Search results for: energy consumption
6657 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine
Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi
Abstract:
Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.Keywords: diesel fuel, CFD, evaporation, multiphase
Procedia PDF Downloads 3496656 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads
Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan
Abstract:
The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics
Procedia PDF Downloads 726655 Portable Water Treatment for Flood Resilience
Authors: Alireza Abbassi Monjezi, Mohammad Hasan Shaheed
Abstract:
Flood, caused by excessive rainfall, monsoon, cyclone and tsunami is a common disaster in many countries of the world especially sea connected low-lying countries. A stand-alone self-powered water filtration module for decontamination of floodwater has been designed and modeled. A combination forward osmosis – low pressure reverse osmosis (FO-LPRO) system powered by solar photovoltaic-thermal (PVT) energy is investigated which could overcome the main barriers to water supply for remote areas and ensure off-grid filtration. The proposed system is designed to be small scale and portable to provide on-site potable water to communities that are no longer themselves mobile nor can be reached quickly by the aid agencies. FO is an osmotically driven process that uses osmotic pressure gradients to drive water across a controlled pore membrane from a feed solution (low osmotic pressure) to a draw solution (high osmotic pressure). This drops the demand for high hydraulic pressures and therefore the energy demand. There is also a tendency for lower fouling, easier fouling layer removal and higher water recovery. In addition, the efficiency of the PVT unit will be maximized through freshwater cooling which is integrated into the system. A filtration module with the capacity of 5 m3/day is modeled to treat floodwater and provide drinking water. The module can be used as a tool for disaster relief, particularly in the aftermath of flood and tsunami events.Keywords: flood resilience, membrane desalination, portable water treatment, solar energy
Procedia PDF Downloads 2926654 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 1216653 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst
Authors: Meichen Lee, Michael K. H. Leung
Abstract:
In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.Keywords: microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis
Procedia PDF Downloads 4626652 Sustainable Urbanism: Model for Social Equity through Sustainable Development
Authors: Ruchira Das
Abstract:
The major Metropolises of India are resultant of Colonial manifestation of Production, Consumption and Sustenance. These cities grew, survived, and sustained on the basic whims of Colonial Power and Administrative Agendas. They were symbols of power, authority and administration. Within them some Colonial Towns remained as small towns within the close vicinity of the major metropolises and functioned as self–sufficient units until peripheral development due to tremendous pressure occurred in the metropolises. After independence huge expansion in Judiciary and Administration system resulted City Oriented Employment. A large number of people started residing within the city or within commutable distance of the city and it accelerated expansion of the cities. Since then Budgetary and Planning expenditure brought a new pace in Economic Activities. Investment in Industry and Agriculture sector generated opportunity of employment which further led towards urbanization. After two decades of Budgetary and Planning economic activities in India, a new era started in metropolitan expansion. Four major metropolises started further expansion rapidly towards its suburbs. A concept of large Metropolitan Area developed. Cities became nucleus of suburbs and rural areas. In most of the cases such expansion was not favorable to the relationship between City and its hinterland due to absence of visualization of Compact Sustainable Development. The search for solutions needs to weigh the choices between Rural and Urban based development initiatives. Policymakers need to focus on areas which will give the greatest impact. The impact of development initiatives will spread the significant benefit to all. There is an assumption that development integrates Economic, Social and Environmental considerations with equal weighing. The traditional narrower and almost exclusive focus on economic criteria as the determinant of the level of development is thus re–described and expanded. The Social and Environmental aspects are equally important as Economic aspect to achieve Sustainable Development. The arrangement of opportunities for Public, Semi – Public facilities for its citizen is very much relevant to development. It is responsibility of the administration to provide opportunities for the basic requirement of its inhabitants. Development should be in terms of both Industrial and Agricultural to maintain a balance between city and its hinterland. Thus, policy is to formulate shifting the emphasis away from Economic growth towards Sustainable Human Development. The goal of Policymaker should aim at creating environments in which people’s capabilities can be enhanced by the effective dynamic and adaptable policy. The poverty could not be eradicated simply by increasing income. The improvement of the condition of the people would have to lead to an expansion of basic human capabilities. In this scenario the suburbs/rural areas are considered as environmental burden to the metropolises. A new living has to be encouraged in the suburban or rural. We tend to segregate agriculture from the city and city life, this leads to over consumption, but this urbanism model attempts both these to co–exists and hence create an interesting overlapping of production and consumption network towards sustainable Rurbanism.Keywords: socio–economic progress, sustainability, social equity, urbanism
Procedia PDF Downloads 3126651 Evaluation of River Meander Geometry Using Uniform Excess Energy Theory and Effects of Climate Change on River Meandering
Authors: Youssef I. Hafez
Abstract:
Since ancient history rivers have been the fostering and favorite place for people and civilizations to live and exist along river banks. However, due to floods and droughts, especially sever conditions due to global warming and climate change, river channels are completely evolving and moving in the lateral direction changing their plan form either through straightening of curved reaches (meander cut-off) or increasing meandering curvature. The lateral shift or shrink of a river channel affects severely the river banks and the flood plain with tremendous impact on the surrounding environment. Therefore, understanding the formation and the continual processes of river channel meandering is of paramount importance. So far, in spite of the huge number of publications about river-meandering, there has not been a satisfactory theory or approach that provides a clear explanation of the formation of river meanders and the mechanics of their associated geometries. In particular two parameters are often needed to describe meander geometry. The first one is a scale parameter such as the meander arc length. The second is a shape parameter such as the maximum angle a meander path makes with the channel mean down path direction. These two parameters, if known, can determine the meander path and geometry as for example when they are incorporated in the well known sine-generated curve. In this study, a uniform excess energy theory is used to illustrate the origin and mechanics of formation of river meandering. This theory advocates that the longitudinal imbalance between the valley and channel slopes (with the former is greater than the second) leads to formation of curved meander channel in order to reduce the excess energy through its expenditure as transverse energy loss. Two relations are developed based on this theory; one for the determination of river channel radius of curvature at the bend apex (shape parameter) and the other for the determination of river channel sinuosity. The sinuosity equation tested very well when applied to existing available field data. In addition, existing model data were used to develop a relation between the meander arc length and the Darcy-Weisback friction factor. Then, the meander wave length was determined from the equations of the arc length and the sinuosity. The developed equation compared well with available field data. Effects of the transverse bed slope and grain size on river channel sinuosity are addressed. In addition, the concept of maximum channel sinuosity is introduced in order to explain the changes of river channel plan form due to changes in flow discharges and sediment loads induced by global warming and climate changes.Keywords: river channel meandering, sinuosity, radius of curvature, meander arc length, uniform excess energy theory, transverse energy loss, transverse bed slope, flow discharges, sediment loads, grain size, climate change, global warming
Procedia PDF Downloads 2256650 Biomimetic Architecture from the Inspiration by Nature to the Innovation of the Saharan Architecture
Authors: Yassine Mohammed Benyoucef, Razin Andery Dionisovich
Abstract:
Biomimicry is an old approach, but in the scientific conceptualization is new, as an approach of innovation based on the emulation of Nature, in recent years, this approach brings many potential theories and innovations in the architecture field. Indeed, these innovations have changed our view towards other Natural organisms also to the design processes in architecture, now the use of the biomimicry approach allows the application of a great sustainable development. The Sahara area is heading towards a sustainable policy with the desire to develop this rich context in terms of architecture, because of the rapid evolution of the architectural and urban concepts and the technology acceleration in one side, and under the pressure of the architectural crisis and the accelerated urbanization in the Saharan cities on the other side, the imperatives of sustainable development, ecology, climate adaptation, energy needs, are strongly imposed. Besides that, the new architectural and urban projects in the Saharan cities are not reliable in terms of energy efficiency and design and relationship with the environment. This article discusses the using of biomimetic strategy in the sustainable development of Saharan architecture. The aim of the article is to present a synthesis of biomimicry approach and propose the biomimicry as a solution for the development of Saharan architecture which can use this approach as a sustainable and innovation strategy. The biomimicry is the solution for effective strategies of development and can have a great potential point to meet the current challenges of designing efficient for forms or structures, energy efficiency, and climate issues. Moreover, the Sahara can be a favorable soil for great changes, the use of this approach is the key for the most optimal strategies and sustainable development of the Saharan architecture.Keywords: biomimicry, Sahara, architecture, nature, innovation, technology
Procedia PDF Downloads 1976649 A Controlled-Release Nanofertilizer Improves Tomato Growth and Minimizes Nitrogen Consumption
Authors: Mohamed I. D. Helal, Mohamed M. El-Mogy, Hassan A. Khater, Muhammad A. Fathy, Fatma E. Ibrahim, Yuncong C. Li, Zhaohui Tong, Karima F. Abdelgawad
Abstract:
Minimizing the consumption of agrochemicals, particularly nitrogen, is the ultimate goal for achieving sustainable agricultural production with low cost and high economic and environmental returns. The use of biopolymers instead of petroleum-based synthetic polymers for CRFs can significantly improve the sustainability of crop production since biopolymers are biodegradable and not harmful to soil quality. Lignin is one of the most abundant biopolymers that naturally exist. In this study, controlled-release fertilizers were developed using a biobased nanocomposite of lignin and bentonite clay mineral as a coating material for urea to increase nitrogen use efficiency. Five types of controlled-release urea (CRU) were prepared using two ratios of modified bentonite as well as techniques. The efficiency of the five controlled-release nano-urea (CRU) fertilizers in improving the growth of tomato plants was studied under field conditions. The CRU was applied to the tomato plants at three N levels representing 100, 50, and 25% of the recommended dose of conventional urea. The results showed that all CRU treatments at the three N levels significantly enhanced plant growth parameters, including plant height, number of leaves, fresh weight, and dry weight, compared to the control. Additionally, most CRU fertilizers increased total yield and fruit characteristics (weight, length, and diameter) compared to the control. Additionally, marketable yield was improved by CRU fertilizers. Fruit firmness and acidity of CRU treatments at 25 and 50% N levels were much higher than both the 100% CRU treatment and the control. The vitamin C values of all CRU treatments were lower than the control. Nitrogen uptake efficiencies (NUpE) of CRU treatments were 47–88%, which is significantly higher than that of the control (33%). In conclusion, all CRU treatments at an N level of 25% of the recommended dose showed better plant growth, yield, and fruit quality of tomatoes than the conventional fertilizer.Keywords: nitrogen use efficiency, quality, urea, nano particles, ecofriendly
Procedia PDF Downloads 806648 The Big Bang Was Not the Beginning, but a Repeating Pattern of Expansion and Contraction of the Spacetime
Authors: Amrit Ladhani
Abstract:
The cyclic universe theory is a model of cosmic evolution according to which the universe undergoes endless cycles of expansion and cooling, each beginning with a “big bang” and ending in a “big crunch”. In this paper, we propose a unique property of Space-time. This particular and marvelous nature of space shows us that space can stretch, expand, and shrink. This property of space is caused by the size of the universe change over time: growing or shrinking. The observed accelerated expansion, which relates to the stretching of Shrunk space for the new theory, is derived. This theory is based on three underlying notions: First, the Big Bang is not the beginning of Space-time, but rather, at the very beginning fraction of a second, there was an infinite force of infinite Shrunk space in the cosmic singularity that force gave rise to the big bang and caused the rapidly growing of space, and all other forms of energy are transformed into new matter and radiation and a new period of expansion and cooling begins. Second, there was a previous phase leading up to it, with multiple cycles of contraction and expansion that repeat indefinitely. Third, the two principal long-range forces are the gravitational force and the repulsive force generated by shrink space. They are the two most fundamental quantities in the universe that govern cosmic evolution. They may provide the clockwork mechanism that operates our eternal cyclic universe. The universe will not continue to expand forever; no need, however, for dark energy and dark matter. This new model of Space-time and its unique properties enables us to describe a sequence of events from the Big Bang to the Big Crunch.Keywords: dark matter, dark energy, cosmology, big bang and big crunch
Procedia PDF Downloads 876647 Social Perception of the Benefits of Using a Solar Dryer to Conserve Fruits and Vegetables in Rural Communities in Manica - Mozambique
Authors: Constâncio Augusto Machanguana, Luís Miguel Estevão Cristóvão
Abstract:
In Mozambique, over 80% of the rural population relies on agriculture, livestock, and silviculture for their livelihoods. Unfortunately, these communities face persistent food shortages, which are exacerbated by natural disasters and post-harvest losses due to inadequate storage facilities. Addressing post-harvest loss is critical not only for ensuring food security but also for preventing financial hardships faced by farmers. The study delves into the perceptions of beneficiary communities regarding the construction of three food dryer models made from metal, wood, and clay brick. These solar dryers are part of the project titled ‘Solar Dryer Integrated with Natural Rocks as Energy Storage for Drying Fruits and Vegetables in Mozambique.’ The overarching goal is to enhance food availability beyond the typical growing season, particularly for fruits and vegetables, while simultaneously combating hunger. Given the context of climate change impacts on agriculture, this project becomes even more relevant. Structured interviews conducted with 45 members of beneficiary associations in Manica Province—primarily female heads of households—revealed that rural communities are aware of various food drying alternatives. However, reliance on traditional methods often comes at a cost: compromised product quality and reduced shelf life. To address these challenges, the project implemented energy storage solutions like rock-based thermal energy storage for food drying. This result underscores the urgent need to foster innovation and extend these sustainable practices —such as solar dryers integrated with thermal energy-storage systems made of locally abundant and affordable materials— to more local communities, especially those with significant agricultural potential within the country. By taking these actions, we can improve food security and alleviate hunger.Keywords: solar dryer, food security, rural community, small technology
Procedia PDF Downloads 396646 Exercise in Extreme Conditions: Leg Cooling and Fat/Carbohydrate Utilization
Authors: Anastasios Rodis
Abstract:
Background: Case studies of walkers, climbers, and campers exposed to cold and wet conditions without limb water/windproof protection revealed experiences of muscle weakness and fatigue. It is reasonable to assume that a part of the fatigue could occur due to an alteration in substrate utilization, since reduction of performance in extreme cold conditions, may partially be explained by higher anaerobic glycolysis, reflecting higher carbohydrate oxidation and an increase accumulation rate of blood lactate. The aim of this study was to assess the effects of pre-exercise lower limb cooling on substrate utilization rate during sub-maximal exercise. Method: Six male university students (mean (SD): age, 21.3 (1.0) yr; maximal oxygen uptake (V0₂ max), 49.6 (3.6) ml.min⁻¹; and percentage of body fat, 13.6 (2.5) % were examined in random order after either 30min cold water (12°C) immersion utilized as the cooling strategy up to the gluteal fold, or under control conditions (no precooling), with tests separated by minimum of 7 days. Exercise consisted of 60min cycling at 50% V0₂ max, in a thermoneutral environment of 20°C. Subjects were also required to record a diet diary over the 24hrs prior to the each trial. Means (SD) for the three macronutrients during the 1 day prior to each trial (expressed as a percentage of total energy) 52 (3) % carbohydrate, 31 (4) % fat, and 17 (± 2) % protein. Results: The following responses to lower limb cooling relative to control trial during exercise were: 1) Carbohydrate (CHO) oxidation, and blood lactate (Bₗₐc) concentration were significantly higher (P < 0.05); 2) rectal temperature (Tᵣₑc) was significantly higher (P < 0.05), but skin temperature was significantly lower (P < 0.05); no significant differences were found in blood glucose (Bg), heart rate (HR) and oxygen consumption (V0₂). Discussion: These data suggested that lower limb cooling prior to submaximal exercise will shift metabolic processes from Fat oxidation to CHO oxidation. This shift from Fat to CHO oxidation will probably have important implications in the surviving scenario, since people facing accidental localized cooling of their limbs either through wading/falling in cold water or snow even if they do not perform high intensity activity, they have to rely on CHO availability.Keywords: exercise in wet conditions, leg cooling, outdoors exercise, substrate utilization
Procedia PDF Downloads 4466645 Thermo-Aeraulic Studies of a Multizone Building Influence of the Compactness Index
Authors: S. M. A. Bekkouche, T. Benouaz, M. K. Cherier, M. Hamdani, M. R. Yaiche, N. Benamrane
Abstract:
Most codes of building energy simulation neglect the humidity or well represent it with a very simplified method. It is for this reason that we have developed a new approach to the description and modeling of multizone buildings in Saharan climate. The thermal nodal method was used to apprehend thermoaeraulic behavior of air subjected to varied solicitations. In this contribution, analyzing the building geometry introduced the concept of index compactness as "quotient of external walls area and volume of the building". Physical phenomena that we have described in this paper, allow to build the model of the coupled thermoaeraulic behavior. The comparison shows that the found results are to some extent satisfactory. The result proves that temperature and specific humidity depending on compactness and geometric shape. Proper use of compactness index and building geometry parameters will noticeably minimize building energy.Keywords: multizone model, nodal method, compactness index, specific humidity, temperature
Procedia PDF Downloads 4146644 On-Farm Mechanized Conservation Agriculture: Preliminary Agro-Economic Performance Difference between Disc Harrowing, Ripping and No-Till
Authors: Godfrey Omulo, Regina Birner, Karlheinz Koller, Thomas Daum
Abstract:
Conservation agriculture (CA) as a climate-resilient and sustainable practice have been carried out for over three decades in Zambia. However, its continued promotion and adoption has been predominantly on a small-scale basis. Despite the plethora of scholarship pointing to the positive benefits of CA in regard to enhanced yield, profitability, carbon sequestration and minimal environmental degradation, these have not stimulated commensurate agricultural extensification desired for Zambia. The objective of this study was to investigate the potential differences between mechanized conventional and conservation tillage practices on operation time, fuel consumption, labor costs, soil moisture retention, soil temperature and crop yield. An on-farm mechanized conservation agriculture (MCA) experiment arranged in a randomized complete block design with four replications was used. The research was conducted on a 15 ha of sandy loam rainfed land: soybeans on 7ha with plot dimensions of 24 m by 210 m and maize on 8ha with plot dimensions of 24 m by 250 m. The three tillage treatments were: residue burning followed by disc harrowing, ripping tillage and no-till. The crops were rotated in two subsequent seasons. All operations were done using a 60hp 2-wheel tractor, a disc harrow, a two-tine ripper and a two-row planter. Soil measurements and the agro-economic factors were recorded for two farming seasons. The season results showed that the yield of maize and soybeans under no-till and ripping tillage practices were not significantly different from the conventional burning and discing. But, there was a significant difference in soil moisture content between no-till (25.31SFU±2.77) and disced (11.91SFU±0.59) plots at depths from 10-60 cm. Soil temperature in no-till plots (24.59°C±0.91) was significantly lower compared to the disced plots (26.20°C±1.75) at the depths 15 cm and 45 cm. For maize, there was a significant difference in operation time between disc-harrowed (3.68hr/ha±1.27) and no-till (1.85hr/ha±0.04) plots, and a significant difference in cost of labor between disc-harrowed (45.45$/ha±19.56) and no-till (21.76$/ha) plots. There was no significant difference in fuel consumption between ripping and disc-harrowing and direct seeding. For soybeans, there was a significant difference in operation time between no-tillage (1.96hr/ha±0.31) and ripping (3.34hr/ha±0.53) and disc harrowing (3.30hr/ha±0.16). Further, fuel consumption and labor on no-till plots were significantly different from both the ripped and disc-harrowed plots. The high seed emergence percentage on maize disc-harrowed plot (93.75%±5.87) was not significantly different from ripping and no-till plots. Again, the high seed emergence percentage for the soybean ripped plot (93.75%±13.03) had no significant difference with discing and ripping. The results show that it is economically sound and timesaving to practice MCA and get viable yields compared to conventional farming. This research fills the gap on the potential of MCA in the context of Zambia and its profitability in incentivizing policymakers to invest in appropriate and sustainable machinery and implements for extensive agricultural production.Keywords: climate-smart agriculture, labor cost, mechanized conservation agriculture, soil moisture, Zambia
Procedia PDF Downloads 1556643 Aerodynamic Design Optimization Technique for a Tube Capsule That Uses an Axial Flow Air Compressor and an Aerostatic Bearing
Authors: Ahmed E. Hodaib, Muhammed A. Hashem
Abstract:
High-speed transportation has become a growing concern. To increase high-speed efficiencies and minimize power consumption of a vehicle, we need to eliminate the friction with the ground and minimize the aerodynamic drag acting on the vehicle. Due to the complexity and high power requirements of electromagnetic levitation, we make use of the air in front of the capsule, that produces the majority of the drag, to compress it in two phases and inject a proportion of it through small nozzles to make a high-pressure air cushion to levitate the capsule. The tube is partially-evacuated so that the air pressure is optimized for maximum compressor effectiveness, optimum tube size, and minimum vacuum pump power consumption. The total relative mass flow rate of the tube air is divided into two fractions. One is by-passed to flow over the capsule body, ensuring that no chocked flow takes place. The other fraction is sucked by the compressor where it is diffused to decrease the Mach number (around 0.8) to be suitable for the compressor inlet. The air is then compressed and intercooled, then split. One fraction is expanded through a tail nozzle to contribute to generating thrust. The other is compressed again. Bleed from the two compressors is used to maintain a constant air pressure in an air tank. The air tank is used to supply air for levitation. Dividing the total mass flow rate increases the achievable speed (Kantrowitz limit), and compressing it decreases the blockage of the capsule. As a result, the aerodynamic drag on the capsule decreases. As the tube pressure decreases, the drag decreases and the capsule power requirements decrease, however, the vacuum pump consumes more power. That’s why Design optimization techniques are to be used to get the optimum values for all the design variables given specific design inputs. Aerodynamic shape optimization, Capsule and tube sizing, compressor design, diffuser and nozzle expander design and the effect of the air bearing on the aerodynamics of the capsule are to be considered. The variations of the variables are to be studied for the change of the capsule velocity and air pressure.Keywords: tube-capsule, hyperloop, aerodynamic design optimization, air compressor, air bearing
Procedia PDF Downloads 3306642 Power Recovery in Egyptian Natural Gas Pressure Reduction Stations Using Turboexpander Systems
Authors: Kamel A. Elshorbagy, Mohamed A. Hussein, Rola S. Afify
Abstract:
Natural gas pressure reduction is typically achieved using pressure reducing valves, where isenthalpic expansion takes place with considerable amount of wasted energy in an irreversible throttling process of the gas. Replacing gas-throttling process by an expansion process in a turbo expander (TE) converts the pressure of natural gas into mechanical energy transmitted to a loading device (i.e. an electric generator). This paper investigates the performance of a turboexpander system for power recovery at natural gas pressure reduction stations. There is a considerable temperature drop associated with the turboexpander process. Essential preheating is required, using gas fired boilers, to avoid undesirable effects of a low outlet temperature. Various system configurations were simulated by the general flow sheet simulator HYSYS and factors affecting the overall performance of the systems were investigated. Power outputs and fuel requirements were found using typical gas flow variation data. The simulation was performed for two case studies in which real input data are used. These case studies involve a domestic (commercial) and an industrial natural gas pressure reduction stations in Egypt. Economic studies of using the turboexpander system in both of the two natural gas pressure reduction stations are conducted using precise data obtained through communication with several companies working in this field. The results of economic analysis, for the two case studies, prove that using turboexpander systems in Egyptian natural gas reduction stations can be a successful project for energy conservation.Keywords: natural gas, power recovery, reduction stations, turboexpander systems
Procedia PDF Downloads 3306641 Analysis for Shear Spinning of Tubes with Hard-To-Work Materials
Authors: Sukhwinder Singh Jolly
Abstract:
Metal spinning is one such process in which the stresses are localized to a small area and the material is made to flow or move over the mandrel with the help of spinning tool. Spinning of tubular products can be performed by two techniques, forward spinning and backward spinning. Many researchers have studied the process both experimentally and analytically. An effort has been made to apply the process to the spinning of thin wall, highly precision, small bore long tube in hard-to-work materials such as titanium.Keywords: metal spinning, hard-to-work materials, roller diameter, power consumption
Procedia PDF Downloads 3906640 Thermodynamics of the Local Hadley Circulation Over Central Africa
Authors: Landry Tchambou Tchouongsi, Appolinaire Derbetini Vondou
Abstract:
This study describes the local Hadley circulation (HC) during the December-February (DJF) and June-August (JJA) seasons, respectively, in Central Africa (CA) from the divergent component of the mean meridional wind and also from a new method called the variation of the ψ vector. Historical data from the ERA5 reanalysis for the period 1983 to 2013 were used. The results show that the maximum of the upward branch of the local Hadley circulation in the DJF and JJA seasons is located under the Congo Basin (CB). However, seasonal and horizontal variations in the mean temperature gradient and thermodynamic properties are largely associated with the distribution of convection and large-scale upward motion. Thus, temperatures beneath the CB show a slight variation between the DJF and JJA seasons. Moreover, energy transport of the moist static energy (MSE) adequately captures the mean flow component of the HC over the tropics. By the way, the divergence under the CB is enhanced by the presence of the low pressure of western Cameroon and the contribution of the warm and dry air currents coming from the Sahara.Keywords: Circulation, reanalysis, thermodynamic, local Hadley.
Procedia PDF Downloads 936639 Thermal Decomposition Behaviors of Hexafluoroethane (C2F6) Using Zeolite/Calcium Oxide Mixtures
Authors: Kazunori Takai, Weng Kaiwei, Sadao Araki, Hideki Yamamoto
Abstract:
HFC and PFC gases have been commonly and widely used as refrigerant of air conditioner and as etching agent of semiconductor manufacturing process, because of their higher heat of vaporization and chemical stability. On the other hand, HFCs and PFCs gases have the high global warming effect on the earth. Therefore, we have to be decomposed these gases emitted from chemical apparatus like as refrigerator. Until now, disposal of these gases were carried out by using combustion method like as Rotary kiln treatment mainly. However, this treatment needs extremely high temperature over 1000 °C. In the recent year, in order to reduce the energy consumption, a hydrolytic decomposition method using catalyst and plasma decomposition treatment have been attracted much attention as a new disposal treatment. However, the decomposition of fluorine-containing gases under the wet condition is not able to avoid the generation of hydrofluoric acid. Hydrofluoric acid is corrosive gas and it deteriorates catalysts in the decomposition process. Moreover, an additional process for the neutralization of hydrofluoric acid is also indispensable. In this study, the decomposition of C2F6 using zeolite and zeolite/CaO mixture as reactant was evaluated in the dry condition at 923 K. The effect of the chemical structure of zeolite on the decomposition reaction was confirmed by using H-Y, H-Beta, H-MOR and H-ZSM-5. The formation of CaF2 in zeolite/CaO mixtures after the decomposition reaction was confirmed by XRD measurements. The decomposition of C2F6 using zeolite as reactant showed the closely similar behaviors regardless the type of zeolite (MOR, Y, ZSM-5, Beta type). There was no difference of XRD patterns of each zeolite before and after reaction. On the other hand, the difference in the C2F6 decomposition for each zeolite/CaO mixtures was observed. These results suggested that the rate-determining process for the C2F6 decomposition on zeolite alone is the removal of fluorine from reactive site. In other words, the C2F6 decomposition for the zeolite/CaO improved compared with that for the zeolite alone by the removal of the fluorite from reactive site. HMOR/CaO showed 100% of the decomposition for 3.5 h and significantly improved from zeolite alone. On the other hand, Y type zeolite showed no improvement, that is, the almost same value of Y type zeolite alone. The descending order of C2F6 decomposition was MOR, ZSM-5, beta and Y type zeolite. This order is similar to the acid strength characterized by NH3-TPD. Hence, it is considered that the C-F bond cleavage is closely related to the acid strength.Keywords: hexafluoroethane, zeolite, calcium oxide, decomposition
Procedia PDF Downloads 4856638 Solar-Powered Smart Irrigation System as an Adaptation Strategy under Climate Change: A Case Study to Develop Medicinal Security Based on Ancestral Knowledge
Authors: Luisa Cabezas, Karol Leal, Harold Mendoza, Fabio Trochez, Angel Lozada
Abstract:
According to the 2030 Agenda for Sustainable Development Goals (SDG) in which equal importance is given to economic, social, and environmental dimensions where the equality and dignity of each human person is placed at the center of discussion, changing the development concept for one with more responsibility with the environment. It can be found that the energy and food systems are deeply entangled, and they are transversal to the 17 proposed SDG. In this order of ideas, a research project is carried out at Unidad Central del Valle del Cauca (UCEVA) with these two systems in mind, on one hand the energy transition and, on the other hand the transformation of agri-food systems. This project it could be achieved by automation and control irrigation system of medicinal, aromatic, and condimentary plants (MACP) area within the UCEVA Agroecological Farm and located in rural area of Tulua municipality (Valle del Cauca Department, Colombia). This system have allowed to stablish a remote monitoring of MACP area, including MACP moisture measurement, and execute the required system actions. In addition, the electrical system of irrigation control system is powered by a scalable photovoltaic solar energy system based on its specifications. Thus, the developed system automates and control de irrigation system, which is energetically self-sustainable and allows to satisfy the MACP area requirements. Is important to highlight that at MACP area, several medicinal, aromatic, and condimentary plants species are preserved to become primary sources for the pharmaceutical industry and, in many occasions, the only medicines for many communities. Therefore, preserve medicinal plants area would generates medicinal security and preserve cultural heritage as these plants are part of ancestral knowledge that penetrate academic and research communities at UCEVA campus to other society sectors.Keywords: ancestral knowledge, climate change, medicinal plants, solar energy
Procedia PDF Downloads 2426637 Design, Spectroscopic, Structural Characterization, and Biological Studies for New Complexes via Charge Transfer Interaction of Ciprofloxacin Drug With π Acceptors
Authors: Khaled Alshammari
Abstract:
Ciprofloxacin (CIP) is a common antibiotic drug used as a strudy electron donor that interacts with dynamic π -acceptors such as 2,3-dinitrosalsylic acid (HDNS) and Tetracyanoethylene (TCNE) for synthesizing a new model of charge transfer (CT) complexes. The synthesized complexes were identified using diverse analytical methods such as UV–vis spectra, photometric titration measurements, FT-IR, HNMR Spectroscopy, and thermogravimetric analysis techniques (TGA/DTA). The stoichiometries for all the formed complexes were found to be a 1:1 M ratio between the reactants. The characteristic spectroscopic properties such as transition dipole moment (µ), oscillator strength (f), formation constant (KCT), ionization potential (ID), standard free energy (∆G), and energy of interaction (ECT) for the CT-complexes were collected. The developed CT complexes were tested for their toxicity on main organs, antimicrobial activity, antioxidant activity, and biofilm formation.Keywords: biological, biofilm, toxicity, thermal analysis, charge transfer, spectroscopy
Procedia PDF Downloads 626636 Development of a Test Plant for Parabolic Trough Solar Collectors Characterization
Authors: Nelson Ponce Jr., Jonas R. Gazoli, Alessandro Sete, Roberto M. G. Velásquez, Valério L. Borges, Moacir A. S. de Andrade
Abstract:
The search for increased efficiency in generation systems has been of great importance in recent years to reduce the impact of greenhouse gas emissions and global warming. For clean energy sources, such as the generation systems that use concentrated solar power technology, this efficiency improvement impacts a lower investment per kW, improving the project’s viability. For the specific case of parabolic trough solar concentrators, their performance is strongly linked to their geometric precision of assembly and the individual efficiencies of their main components, such as parabolic mirrors and receiver tubes. Thus, for accurate efficiency analysis, it should be conducted empirically, looking for mounting and operating conditions like those observed in the field. The Brazilian power generation and distribution company Eletrobras Furnas, through the R&D program of the National Agency of Electrical Energy, has developed a plant for testing parabolic trough concentrators located in Aparecida de Goiânia, in the state of Goiás, Brazil. The main objective of this test plant is the characterization of the prototype concentrator that is being developed by the company itself in partnership with Eudora Energia, seeking to optimize it to obtain the same or better efficiency than the concentrators of this type already known commercially. This test plant is a closed pipe system where a pump circulates a heat transfer fluid, also calledHTF, in the concentrator that is being characterized. A flow meter and two temperature transmitters, installed at the inlet and outlet of the concentrator, record the parameters necessary to know the power absorbed by the system and then calculate its efficiency based on the direct solar irradiation available during the test period. After the HTF gains heat in the concentrator, it flows through heat exchangers that allow the acquired energy to be dissipated into the ambient. The goal is to keep the concentrator inlet temperature constant throughout the desired test period. The developed plant performs the tests in an autonomous way, where the operator must enter the HTF flow rate in the control system, the desired concentrator inlet temperature, and the test time. This paper presents the methodology employed for design and operation, as well as the instrumentation needed for the development of a parabolic trough test plant, being a guideline for standardization facilities.Keywords: parabolic trough, concentrated solar power, CSP, solar power, test plant, energy efficiency, performance characterization, renewable energy
Procedia PDF Downloads 1236635 Drying Characteristics of Shrimp by Using the Traditional Method of Oven
Authors: I. A. Simsek, S. N. Dogan, A. S. Kipcak, E. Morodor Derun, N. Tugrul
Abstract:
In this study, the drying characteristics of shrimp are studied by using the traditional drying method of oven. Drying temperatures are selected between 60-80°C. Obtained experimental drying results are applied to eleven mathematical models of Alibas, Aghbashlo et al., Henderson and Pabis, Jena and Das, Lewis, Logaritmic, Midilli and Kucuk, Page, Parabolic, Wang and Singh and Weibull. The best model was selected as parabolic based on the highest coefficient of determination (R²) (0.999990 at 80°C) and the lowest χ² (0.000002 at 80°C), and the lowest root mean square error (RMSE) (0.000976 at 80°C) values are compared to other models. The effective moisture diffusivity (Deff) values were calculated using the Fick’s second law’s cylindrical coordinate approximation and are found between 6.61×10⁻⁸ and 6.66×10⁻⁷ m²/s. The activation energy (Ea) was calculated using modified form of Arrhenius equation and is found as 18.315 kW/kg.Keywords: activation energy, drying, effective moisture diffusivity, modelling, oven, shrimp
Procedia PDF Downloads 1936634 Ammonia Adsorption Properties of Composite Ammonia Carriers Obtained by Supporting Metal Chloride on Porous Materials
Authors: Cheng Shen, LaiHong Shen
Abstract:
Ammonia is an important carrier of hydrogen energy, with the characteristics of high hydrogen content density and no carbon dioxide emission. Ammonia synthesis by the Haber process is the main method for industrial ammonia synthesis, but the conversion rate of ammonia per pass is only about 12%, while the conversion rate of biomass synthesis ammonia is as high as 56%. Therefore, safe and efficient ammonia capture for ammonia synthesis from biomass is an important way to alleviate the energy crisis and solve the energy problem. Metal chloride has a chemical adsorption effect on ammonia, and can be desorbed at high temperature to obtain high-concentration ammonia after combining with ammonia, which has a good development prospect in ammonia capture and separation technology. In this paper, the ammonia adsorption properties of CuCl₂ were measured, and the composite adsorbents were prepared by using silicon and multi-walled carbon nanotubes respectively to support CuCl₂, and the ammonia adsorption properties of the composite adsorbents were studied. The study found that the ammonia adsorption capacity of the three adsorbents decreased with the increase in temperature, so metal chlorides were more suitable for the low-temperature adsorption of ammonia. Silicon and multi-walled carbon nanotubes have an enhanced effect on the ammonia adsorption of CuCl₂. The reason is that the porous material itself has a physical adsorption effect on ammonia, and silicon can play the role of skeleton support in cupric chloride particles, which enhances the pore structure of the adsorbent, thereby alleviating sintering.Keywords: ammonia, adsorption properties, metal chloride, silicon, MWCNTs
Procedia PDF Downloads 1176633 Reactivities of Turkish Lignites during Oxygen Enriched Combustion
Authors: Ozlem Uguz, Ali Demirci, Hanzade Haykiri-Acma, Serdar Yaman
Abstract:
Lignitic coal holds its position as Turkey’s most important indigenous energy source to generate energy in thermal power plants. Hence, efficient and environmental-friendly use of lignite in electricity generation is of great importance. Thus, clean coal technologies have been planned to mitigate emissions and provide more efficient burning in power plants. In this context, oxygen enriched combustion (oxy-combustion) is regarded as one of the clean coal technologies, which based on burning with oxygen concentrations higher than that in air. As it is known that the most of the Turkish coals are low rank with high mineral matter content, unburnt carbon trapped in ash is, unfortunately, high, and it leads significant losses in the overall efficiencies of the thermal plants. Besides, the necessity of burning huge amounts of these low calorific value lignites to get the desired amount of energy also results in the formation of large amounts of ash that is rich in unburnt carbon. Oxygen enriched combustion technology enables to increase the burning efficiency through the complete burning of almost all of the carbon content of the fuel. This also contributes to the protection of air quality and emission levels drop reasonably. The aim of this study is to investigate the unburnt carbon content and the burning reactivities of several different lignite samples under oxygen enriched conditions. For this reason, the combined effects of temperature and oxygen/nitrogen ratios in the burning atmosphere were investigated and interpreted. To do this, Turkish lignite samples from Adıyaman-Gölbaşı and Kütahya-Tunçbilek regions were characterized first by proximate and ultimate analyses and the burning profiles were derived using DTA (Differential Thermal Analysis) curves. Then, these lignites were subjected to slow burning process in a horizontal tube furnace at different temperatures (200ºC, 400ºC, 600ºC for Adıyaman-Gölbaşı lignite and 200ºC, 450ºC, 800ºC for Kütahya-Tunçbilek lignite) under atmospheres having O₂+N₂ proportions of 21%O₂+79%N₂, 30%O₂+70%N₂, 40%O₂+60%N₂, and 50%O₂+50%N₂. These burning temperatures were specified based on the burning profiles derived from the DTA curves. The residues obtained from these burning tests were also analyzed by proximate and ultimate analyses to detect the unburnt carbon content along with the unused energy potential. Reactivity of these lignites was calculated using several methodologies. Burning yield under air condition (21%O₂+79%N₂) was used a benchmark value to compare the effectiveness of oxygen enriched conditions. It was concluded that oxygen enriched combustion method enhanced the combustion efficiency and lowered the unburnt carbon content of ash. Combustion of low-rank coals under oxygen enriched conditions was found to be a promising way to improve the efficiency of the lignite-firing energy systems. However, cost-benefit analysis should be considered for a better justification of this method since the use of more oxygen brings an unignorable additional cost.Keywords: coal, energy, oxygen enriched combustion, reactivity
Procedia PDF Downloads 2766632 Development and Characterization of a Fluorinated-Ethylene-Propylene (FEP) Polymer Coating on Brass Faucets
Authors: S. Zouari, H. Ghorbel, H. Liao, R. Elleuch
Abstract:
Research is increasingly moving towards the use of surface treatment processes to limit environmental effects. Electrolytic plating has traditionally been seen as a way to protect brass products, especially faucets, from mechanical and chemical damage. However, this method was not effective industrially, economically and ecologically. The aim of this work is to develop non-usual polymer coatings for brass faucets in order to improve the performance of brass and to replace electrolytic chromium coatings, thereby reducing environmental impact. Fluorinated-Ethylene-Propylene polymer (FEP) was chosen for its excellent mechanical and chemical properties and its good environmental performance. This coating was developed by spraying (painting) process onto brass substrates. The coatings obtained were characterized using a scanning electron microscope to evaluate the morphology of the deposits and their porosity rate. Grid adhesion, surface energy and corrosion tests (salt spray) were also performed to evaluate the mechanical and chemical behavior of these coatings properly. The results show that the deposits obtained have a homogeneous microstructure with a very low porosity rate. The results of the grid adhesion test prove the conformity of the test according to the NF077 standard. The coatings have a hydrophobic character following the low values of surface energy obtained and a very good resistance to corrosion. These results are interesting and may represent real technological issues in the industrial field.Keywords: FEP coatings, spraying process, brass, adhesion, surface energy, corrosion resistance
Procedia PDF Downloads 1466631 Creating Legitimate Expectations in International Energy Investments: Role of the Stability Provisions
Authors: Rahmi Kopar
Abstract:
Legitimate expectations principle is considered one of the most dominant elements of the Fair and Equitable Treatment Standard which is today’s most relied upon treaty standard. Since its utilization by arbitral tribunals is relatively new, the contours of the legitimate expectations concept under investment treaty law have not been precisely defined yet. There are various fragmented views arising both from arbitral tribunals and scholarly writings with respect to its limits and use even though the principle is ‘firmly rooted in arbitral practice.’ International energy investments, due to their characteristics, are more prone to certain types of risks, especially the political risks. Thus, there are several mechanisms to protect an energy investment against those risks. Stabilisation is one of these investment protection methods. Stability provisions can be found under domestic legislations, as a contractual clause, or as a separate legal stability agreement. This paper will start by examining the roots of the contentious concept of legitimate expectations with reference to its application in domestic legal systems from where the doctrine under investment treaty law context was transplanted. Then the paper will turn to the investment treaty law and analyse the main contours of the doctrine as understood and applied by arbitral tribunals. 'What gives rise to the investor’s legitimate expectations?' question is answered mainly by three categories of sources: the general legal framework prevalent in a host state, the representations made by the officials or organs of a host state, and the contractual commitments. However, there is no unanimity among the arbitral tribunals and the scholars with respect to the form these sources should take. At this point, the study will discuss the sources of a stability provision and the effect of these stability provisions found in various legal sources in creating a legitimate expectation for the investor. The main questions to be discussed in this paper are as follows: a) Do the stability provisions found under different legal sources create a legitimate expectation on the investor side? b) If yes, what levels of legitimate expectations do they create? These questions will be answered mainly by reference to investment treaty jurisprudence.Keywords: fair and equitable treatment standard, international energy investments, investment protection, legitimate expectations, stabilization
Procedia PDF Downloads 2166630 Method of Estimating Absolute Entropy of Municipal Solid Waste
Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards
Abstract:
Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% ≤ C ≤ 95.1%, 0.0% ≤ H ≤ 14.3%, 0.0% ≤ O ≤ 71.1%, 0.0 ≤ N ≤ 66.7%, 0.0% ≤ S ≤ 42.1%, 0.0% ≤ Cl ≤ 89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.Keywords: absolute entropy, irreversibility, municipal solid waste, waste-to-energy
Procedia PDF Downloads 3126629 Music Piracy Revisited: Agent-Based Modelling and Simulation of Illegal Consumption Behavior
Authors: U. S. Putro, L. Mayangsari, M. Siallagan, N. P. Tjahyani
Abstract:
National Collective Management Institute (LKMN) in Indonesia stated that legal music products were about 77.552.008 unit while illegal music products were about 22.0688.225 unit in 1996 and this number keeps getting worse every year. Consequently, Indonesia named as one of the countries with high piracy levels in 2005. This study models people decision toward unlawful behavior, music content piracy in particular, using agent-based modeling and simulation (ABMS). The classification of actors in the model constructed in this study are legal consumer, illegal consumer, and neutral consumer. The decision toward piracy among the actors is a manifestation of the social norm which attributes are social pressure, peer pressure, social approval, and perceived prevalence of piracy. The influencing attributes fluctuate depending on the majority of surrounding behavior called social network. There are two main interventions undertaken in the model, campaign and peer influence, which leads to scenarios in the simulation: positively-framed descriptive norm message, negatively-framed descriptive norm message, positively-framed injunctive norm with benefits message, and negatively-framed injunctive norm with costs message. Using NetLogo, the model is simulated in 30 runs with 10.000 iteration for each run. The initial number of agent was set 100 proportion of 95:5 for illegal consumption. The assumption of proportion is based on the data stated that 95% sales of music industry are pirated. The finding of this study is that negatively-framed descriptive norm message has a worse reversed effect toward music piracy. The study discovers that selecting the context-based campaign is the key process to reduce the level of intention toward music piracy as unlawful behavior by increasing the compliance awareness. The context of Indonesia reveals that that majority of people has actively engaged in music piracy as unlawful behavior, so that people think that this illegal act is common behavior. Therefore, providing the information about how widespread and big this problem is could make people do the illegal consumption behavior instead. The positively-framed descriptive norm message scenario works best to reduce music piracy numbers as it focuses on supporting positive behavior and subject to the right perception on this phenomenon. Music piracy is not merely economical, but rather social phenomenon due to the underlying motivation of the actors which has shifted toward community sharing. The indication of misconception of value co-creation in the context of music piracy in Indonesia is also discussed. This study contributes theoretically that understanding how social norm configures the behavior of decision-making process is essential to breakdown the phenomenon of unlawful behavior in music industry. In practice, this study proposes that reward-based and context-based strategy is the most relevant strategy for stakeholders in music industry. Furthermore, this study provides an opportunity that findings may generalize well beyond music piracy context. As an emerging body of work that systematically constructs the backstage of law and social affect decision-making process, it is interesting to see how the model is implemented in other decision-behavior related situation.Keywords: music piracy, social norm, behavioral decision-making, agent-based model, value co-creation
Procedia PDF Downloads 1906628 A Performance Analysis Study of an Active Solar Still Integrating Fin at the Basin Plate
Authors: O. Ansari, H. Hafs, A. Bah, M. Asbik, M. Malha, M. Bakhouya
Abstract:
Water is one of the most important and vulnerable natural resources due to human activities and climate change. Water-level continues declining year after year and it is primarily caused by sustained, extensive, and traditional usage methods. Improving water utilization becomes an urgent issue in order satisfy the increasing population needs. Desalination of seawater or brackish water could help in increasing water potential. However, a cost-effective desalination process is required. The most appropriate method for performing this desalination is solar-driven distillation, given its simplicity, low cost and especially the availability of the solar energy source. The main objective of this paper is to demonstrate the influence of coupling integrated basin plate by fins with preheating by solar collector on the performance of solar still. The energy balance equations for the various elements of the solar still are introduced. A numerical example is used to show the efficiency of the proposed solution.Keywords: active solar still, desalination, fins, solar collector
Procedia PDF Downloads 226