172 kg for every one unit increase in F and EF, respectively. Though the trait W135 showed positive value and ADG1 showed depression, the effects of inbreeding and equivalent inbreeding were non-significant in these traits. Higher values of inbreeding depression could be due to more variance of F or EF in the population. The analysis of the effect of level of inbreeding on growth traits revealed that the inbreeding class was significant on W70, ADG2, RGR2 and KR2 while EF classes had significant influence only on ADG2, RGR2 and KR2. Obviously, inbreeding does not have a positive effect, therefore, these results suggest that inbreeding had no effect on these traits.Keywords: growth parameters, equivalent inbreeding, inbreeding effects, rabbit genetics
Procedia PDF Downloads 369982 Reconfigurable Consensus Achievement of Multi Agent Systems Subject to Actuator Faults in a Leaderless Architecture
Authors: F. Amirarfaei, K. Khorasani
Abstract:
In this paper, reconfigurable consensus achievement of a team of agents with marginally stable linear dynamics and single input channel has been considered. The control algorithm is based on a first order linear protocol. After occurrence of a LOE fault in one of the actuators, using the imperfect information of the effectiveness of the actuators from fault detection and identification module, the control gain is redesigned in a way to still reach consensus. The idea is based on the modeling of change in effectiveness as change of Laplacian matrix. Then as special cases of this class of systems, a team of single integrators as well as double integrators are considered and their behavior subject to a LOE fault is considered. The well-known relative measurements consensus protocol is applied to a leaderless team of single integrator as well as double integrator systems, and Gersgorin disk theorem is employed to determine whether fault occurrence has an effect on system stability and team consensus achievement or not. The analyses show that loss of effectiveness fault in actuator(s) of integrator systems affects neither system stability nor consensus achievement.Keywords: multi-agent system, actuator fault, stability analysis, consensus achievement
Procedia PDF Downloads 340981 Identity Management in Virtual Worlds Based on Biometrics Watermarking
Authors: S. Bader, N. Essoukri Ben Amara
Abstract:
With the technological development and rise of virtual worlds, these spaces are becoming more and more attractive for cybercriminals, hidden behind avatars and fictitious identities. Since access to these spaces is not restricted or controlled, some impostors take advantage of gaining unauthorized access and practicing cyber criminality. This paper proposes an identity management approach for securing access to virtual worlds. The major purpose of the suggested solution is to install a strong security mechanism to protect virtual identities represented by avatars. Thus, only legitimate users, through their corresponding avatars, are allowed to access the platform resources. Access is controlled by integrating an authentication process based on biometrics. In the request process for registration, a user fingerprint is enrolled and then encrypted into a watermark utilizing a cancelable and non-invertible algorithm for its protection. After a user personalizes their representative character, the biometric mark is embedded into the avatar through a watermarking procedure. The authenticity of the avatar identity is verified when it requests authorization for access. We have evaluated the proposed approach on a dataset of avatars from various virtual worlds, and we have registered promising performance results in terms of authentication accuracy, acceptation and rejection rates.Keywords: identity management, security, biometrics authentication and authorization, avatar, virtual world
Procedia PDF Downloads 269980 Influence of Genotype, Explant, and Hormone Treatment on Agrobacterium-Transformation Success in Salix Callus Culture
Authors: Lukas J. Evans, Danilo D. Fernando
Abstract:
Shrub willows (Salix spp.) have many characteristics which make them suitable for a variety of applications such as riparian zone buffers, environmental contaminant sequestration, living snow fences, and biofuel production. In some cases, these functions are limited due to physical or financial obstacles associated with the number of individuals needed to reasonably satisfy that purpose. One way to increase the efficiency of willows is to bioengineer them with the genetic improvements suitable for the desired use. To accomplish this goal, an optimized in vitro transformation protocol via Agrobacterium tumefaciens is necessary to reliably express genes of interest. Therefore, the aim of this study is to observe the influence of tissue culture with different willow cultivars, hormones, and explants on the percentage of calli expressing reporter gene green florescent protein (GFP) to find ideal transformation conditions. Each callus was produced from 1 month old open-pollinated seedlings of three Salix miyabeana cultivars (‘SX61’, ‘WT1’, and ‘WT2’) from three different explants (lamina, petiole, and internodes). Explants were cultured for 1 month on an MS media with different concentrations of 6-Benzylaminopurine (BAP) and 1-Naphthaleneacetic acid (NAA) (No hormones, 1 mg⁻¹L BAP only, 3 mg⁻¹L NAA only, 1 mg⁻¹L BAP and 3 mg⁻¹L NAA, and 3 mg⁻¹L BAP and 1 mg⁻¹L NAA) to produce a callus. Samples were then treated with Agrobacterium tumefaciens at an OD600 of 0.6-0.8 to insert the transgene GFP for 30 minutes, co-cultivated for 72 hours, and selected on the same media type they were cultured on with added 7.5 mg⁻¹L of Hygromycin for 1 week before GFP visualization under a UV dissecting scope. Percentage of GFP expressing calli as well as the average number of fluorescing GFP units per callus were recorded and results were evaluated through an ANOVA test (α = 0.05). The WT1 internode-derived calli on media with 3 mg-1L NAA+1 mg⁻¹L BAP and mg⁻¹L BAP alone produced a significantly higher percentage of GFP expressing calli than each other group (19.1% and 19.4%, respectively). Additionally, The WT1 internode group cultured with 3 mg⁻¹L NAA+1 mg⁻¹L BAP produced an average of 2.89 GFP units per callus while the group cultivated with 1 mg⁻¹L BAP produced an average of 0.84 GFP units per callus. In conclusion, genotype, explant choice, and hormones all play a significant role in increasing successful transformation in willows. Future studies to produce whole callus GFP expression and subsequent plantlet regeneration are necessary for a complete willow transformation protocol.Keywords: agrobacterium, callus, Salix, tissue culture
Procedia PDF Downloads 127979 An Image Processing Based Approach for Assessing Wheelchair Cushions
Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour
Abstract:
Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure mapping systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of flexible sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the users' needs.Keywords: dynamic cushion, image processing, pressure mapping system, wheelchair
Procedia PDF Downloads 173978 Study of Effects of 3D Semi-Spheriacl Basin-Shape-Ratio on the Frequency Content and Spectral Amplitudes of the Basin-Generated Surface Waves
Authors: Kamal, J. P. Narayan
Abstract:
In the present wok the effects of basin-shape-ratio on the frequency content and spectral amplitudes of the basin-generated surface waves and the associated spatial variation of ground motion amplification and differential ground motion in a 3D semi-spherical basin has been studied. A recently developed 3D fourth-order spatial accurate time-domain finite-difference (FD) algorithm based on the parsimonious staggered-grid approximation of the 3D viscoelastic wave equations was used to estimate seismic responses. The simulated results demonstrated the increase of both the frequency content and the spectral amplitudes of the basin-generated surface waves and the duration of ground motion in the basin with the increase of shape-ratio of semi-spherical basin. An increase of the average spectral amplification (ASA), differential ground motion (DGM) and the average aggravation factor (AAF) towards the centre of the semi-spherical basin was obtained.Keywords: 3D viscoelastic simulation, basin-generated surface waves, basin-shape-ratio effects, average spectral amplification, aggravation factors and differential ground motion
Procedia PDF Downloads 512977 Design of Speed Bump Recognition System Integrated with Adjustable Shock Absorber Control
Authors: Ming-Yen Chang, Sheng-Hung Ke
Abstract:
This research focuses on the development of a speed bump identification system for real-time control of adjustable shock absorbers in vehicular suspension systems. The study initially involved the collection of images of various speed bumps, and rubber speed bump profiles found on roadways. These images were utilized for training and recognition purposes through the deep learning object detection algorithm YOLOv5. Subsequently, the trained speed bump identification program was integrated with an in-vehicle camera system for live image capture during driving. These images were instantly transmitted to a computer for processing. Using the principles of monocular vision ranging, the distance between the vehicle and an approaching speed bump was determined. The appropriate control distance was established through both practical vehicle measurements and theoretical calculations. Collaboratively, with the electronically adjustable shock absorbers equipped in the vehicle, a shock absorber control system was devised to dynamically adapt the damping force just prior to encountering a speed bump. This system effectively mitigates passenger discomfort and enhances ride quality.Keywords: adjustable shock absorbers, image recognition, monocular vision ranging, ride
Procedia PDF Downloads 71976 Risk Mitigation of Data Causality Analysis Requirements AI Act
Authors: Raphaël Weuts, Mykyta Petik, Anton Vedder
Abstract:
Artificial Intelligence has the potential to create and already creates enormous value in healthcare. Prescriptive systems might be able to make the use of healthcare capacity more efficient. Such systems might entail interpretations that exclude the effect of confounders that brings risks with it. Those risks might be mitigated by regulation that prevents systems entailing such risks to come to market. One modality of regulation is that of legislation, and the European AI Act is an example of such a regulatory instrument that might mitigate these risks. To assess the risk mitigation potential of the AI Act for those risks, this research focusses on a case study of a hypothetical application of medical device software that entails the aforementioned risks. The AI Act refers to the harmonised norms for already existing legislation, here being the European medical device regulation. The issue at hand is a causal link between a confounder and the value the algorithm optimises for by proxy. The research identifies where the AI Act already looks at confounders (i.a. feedback loops in systems that continue to learn after being placed on the market). The research identifies where the current proposal by parliament leaves legal uncertainty on the necessity to check for confounders that do not influence the input of the system, when the system does not continue to learn after being placed on the market. The authors propose an amendment to article 15 of the AI Act that would require high-risk systems to be developed in such a way as to mitigate risks from those aforementioned confounders.Keywords: AI Act, healthcare, confounders, risks
Procedia PDF Downloads 265975 Healthcare Big Data Analytics Using Hadoop
Authors: Chellammal Surianarayanan
Abstract:
Healthcare industry is generating large amounts of data driven by various needs such as record keeping, physician’s prescription, medical imaging, sensor data, Electronic Patient Record(EPR), laboratory, pharmacy, etc. Healthcare data is so big and complex that they cannot be managed by conventional hardware and software. The complexity of healthcare big data arises from large volume of data, the velocity with which the data is accumulated and different varieties such as structured, semi-structured and unstructured nature of data. Despite the complexity of big data, if the trends and patterns that exist within the big data are uncovered and analyzed, higher quality healthcare at lower cost can be provided. Hadoop is an open source software framework for distributed processing of large data sets across clusters of commodity hardware using a simple programming model. The core components of Hadoop include Hadoop Distributed File System which offers way to store large amount of data across multiple machines and MapReduce which offers way to process large data sets with a parallel, distributed algorithm on a cluster. Hadoop ecosystem also includes various other tools such as Hive (a SQL-like query language), Pig (a higher level query language for MapReduce), Hbase(a columnar data store), etc. In this paper an analysis has been done as how healthcare big data can be processed and analyzed using Hadoop ecosystem.Keywords: big data analytics, Hadoop, healthcare data, towards quality healthcare
Procedia PDF Downloads 417974 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.Keywords: Integral differential equations, , L-stable methods, pricing European options, Jump–diffusion model
Procedia PDF Downloads 157973 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine
Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji
Abstract:
The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.Keywords: medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis
Procedia PDF Downloads 326972 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation
Authors: Mahmut Yildirim
Abstract:
This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection
Procedia PDF Downloads 77971 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter
Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas
Abstract:
This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.Keywords: biomass concentration, extended Kalman filter, particle filter, state estimation, specific growth rate
Procedia PDF Downloads 433970 A Biophysical Model of CRISPR/Cas9 on- and off-Target Binding for Rational Design of Guide RNAs
Authors: Iman Farasat, Howard M. Salis
Abstract:
The CRISPR/Cas9 system has revolutionized genome engineering by enabling site-directed and high-throughput genome editing, genome insertion, and gene knockdowns in several species, including bacteria, yeast, flies, worms, and human cell lines. This technology has the potential to enable human gene therapy to treat genetic diseases and cancer at the molecular level; however, the current CRISPR/Cas9 system suffers from seemingly sporadic off-target genome mutagenesis that prevents its use in gene therapy. A comprehensive mechanistic model that explains how the CRISPR/Cas9 functions would enable the rational design of the guide-RNAs responsible for target site selection while minimizing unexpected genome mutagenesis. Here, we present the first quantitative model of the CRISPR/Cas9 genome mutagenesis system that predicts how guide-RNA sequences (crRNAs) control target site selection and cleavage activity. We used statistical thermodynamics and law of mass action to develop a five-step biophysical model of cas9 cleavage, and examined it in vivo and in vitro. To predict a crRNA's binding specificities and cleavage rates, we then compiled a nearest neighbor (NN) energy model that accounts for all possible base pairings and mismatches between the crRNA and the possible genomic DNA sites. These calculations correctly predicted crRNA specificity across 5518 sites. Our analysis reveals that cas9 activity and specificity are anti-correlated, and, the trade-off between them is the determining factor in performing an RNA-mediated cleavage with minimal off-targets. To find an optimal solution, we first created a scheme of safe-design criteria for Cas9 target selection by systematic analysis of available high throughput measurements. We then used our biophysical model to determine the optimal Cas9 expression levels and timing that maximizes on-target cleavage and minimizes off-target activity. We successfully applied this approach in bacterial and mammalian cell lines to reduce off-target activity to near background mutagenesis level while maintaining high on-target cleavage rate.Keywords: biophysical model, CRISPR, Cas9, genome editing
Procedia PDF Downloads 409969 Development of Trigger Tool to Identify Adverse Drug Events From Warfarin Administered to Patient Admitted in Medical Wards of Chumphae Hospital
Authors: Puntarikorn Rungrattanakasin
Abstract:
Objectives: To develop the trigger tool to warn about the risk of bleeding as an adverse event from warfarin drug usage during admission in Medical Wards of Chumphae Hospital. Methods: A retrospective study was performed by reviewing the medical records for the patients admitted between June 1st,2020- May 31st, 2021. ADEs were evaluated by Naranjo’s algorithm. The international normalized ratio (INR) and events of bleeding during admissions were collected. Statistical analyses, including Chi-square test and Reciever Operating Characteristic (ROC) curve for optimal INR threshold, were used for the study. Results: Among the 139 admissions, the INR range was found to vary between 0.86-14.91, there was a total of 15 bleeding events, out of which 9 were mild, and 6 were severe. The occurrence of bleeding started whenever the INR was greater than 2.5 and reached the statistical significance (p <0.05), which was in concordance with the ROC curve and yielded 100 % sensitivity and 60% specificity in the detection of a bleeding event. In this regard, the INR greater than 2.5 was considered to be an optimal threshold to alert promptly for bleeding tendency. Conclusions: The INR value of greater than 2.5 (>2.5) would be an appropriate trigger tool to warn of the risk of bleeding for patients taking warfarin in Chumphae Hospital.Keywords: trigger tool, warfarin, risk of bleeding, medical wards
Procedia PDF Downloads 150968 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods
Authors: Ali Berkan Ural
Abstract:
This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning
Procedia PDF Downloads 100967 Organic Geochemistry and Oil-Source Correlation of Cretaceous Sediments in the Kohat Basin, Pakistan
Authors: Syed Mamoon Siyar, Fayaz Ali, Sajjad Ahmad, Samina Jahandad, George Kontakiotis, Hammad T. Janjuhah, Assimina Antonarakou, Waqas Naseem
Abstract:
The Cretaceous Chichali Formation in the Chanda-01, Chanda-02, Chanda-03 and Mela-05 wells and the oil samples from Chanda-01 and Chanda-01 wells located in the Kohat Basin, Pakistan, were analyzed with the objectives of evaluating the hydrocarbon generation potential, source, thermal maturity and depositional of organic matter, and oil-source correlation by employing geochemical screening techniques and biomarker studies. The total organic carbon (TOC) values in Chanda-02, Chanda-03 and Mela-05 indicate, in general, poor to fair, fair and fair to good source rock potential with low genetic potential, respectively. The nature of organic matter has been determined by standard cross plots of Rock Eval pyrolysis parameters, indicating that studied cuttings from the Chichali Formation dominantly contain type III kerogen at present and show maturity for oil generation in the studied wells. The organic petrographic study also confirmed the vitrinite (type III) as a major maceral in the investigated Chichali Shales and its reflectance values show maturity for oil. The different ratios of non-biomarkers and biomarkers i.e., steranes, terpenes and aromatics parameters, indicate the marine source of organic matter deposited in the anoxic environment for the Chichali Formation in Chanda-01 and Chanda-02 wells and mixed source input of organic matter deposited in suboxic conditions for oil in the same wells. The CPI, and different biomarkers parameters such as C29 S/S+R, ββ/αα+ββ), M29/H30, Ts/Ts+Tm, H31 (S/S+R) and aromatic compounds methyl phenanthrene index (MPI) and organic petrographic analysis (vitrinite reflectance) suggest mature stage of oil generation for Chichali Shales and oil samples in the study area with little high thermal maturity in case of oils. Based on source and thermal maturity biomarkers and non-biomarkers parameters, the produced oils have no correlation with the Cretaceous Chichali Formation in the studied Chanda-01 and Chanda-02 wells in Kohat Basin, Pakistan, but it has been suggested that these oils have been generated by the strata containing high terrestrial organic input compare to Chichali Shales.Keywords: Organic geochemistry, Chichali Shales and crude oils, Kohat Basin, Pakistan
Procedia PDF Downloads 88966 Evaluation of Radio Protective Potential of Indian Bamboo Leaves
Authors: Mansi Patel, Priti Mehta
Abstract:
Background: Ionizing radiations have detrimental effects on humans, and the growing technological encroachment has increased human exposure to it enormously. So, the safety issues have emphasized researchers to develop radioprotector from natural resources having minimal toxicity. A substance having anti-inflammatory, antioxidant, and immunomodulatory activity can be a potential candidate for radioprotection. One such plant with immense potential i.e. Bamboo was selected for the present study. Purpose: The study aims to evaluate the potential of Indian bamboo leaves for protection against the clastogenic effect of gamma radiation. Methods: The protective effect of bamboo leaf extract against gamma radiation-induced genetic damage in human peripheral blood lymphocytes (HPBLs) was evaluated in vitro using Cytokinesis blocked micronuclei assay (CBMN). The blood samples were pretreated with varying concentration of extract 30 min before the radiation exposure (4Gy & 6Gy). The reduction in the frequency of micronuclei was observed for the irradiated and control groups. The effect of various concentration of bamboo leaf extract (400,600,800 mg/kg) on the development of radiation induced sickness and altered mortality in mice exposed to 8 Gy of whole-body gamma radiation was studied. The developed symptoms were clinically scored by multiple endpoints for 30 days. Results: Treatment of HPBLs with varying concentration of extract before exposure to a different dose of γ- radiation resulted in significant (P < 0.0001) decline of radiation induced micronuclei. It showed dose dependent and concentration driven activity. The maximum protection ~ 70% was achieved at nine µg/ml concentration. Extract treated whole body irradiated mice showed 50%, 83.3% and 100% survival for 400, 600, and 800mg/kg with 1.05, 0.43 and 0 clinical score respectively when compared to Irradiated mice having 6.03 clinical score and 0% survival. Conclusion: Our findings indicate bamboo leaf extract reduced the radiation induced cytogenetic damage. It has also increased the survival ratio and reduced the radiation induced sickness and mortality when exposed to a lethal dose of gamma radiation.Keywords: bamboo leaf extract, Cytokinesis blocked micronuclei (CBMN) assay, ionizing radiation, radio protector
Procedia PDF Downloads 150965 Application of Deep Neural Networks to Assess Corporate Credit Rating
Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu
Abstract:
In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating
Procedia PDF Downloads 240964 Inversion of Electrical Resistivity Data: A Review
Authors: Shrey Sharma, Gunjan Kumar Verma
Abstract:
High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.Keywords: inversion, limitations, optimization, resistivity
Procedia PDF Downloads 368963 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 73962 The Trigger-DAQ System in the Mu2e Experiment
Authors: Antonio Gioiosa, Simone Doanti, Eric Flumerfelt, Luca Morescalchi, Elena Pedreschi, Gianantonio Pezzullo, Ryan A. Rivera, Franco Spinella
Abstract:
The Mu2e experiment at Fermilab aims to measure the charged-lepton flavour violating neutrino-less conversion of a negative muon into an electron in the field of an aluminum nucleus. With the expected experimental sensitivity, Mu2e will improve the previous limit of four orders of magnitude. The Mu2e data acquisition (DAQ) system provides hardware and software to collect digitized data from the tracker, calorimeter, cosmic ray veto, and beam monitoring systems. Mu2e’s trigger and data acquisition system (TDAQ) uses otsdaq as its solution. developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under-the-hood, for event transfer, filtering, and processing. Otsdaq is an online DAQ software suite with a focus on flexibility and scalability while providing a multi-user, web-based interface accessible through the Chrome or Firefox web browser. The detector read out controller (ROC) from the tracker and calorimeter stream out zero-suppressed data continuously to the data transfer controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes from a cosmic ray veto system (CRV).Keywords: trigger, daq, mu2e, Fermilab
Procedia PDF Downloads 159