Search results for: panel regression techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10433

Search results for: panel regression techniques

6683 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia

Authors: Yenni Anggrayni

Abstract:

The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.

Keywords: bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement

Procedia PDF Downloads 70
6682 Influences of Market Orientation and Supply Chain Management on Competitive Capability in Case of Automotive Parts Industry

Authors: Nattapong Techarattanased

Abstract:

The objectives of this research were to study the influence of market orientation and supply chain management on competitive capability in case of the automotive parts industry in Thailand. This study employed by survey research and questionnaire was used to collect the data from 400 entrepreneurs in the automotive parts industry in Thailand. The descriptive statistics and multiple regression analysis were used to analyze data. The results revealed that the overall dimensions of marketing orientation, namely, responsiveness, intelligence generation, and intelligence dissemination were rated at the high level. As well, the overall dimensions of supply chain management, namely, collaboration, communication, trust, and commitment were also rated at the high level. Furthermore, the hypothesis testing results showed that supply chain management and market orientation affected competitive capability of the automotive parts industry in Thailand which these two variables could be combined to predict competitive capability of the automotive parts industry in Thailand by 31.5 percent.

Keywords: automotive parts industry, competitive capability, market orientation, supply chain management

Procedia PDF Downloads 314
6681 The Protection and Enhancement of the Roman Roads in Algeria

Authors: Tarek Ninouh, Ahmed Rouili

Abstract:

The Roman paths or roads offer a very interesting archaeological material, because they allow us to understand the history of human settlement and are also factors that increase territorial identity. Roman roads are one of the hallmarks of the Roman empire, which extends to North Africa. The objective of this investigation is to attract the attention of researchers to the importance of Roman roads and paths, which are found in Algeria, according to the quality of the materials and techniques used in this period of our history, and to encourage other decision makers to protect and enhance these routes because the current urbanization, intensive agricultural practices, or simply forgotten, decreases the sustainability of this important historical heritage.

Keywords: Roman paths, quality of materials, property, valuation

Procedia PDF Downloads 430
6680 Examining the Impact of Training on Turnover Intention in Project-Based Organizations

Authors: Muhammad Safder Shafi, Uzma Javed, Tooba Qasim

Abstract:

The purpose of this paper is to find out the relationship between training and turnover intention in the presence of mediating variables promotion opportunities and job satisfaction among IT professionals in project based industry. It investigates the relationship directly between 1 independent variable training and dependent variable turnover intention. It also investigates the relationship between independent variable to the mediating variables and mediating variables to the turnover intention. Promotion opportunities and job satisfaction act as a mediator. The study sample comprised of 186 IT professionals from Pakistan, who work on different IT projects. Linear regression and Baron and Kenny approach were used to test the direct and mediated relationship between variables. The survey results demonstrated that job satisfaction fully mediate the relationship between promotion opportunities and turnover intention. Promotion opportunities fully mediate the relationship between employee training and job satisfaction. Promotion opportunities and job satisfaction mediates the relationship between training and turnover intention. The findings from the collected data may help top management to improve organizational strategies to cope up with improving different HR practices like training, pay structure and promotions in order to retain their workforce.

Keywords: HCT, SET, career growth opportunities, job satisfaction, training, turnover intention

Procedia PDF Downloads 360
6679 Kuwait Environmental Remediation Program: Waste Management Data Analytics for Planning and Optimization of Waste Collection

Authors: Aisha Al-Baroud

Abstract:

The United Nations Compensation Commission (UNCC), Kuwait National Focal Point (KNFP) and Kuwait Oil Company (KOC) cooperated in a joint project to undertake comprehensive and collaborative efforts to remediate 26 million m3 of crude oil contaminated soil that had resulted from the Gulf War in 1990/1991. These efforts are referred to as the Kuwait Environmental Remediation Program (KERP). KOC has developed a Total Remediation Solution (TRS) for KERP, which will guide the Remediation projects, comprises of alternative remedial solutions with treatment techniques inclusive of limited landfills for non-treatable soil materials disposal, and relies on treating certain ranges of Total Petroleum Hydrocarbon (TPH) contamination with the most appropriate remediation techniques. The KERP Remediation projects will be implemented within the KOC’s oilfields in North and South East Kuwait. The objectives of this remediation project is to clear land for field development and treat all the oil contaminated features (dry oil lakes, wet oil lakes, and oil contaminated piles) through TRS plan to optimize the treatment processes and minimize the volume of contaminated materials to be placed into landfills. The treatment strategy will comprise of Excavation and Transportation (E&T) of oil contaminated soils from contaminated land to remote treatment areas and to use appropriate remediation technologies or a combination of treatment technologies to achieve remediation target criteria (RTC). KOC has awarded five mega projects to achieve the same and is currently in the execution phase. As a part of the company’s commitment to environment and for the fulfillment of the mandatory HSSEMS procedures, all the Remediation contractors needs to report waste generation data from the various project activities on a monthly basis. Data on waste generation is collected in order to implement cost-efficient and sustainable waste management operations. Data analytics approaches can be built on the top of the data to produce more detailed, and in-time waste generation information for the basis of waste management and collection. The results obtained highlight the potential of advanced data analytic approaches in producing more detailed waste generation information for planning and optimization of waste collection and recycling.

Keywords: waste, tencnolgies, KERP, data, soil

Procedia PDF Downloads 113
6678 Students’ Motivation, Self-Determination, Test Anxiety and Academic Engagement

Authors: Shakirat Abimbola Adesola, Shuaib Akintunde Asifat, Jelili Olalekan Amoo

Abstract:

This paper presented the impact of students’ emotions on learning when receiving lectures and when taking tests. It was observed that students experience different types of emotions during the study, and this was found to have a significant effect on their academic performance. A total of one thousand six hundred and seventy-five (1675) students from the department of Computer Science in two Colleges of Education in South-West Nigeria took part in this study. The students were randomly selected for the research. Sample comprises of 968 males representing 58%, and 707 females representing 42%. A structured questionnaire, of Motivated Strategies for Learning Questionnaire (MSLQ) was distributed to the participants to obtain their opinions. Data gathered were analyzed using the IBM SPSS 20 to obtain ANOVA, descriptive analysis, stepwise regression, and reliability tests. The results revealed that emotion moderately shape students’ motivation and engagement in learning; and that self-regulation and self-determination do have significant impact on academic performance. It was further revealed that test anxiety has a significant correlation with academic performance.

Keywords: motivation, self-determination, test anxiety, academic performance, and academic engagement

Procedia PDF Downloads 83
6677 Harnessing Entrepreneurial Opportunities for National Security

Authors: Itiola Kehinde Adeniran

Abstract:

This paper investigated the influence of harnessing entrepreneurial opportunities on the national security in Nigeria with a specific focus on the security situation of the post-amnesty programmes of the Federal Government in Ondo State. The self-administered structured questionnaire was employed to collect data from one hundred and twenty participants through purposive sampling method. Inferential statistics was used to analyze the data, specifically; ordinary least squares linear regression method was employed with the aid of statistical package for social science (SPSS) version 20 in order to determine the influence of independent variable (entrepreneurial opportunities) on dependent variable (national security). The result showed that business opportunities have a significant influence on the rate of criminal activities. The study also revealed that entrepreneurial opportunity creation and discovery as well as providing a model on how these entrepreneurial opportunities could be effectively and efficiently utilized jointly predict better national security, which counted for 69% variance of crime rate reduction. The paper, therefore, recommended that citizens should be encouraged to develop an interest in the skill-based activities in order to change their mindset towards self-employment which can motivate them in identify entrepreneurial opportunities.

Keywords: entrepreneurship, entrepreneurial opportunities, national security, unemployment

Procedia PDF Downloads 330
6676 Event Monitoring Based On Web Services for Heterogeneous Event Sources

Authors: Arne Koschel

Abstract:

This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.

Keywords: event monitoring, ECA, CEP, SOA, web services

Procedia PDF Downloads 744
6675 Comparative Analysis of Feature Extraction and Classification Techniques

Authors: R. L. Ujjwal, Abhishek Jain

Abstract:

In the field of computer vision, most facial variations such as identity, expression, emotions and gender have been extensively studied. Automatic age estimation has been rarely explored. With age progression of a human, the features of the face changes. This paper is providing a new comparable study of different type of algorithm to feature extraction [Hybrid features using HAAR cascade & HOG features] & classification [KNN & SVM] training dataset. By using these algorithms we are trying to find out one of the best classification algorithms. Same thing we have done on the feature selection part, we extract the feature by using HAAR cascade and HOG. This work will be done in context of age group classification model.

Keywords: computer vision, age group, face detection

Procedia PDF Downloads 368
6674 Forecasting the Fluctuation of Currency Exchange Rate Using Random Forest

Authors: Lule Basha, Eralda Gjika

Abstract:

The exchange rate is one of the most important economic variables, especially for a small, open economy such as Albania. Its effect is noticeable in one country's competitiveness, trade and current account, inflation, wages, domestic economic activity, and bank stability. This study investigates the fluctuation of Albania’s exchange rates using monthly average foreign currency, Euro (Eur) to Albanian Lek (ALL) exchange rate with a time span from January 2008 to June 2021, and the macroeconomic factors that have a significant effect on the exchange rate. Initially, the Random Forest Regression algorithm is constructed to understand the impact of economic variables on the behavior of monthly average foreign currencies exchange rates. Then the forecast of macro-economic indicators for 12 months was performed using time series models. The predicted values received are placed in the random forest model in order to obtain the average monthly forecast of the Euro to Albanian Lek (ALL) exchange rate for the period July 2021 to June 2022.

Keywords: exchange rate, random forest, time series, machine learning, prediction

Procedia PDF Downloads 104
6673 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel

Authors: Wajid Ali Khan

Abstract:

Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.

Keywords: residual stresses, end milling, 1045 steel, optimization

Procedia PDF Downloads 102
6672 The Effects of the Interaction between Prenatal Stress and Diet on Maternal Insulin Resistance and Inflammatory Profile

Authors: Karen L. Lindsay, Sonja Entringer, Claudia Buss, Pathik D. Wadhwa

Abstract:

Maternal nutrition and stress are independently recognized as among the most important factors that influence prenatal biology, with implications for fetal development and poor pregnancy outcomes. While there is substantial evidence from non-pregnancy human and animal studies that a complex, bi-directional relationship exists between nutrition and stress, to the author’s best knowledge, their interaction in the context of pregnancy has been significantly understudied. The aim of this study is to assess the interaction between maternal psychological stress and diet quality across pregnancy and its effects on biomarkers of prenatal insulin resistance and inflammation. This is a prospective longitudinal study of N=235 women carrying a healthy, singleton pregnancy, recruited from prenatal clinics of the University of California, Irvine Medical Center. Participants completed a 4-day ambulatory assessment in early, middle and late pregnancy, which included multiple daily electronic diary entries using Ecological Momentary Assessment (EMA) technology on a dedicated study smartphone. The EMA diaries gathered moment-level data on maternal perceived stress, negative mood, positive mood and quality of social interactions. The numerical scores for these variables were averaged across each study time-point and converted to Z-scores. A single composite variable for 'STRESS' was computed as follows: (Negative mood+Perceived stress)–(Positive mood+Social interaction quality). Dietary intakes were assessed by three 24-hour dietary recalls conducted within two weeks of each 4-day assessment. Daily nutrient and food group intakes were averaged across each study time-point. The Alternative Healthy Eating Index adapted for pregnancy (AHEI-P) was computed for early, middle and late pregnancy as a validated summary measure of diet quality. At the end of each 4-day ambulatory assessment, women provided a fasting blood sample, which was assayed for levels of glucose, insulin, Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was computed. Pearson’s correlation was used to explore the relationship between maternal STRESS and AHEI-P within and between each study time-point. Linear regression was employed to test the association of the stress-diet interaction (STRESS*AHEI-P) with the biological markers HOMA-IR, IL-6 and TNF-α at each study time-point, adjusting for key covariates (pre-pregnancy body mass index, maternal education level, race/ethnicity). Maternal STRESS and AHEI-P were significantly inversely correlated in early (r=-0.164, p=0.018) and mid-pregnancy (-0.160, p=0.019), and AHEI-P from earlier gestational time-points correlated with later STRESS (early AHEI-P x mid STRESS: r=-0.168, p=0.017; mid AHEI-P x late STRESS: r=-0.142, p=0.041). In regression models, the interaction term was not associated with HOMA-IR or IL-6 at any gestational time-point. The stress-diet interaction term was significantly associated with TNF-α according to the following patterns: early AHEI-P*early STRESS vs early TNF-α (p=0.005); early AHEI-P*early STRESS vs mid TNF-α (p=0.002); early AHEI-P*mid STRESS vs mid TNF-α (p=0.005); mid AHEI-P*mid STRESS vs mid TNF-α (p=0.070); mid AHEI-P*late STRESS vs late TNF-α (p=0.011). Poor diet quality is significantly related to higher psychosocial stress levels in pregnant women across gestation, which may promote inflammation via TNF-α. Future prenatal studies should consider the combined effects of maternal stress and diet when evaluating either one of these factors on pregnancy or infant outcomes.

Keywords: diet quality, inflammation, insulin resistance, nutrition, pregnancy, stress, tumor necrosis factor-alpha

Procedia PDF Downloads 200
6671 Associations between Autistic and ADHD Traits and the Wellbeing and Mental Health of Secondary School Students with a Focus on Anxiety and Depression

Authors: Japnoor Garcha, Andrew P. Smith, A. James

Abstract:

There has been a significant increase in the prevalence and estimates of neurodevelopmental disorders, especially autism spectrum disorders, in the last decade. The literature has seen increasing research on understanding wellbeing and mental health. To understand the association and interaction of wellbeing and mental health with autism and ADHD, a survey was given to 560 secondary school students. The survey used the wellbeing process questionnaire, the autism spectrum quotient, the ADHD self-report scale, and the strengths and difficulties questionnaire. The analysis conducted using SPSS showed that there was a significant correlation between anxiety, depression, A.Q., and ADHD. Anxiety and depression were also significantly correlated with all wellbeing and SDQ variables. The regression analysis showed that anxiety was significantly associated with positive wellbeing, negative wellbeing, emotional problems, and prosocial behaviour, whereas depression was significantly associated with positive wellbeing, negative wellbeing, physical health, flourishing, conduct problems, emotional problems and peer problems.

Keywords: ADHD traits, anxiety, autistic traits, depression

Procedia PDF Downloads 60
6670 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques

Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu

Abstract:

Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.

Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare

Procedia PDF Downloads 65
6669 Considering Climate Change in Food Security: A Sociological Study Investigating the Modern Agricultural Practices and Food Security in Bangladesh

Authors: Hosen Tilat Mahal, Monir Hossain

Abstract:

Despite being a food-sufficient country after revolutionary changes in agricultural inputs, Bangladesh still has food insecurity and undernutrition. This study examines the association between agricultural practices (as social practices) and food security concentrating on the potential impact of sociodemographic factors and climate change. Using data from the 2012 Bangladesh Integrated Household Survey (BIHS), this study shows how modifiedagricultural practices are strongly associated with climate change and different sociodemographic factors (land ownership, religion, gender, education, and occupation) subsequently affect the status of food security in Bangladesh. We used linear and logistic regression models to analyze the association between modified agricultural practices and food security. The findings indicate that socioeconomic statuses are significant predictors of determining agricultural practices in a society like Bangladesh and control food security at the household level. Moreover, climate change is adversely impactingeven the modified agricultural and food security association version. We conclude that agricultural practices must consider climate change while boosting food security. Therefore, future research should integrate climate change into the agriculture and food-related mitigation and resiliency models.

Keywords: food security, agricultural productivity, climate change, bangladesh

Procedia PDF Downloads 123
6668 Sea Level Rise and Sediment Supply Explain Large-Scale Patterns of Saltmarsh Expansion and Erosion

Authors: Cai J. T. Ladd, Mollie F. Duggan-Edwards, Tjeerd J. Bouma, Jordi F. Pages, Martin W. Skov

Abstract:

Salt marshes are valued for their role in coastal flood protection, carbon storage, and for supporting biodiverse ecosystems. As a biogeomorphic landscape, marshes evolve through the complex interactions between sea level rise, sediment supply and wave/current forcing, as well as and socio-economic factors. Climate change and direct human modification could lead to a global decline marsh extent if left unchecked. Whilst the processes of saltmarsh erosion and expansion are well understood, empirical evidence on the key drivers of long-term lateral marsh dynamics is lacking. In a GIS, saltmarsh areal extent in 25 estuaries across Great Britain was calculated from historical maps and aerial photographs, at intervals of approximately 30 years between 1846 and 2016. Data on the key perceived drivers of lateral marsh change (namely sea level rise rates, suspended sediment concentration, bedload sediment flux rates, and frequency of both river flood and storm events) were collated from national monitoring centres. Continuous datasets did not extend beyond 1970, therefore predictor variables that best explained rate change of marsh extent between 1970 and 2016 was calculated using a Partial Least Squares Regression model. Information about the spread of Spartina anglica (an invasive marsh plant responsible for marsh expansion around the globe) and coastal engineering works that may have impacted on marsh extent, were also recorded from historical documents and their impacts assessed on long-term, large-scale marsh extent change. Results showed that salt marshes in the northern regions of Great Britain expanded an average of 2.0 ha/yr, whilst marshes in the south eroded an average of -5.3 ha/yr. Spartina invasion and coastal engineering works could not explain these trends since a trend of either expansion or erosion preceded these events. Results from the Partial Least Squares Regression model indicated that the rate of relative sea level rise (RSLR) and availability of suspended sediment concentration (SSC) best explained the patterns of marsh change. RSLR increased from 1.6 to 2.8 mm/yr, as SSC decreased from 404.2 to 78.56 mg/l along the north-to-south gradient of Great Britain, resulting in the shift from marsh expansion to erosion. Regional differences in RSLR and SSC are due to isostatic rebound since deglaciation, and tidal amplitudes respectively. Marshes exposed to low RSLR and high SSC likely leads to sediment accumulation at the coast suitable for colonisation by marsh plants and thus lateral expansion. In contrast, high RSLR with are likely not offset deposition under low SSC, thus average water depth at the marsh edge increases, allowing larger wind-waves to trigger marsh erosion. Current global declines in sediment flux to the coast are likely to diminish the resilience of salt marshes to RSLR. Monitoring and managing suspended sediment supply is not common-place, but may be critical to mitigating coastal impacts from climate change.

Keywords: lateral saltmarsh dynamics, sea level rise, sediment supply, wave forcing

Procedia PDF Downloads 134
6667 A Very Efficient Pseudo-Random Number Generator Based On Chaotic Maps and S-Box Tables

Authors: M. Hamdi, R. Rhouma, S. Belghith

Abstract:

Generating random numbers are mainly used to create secret keys or random sequences. It can be carried out by various techniques. In this paper we present a very simple and efficient pseudo-random number generator (PRNG) based on chaotic maps and S-Box tables. This technique adopted two main operations one to generate chaotic values using two logistic maps and the second to transform them into binary words using random S-Box tables. The simulation analysis indicates that our PRNG possessing excellent statistical and cryptographic properties.

Keywords: Random Numbers, Chaotic map, S-box, cryptography, statistical tests

Procedia PDF Downloads 365
6666 The Diffusion of Telehealth: System-Level Conditions for Successful Adoption

Authors: Danika Tynes

Abstract:

Telehealth is a promising advancement in health care, though there are certain conditions under which telehealth has a greater chance of success. This research sought to further the understanding of what conditions compel the success of telehealth adoption at the systems level applying Diffusion of Innovations (DoI) theory (Rogers, 1962). System-level indicators were selected to represent four components of DoI theory (relative advantage, compatibility, complexity, and observability) and regressed on 5 types of telehealth (teleradiology, teledermatology, telepathology, telepsychology, and remote monitoring) using multiple logistic regression. The analyses supported relative advantage and compatibility as the strongest influencers of telehealth adoption, remote monitoring in particular. These findings help to quantitatively clarify the factors influencing the adoption of innovation and advance the ability to make recommendations on the viability of state telehealth adoption. In addition, results indicate when DoI theory is most applicable to the understanding of telehealth diffusion. Ultimately, this research may contribute to more focused allocation of scarce health care resources through consideration of existing state conditions available foster innovation.

Keywords: adoption, diffusion of innovation theory, remote monitoring, system-level indicators

Procedia PDF Downloads 136
6665 Plastic Deformation Behavior of a Pre-Bored Pile Filler Material Due to Lateral Cyclic Loading in Sandy Soil

Authors: A. Y. Purnama, N. Yasufuku

Abstract:

The bridge structure is a building that has to be maintained, especially for the elastomeric bearing. The girder of the bridge needs to be lifted upward to maintain this elastomeric bearing, that needs high cost. Nowadays, integral abutment bridges are becoming popular. The integral abutment bridge is less costly because the elastomeric bearings are eliminated, which reduces the construction cost and maintenance costs. However, when this elastomeric bearing removed, the girder movement due to environmental thermal forces directly support by pile foundation, and it needs to be considered in the design. In case of pile foundation in a stiff soil, in the top area of the pile cannot move freely due to the fixed condition by soil stiffness. Pre-bored pile system can be used to increase the flexibility of pile foundation using a pre-bored hole that filled with elastic materials, but the behavior of soil-pile interaction and soil response due to this system is still rarely explained. In this paper, an experimental study using small-scale laboratory model test conducted in a half size model. Single flexible pile model embedded in sandy soil with the pre-bored ring, which filled with the filler material. The testing box made from an acrylic glass panel as observation area of the pile shaft to monitor the displacement of the pile during the lateral loading. The failure behavior of the soil inside the pre-bored ring and around the pile shaft was investigated to determine the point of pile rotation and the movement of this point due to the pre-bored ring system along the pile shaft. Digital images were used to capture the deformations of the soil and pile foundation during the loading from the acrylic glass on the side of the testing box. The results were presented in the form of lateral load resistance charts against the pile shaft displacement. The failure pattern result also established due to the cyclic lateral loading. The movement of the rotational point was measured due to the pre-bored system filled with appropriate filler material. Based on the findings, design considerations for pre-bored pile system due to cyclic lateral loading can be introduced.

Keywords: failure behavior, pre-bored pile system, cyclic lateral loading, sandy soil

Procedia PDF Downloads 234
6664 Chaotic Dynamics of Cost Overruns in Oil and Gas Megaprojects: A Review

Authors: O. J. Olaniran, P. E. D. Love, D. J. Edwards, O. Olatunji, J. Matthews

Abstract:

Cost overruns are a persistent problem in oil and gas megaprojects. Whilst the extant literature is filled with studies on incidents and causes of cost overruns, underlying theories to explain their emergence in oil and gas megaprojects are few. Yet, a way to contain the syndrome of cost overruns is to understand the bases of ‘how and why’ they occur. Such knowledge will also help to develop pragmatic techniques for better overall management of oil and gas megaprojects. The aim of this paper is to explain the development of cost overruns in hydrocarbon megaprojects through the perspective of chaos theory. The underlying principles of chaos theory and its implications for cost overruns are examined and practical recommendations proposed. In addition, directions for future research in this fertile area provided.

Keywords: chaos theory, oil and gas, cost overruns, megaprojects

Procedia PDF Downloads 559
6663 Task Evoked Pupillary Response for Surgical Task Difficulty Prediction via Multitask Learning

Authors: Beilei Xu, Wencheng Wu, Lei Lin, Rachel Melnyk, Ahmed Ghazi

Abstract:

In operating rooms, excessive cognitive stress can impede the performance of a surgeon, while low engagement can lead to unavoidable mistakes due to complacency. As a consequence, there is a strong desire in the surgical community to be able to monitor and quantify the cognitive stress of a surgeon while performing surgical procedures. Quantitative cognitiveload-based feedback can also provide valuable insights during surgical training to optimize training efficiency and effectiveness. Various physiological measures have been evaluated for quantifying cognitive stress for different mental challenges. In this paper, we present a study using the cognitive stress measured by the task evoked pupillary response extracted from the time series eye-tracking measurements to predict task difficulties in a virtual reality based robotic surgery training environment. In particular, we proposed a differential-task-difficulty scale, utilized a comprehensive feature extraction approach, and implemented a multitask learning framework and compared the regression accuracy between the conventional single-task-based and three multitask approaches across subjects.

Keywords: surgical metric, task evoked pupillary response, multitask learning, TSFresh

Procedia PDF Downloads 146
6662 Using Data-Driven Model on Online Customer Journey

Authors: Ing-Jen Hung, Tzu-Chien Wang

Abstract:

Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.

Keywords: LSTM, customer journey, marketing, channel ads

Procedia PDF Downloads 121
6661 Performance of High Efficiency Video Codec over Wireless Channels

Authors: Mohd Ayyub Khan, Nadeem Akhtar

Abstract:

Due to recent advances in wireless communication technologies and hand-held devices, there is a huge demand for video-based applications such as video surveillance, video conferencing, remote surgery, Digital Video Broadcast (DVB), IPTV, online learning courses, YouTube, WhatsApp, Instagram, Facebook, Interactive Video Games. However, the raw videos posses very high bandwidth which makes the compression a must before its transmission over the wireless channels. The High Efficiency Video Codec (HEVC) (also called H.265) is latest state-of-the-art video coding standard developed by the Joint effort of ITU-T and ISO/IEC teams. HEVC is targeted for high resolution videos such as 4K or 8K resolutions that can fulfil the recent demands for video services. The compression ratio achieved by the HEVC is twice as compared to its predecessor H.264/AVC for same quality level. The compression efficiency is generally increased by removing more correlation between the frames/pixels using complex techniques such as extensive intra and inter prediction techniques. As more correlation is removed, the chances of interdependency among coded bits increases. Thus, bit errors may have large effect on the reconstructed video. Sometimes even single bit error can lead to catastrophic failure of the reconstructed video. In this paper, we study the performance of HEVC bitstream over additive white Gaussian noise (AWGN) channel. Moreover, HEVC over Quadrature Amplitude Modulation (QAM) combined with forward error correction (FEC) schemes are also explored over the noisy channel. The video will be encoded using HEVC, and the coded bitstream is channel coded to provide some redundancies. The channel coded bitstream is then modulated using QAM and transmitted over AWGN channel. At the receiver, the symbols are demodulated and channel decoded to obtain the video bitstream. The bitstream is then used to reconstruct the video using HEVC decoder. It is observed that as the signal to noise ratio of channel is decreased the quality of the reconstructed video decreases drastically. Using proper FEC codes, the quality of the video can be restored up to certain extent. Thus, the performance analysis of HEVC presented in this paper may assist in designing the optimized code rate of FEC such that the quality of the reconstructed video is maximized over wireless channels.

Keywords: AWGN, forward error correction, HEVC, video coding, QAM

Procedia PDF Downloads 149
6660 Solar Panel Design Aspects and Challenges for a Lunar Mission

Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair

Abstract:

TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.

Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude

Procedia PDF Downloads 230
6659 Artificial Intelligence in Patient Involvement: A Comprehensive Review

Authors: Igor A. Bessmertny, Bidru C. Enkomaryam

Abstract:

Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.

Keywords: artificial intelligence, patient engagement, machine learning, patient involvement

Procedia PDF Downloads 76
6658 An Investigation on the Relationship between Taxi Company Safety Climate and Safety Performance of Taxi Drivers in Iloilo City

Authors: Jasper C. Dioco

Abstract:

The study was done to investigate the relationship of taxi company safety climate and drivers’ safety motivation and knowledge on taxi drivers’ safety performance. Data were collected from three Taxi Companies with taxi drivers as participants (N = 84). The Hiligaynon translated version of Transportation Companies’ Climate Scale (TCCS), Safety Motivation and Knowledge Scale, Occupational Safety Motivation Questionnaire and Global Safety Climate Scale were used to study the relationships among four parameters: (a) Taxi company safety climate; (b) Safety motivation; (c) Safety knowledge; and (d) Safety performance. Correlational analyses found that there is no relation between safety climate and safety performance. A Hierarchical regression demonstrated that safety motivation predicts the most variance in safety performance. The results will greatly impact how taxi company can increase safe performance through the confirmation of the proximity of variables to organizational outcome. A strong positive safety climate, in which employees perceive safety to be a priority and that managers are committed to their safety, is likely to increase motivation to be safety. Hence, to improve outcomes, providing knowledge based training and health promotion programs within the organization must be implemented. Policy change might include overtime rules and fatigue driving awareness programs.

Keywords: safety climate, safety knowledge, safety motivation, safety performance, taxi drivers

Procedia PDF Downloads 192
6657 Perceived Social Support, Resilience and Relapse Risk in Recovered Addicts

Authors: Islah Ud Din, Amna Bibi

Abstract:

The current study was carried out to examine the perceived social support, resilience and relapse risk in recovered addicts. A purposive sampling technique was used to collect data from recovered addicts. A multidimensional scale of perceived social support by was used to measure the perceived social support. The brief Resilience Scale (BRS) was used to assess resilience. The Stimulant Relapse Risk Scale (SRRS) was used to examine the relapse risk. Resilience and Perceived social support have substantial positive correlations, whereas relapse risk and perceived social support have significant negative associations. Relapse risk and resilience have a strong inverse connection. Regression analysis was used to check the mediating effect of resilience between perceived social support and relapse risk. The findings revealed that perceived social support negatively predicted relapse risk. Results showed that Resilience plays a role as partial mediation between perceived social support and relapse risk. This Research will allow us to explore and understand the relapse risk factor and the role of perceived social support and resilience in recovered addicts. The study's findings have immediate consequences in the prevention of relapse. The study will play a significant part in drug rehabilitation centers, clinical settings and further research.

Keywords: perceived social support, resilience, relapse risk, recovered addicts, drugs addiction

Procedia PDF Downloads 35
6656 Analysis of the Annual Proficiency Testing Procedure for Intermediate Reference Laboratories Conducted by the National Reference Laboratory from 2013 to 2017

Authors: Reena K., Mamatha H. G., Somshekarayya, P. Kumar

Abstract:

Objectives: The annual proficiency testing of intermediate reference laboratories is conducted by the National Reference Laboratory (NRL) to assess the efficiency of the laboratories to correctly identify Mycobacterium tuberculosis and to determine its drug susceptibility pattern. The proficiency testing results from 2013 to 2017 were analyzed to determine laboratories that were consistent in reporting quality results and those that had difficulty in doing so. Methods: A panel of twenty cultures were sent out to each of these laboratories. The laboratories were expected to grow the cultures in their own laboratories, set up drug susceptibly testing by all the methods they were certified for and report the results within the stipulated time period. The turnaround time for reporting results, specificity, sensitivity positive and negative predictive values and efficiency of the laboratory in identifying the cultures were analyzed. Results: Most of the laboratories had reported their results within the stipulated time period. However, there was enormous delay in reporting results from few of the laboratories. This was mainly due to improper functioning of the biosafety level III laboratory. Only 40% of the laboratories had 100% efficiency in solid culture using Lowenstein Jensen medium. This was expected as a solid culture, and drug susceptibility testing is not used for diagnosing drug resistance. Rapid molecular methods such as Line probe assay and Genexpert are used to determine drug resistance. Automated liquid culture system such as the Mycobacterial growth indicator tube is used to determine prognosis of the patient while on treatment. It was observed that 90% of the laboratories had achieved 100% in the liquid culture method. Almost all laboratories had achieved 100% efficiency in the line probe assay method which is the method of choice for determining drug-resistant tuberculosis. Conclusion: Since the liquid culture and line probe assay technologies are routinely used for the detection of drug-resistant tuberculosis the laboratories exhibited higher level of efficiency as compared to solid culture and drug susceptibility testing which are rarely used. The infrastructure of the laboratory should be maintained properly so that samples can be processed safely and results could be declared on time.

Keywords: annual proficiency testing, drug susceptibility testing, intermediate reference laboratory, national reference laboratory

Procedia PDF Downloads 182
6655 The Regulation of Reputational Information in the Sharing Economy

Authors: Emre Bayamlıoğlu

Abstract:

This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.

Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy

Procedia PDF Downloads 465
6654 The Life-Cycle Theory of Dividends: Evidence from Indonesia

Authors: Vashti Carissa

Abstract:

The main objective of this study is to examine whether the life-cycle theory of dividends could explain the determinant of an optimal dividend policy in Indonesia. The sample that was used consists of 1,420 non-financial and non-trade, services, investment firms listed in Indonesian Stock Exchange during the period of 2005-2014. According to this finding using logistic regression, firm life-cycle measured by retained earnings as a proportion of total equity (RETE) significantly has a positive effect on the propensity of a firm pays dividend. The higher company’s earned surplus portion in its capital structure could reflect firm maturity level which will increase the likelihood of dividend payment in mature firms. This result provides an additional empirical evidence about the existence of life-cycle theory of dividends for dividend payout phenomenon in Indonesia. It can be known that dividends tend to be paid by mature firms while retention is more dominating in growth firms. From the testing results, it can also be known that majority of sample firms are being in the growth phase which proves the fact about infrequent dividend distribution in Indonesia during the ten years observation period.

Keywords: dividend, dividend policy, life-cycle theory of dividends, mix of earned and contributed capital

Procedia PDF Downloads 290