Search results for: the creative learning process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21237

Search results for: the creative learning process

17547 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)

Authors: Mahacine Amrani

Abstract:

This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.

Keywords: process performance, model, wavelets, Haar, Moroccan

Procedia PDF Downloads 320
17546 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics

Authors: Ewa M. Laskowska, Jorn Vatn

Abstract:

Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.

Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL

Procedia PDF Downloads 96
17545 Quantification of Uncertainties Related to the Implementation of Reverse Logistics Process

Authors: Dnaya Soukaina

Abstract:

It’s over six decades that Reverse logistics had appeared as a research area, and it is emerging again and again in the scientific fields. As reverse logistics presents real potential for value recovery and environmental impacts decrease, it’s still necessary to extend this concept more in the industrial and commercial field especially in developing countries. The process of reverse logistics is a progression of steps beginning with the customer and finishing with the organization or even the customer, however the issue is that this cycle must be adjustable to the organization concerned, in addition of legislative, operational, financial and social obstacles. Literature had demonstrated that there are many other uncertainties while the implementation of this process that vary in function of the sector concerned and the kind of activity. Besides, even if literature is developing this topic over the last years, reseraches about uncertainties quantification in reverse logistics process still being few. the paper has the objective to fill this gap, and carry out a study to identify sustainable strategies that can be adapted to different industrial or commercial sectors to facilitate the implementation of reverse logistics.

Keywords: reverse logistics, implementation, unceratinties quantification, mathematical model

Procedia PDF Downloads 27
17544 A Simulated Scenario of WikiGIS to Support the Iteration and Traceability Management of the Geodesign Process

Authors: Wided Batita, Stéphane Roche, Claude Caron

Abstract:

Geodesign is an emergent term related to a new and complex process. Hence, it needs to rethink tools, technologies and platforms in order to efficiently achieve its goals. A few tools have emerged since 2010 such as CommunityViz, GeoPlanner, etc. In the era of Web 2.0 and collaboration, WikiGIS has been proposed as a new category of tools. In this paper, we present WikiGIS functionalities dealing mainly with the iteration and traceability management to support the collaboration of the Geodesign process. Actually, WikiGIS is built on GeoWeb 2.0 technologies —and primarily on wiki— and aims at managing the tracking of participants’ editing. This paper focuses on a simplified simulation to illustrate the strength of WikiGIS in the management of traceability and in the access to history in a Geodesign process. Indeed, a cartographic user interface has been implemented, and then a hypothetical use case has been imagined as proof of concept.

Keywords: geodesign, history, traceability, tracking of participants’ editing, WikiGIS

Procedia PDF Downloads 252
17543 Fashion Utopias: The Role of Fashion Exhibitions and Fashion Archives to Defining (and Stimulating) Possible Future Fashion Landscapes

Authors: Vittorio Linfante

Abstract:

Utopìa is a term that, since its first appearance in 1516, in Tommaso Moro’s work, has taken on different meanings and forms in various fields: social studies, politics, art, creativity, and design. The utopias, although of short duration and in their apparent impossibility, have been able to give a shape to the future, laying the foundations for our present and the future of the next generations. The Twentieth century was the historical period crossed by many changes, and it saw the most significant number of utopias not only social, political, and scientific but also artistic, architectural, in design, communication, and, last but not least, in fashion. Over the years, fashion has been able to interpret various utopistic impulses giving form to the most futuristic visions. From the Manifesto del Vestito by Giacomo Balla, through the functional experiments that led to the Tuta by Thayath and the Varst by Aleksandr Rodčenko and Varvara Stepanova, through the Space Age visions of Rudi Gernreich, Paco Rabanne and Pierre Cardin, and the Archizoom’s political actions and their fashion project Vestirsi è facile. Experiments that have continued to the present days through the (sometimes) excessive visions of Hussein Chalayan, Alexander McQueen, and Gareth Pugh or those that are more anchored to the market (but no fewer innovative and visionaries) by Prada, Chanel, and Raf Simmons. If, as Bauman states, it is true that we have entered in a phase of Retrotopia characterized by the inability to think about new forms of the future; it is necessary, more than ever, to redefine the role of history, of its narration and its mise en scène, within the contemporary creative process. A process that increasingly requires an in-depth knowledge of the past for the definition of a renewed discourse about design processes. A discourse in which words like archive, exhibition, curating, revival, vintage, and costume take on new meanings. The paper aims to investigate–through case studies, research, and professional projects–the renewed role of curating and preserving fashion artefacts. A renewed role that–in an era of Retrotopia–museums, exhibitions, and archives can (and must) assume, to contribute to the definition of new design paradigms, capable of overcoming the traditional categories of revival or costume in favour of a more contemporary “mash-up” approach. Mash-up in which past and present, craftsmanship and new technologies, revival and experimentation merge seamlessly. In this perspective, dresses (as well as fashion accessories) should be considered not only as finished products but as artefacts capable of talking about the past and of producing unpublished new stories at the same time. Archives, exhibitions (academic and not), and museums thus become powerful sources of inspiration for fashion: places and projects capable of generating innovation, becoming active protagonists of the contemporary fashion design processes.

Keywords: heritage, history, costume and fashion interface, performance, language, design research

Procedia PDF Downloads 119
17542 Channel Estimation Using Deep Learning for Reconfigurable Intelligent Surfaces-Assisted Millimeter Wave Systems

Authors: Ting Gao, Mingyue He

Abstract:

Reconfigurable intelligent surfaces (RISs) are expected to be an important part of next-generation wireless communication networks due to their potential to reduce the hardware cost and energy consumption of millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) technology. However, owing to the lack of signal processing abilities of the RIS, the perfect channel state information (CSI) in RIS-assisted communication systems is difficult to acquire. In this paper, the uplink channel estimation for mmWave systems with a hybrid active/passive RIS architecture is studied. Specifically, a deep learning-based estimation scheme is proposed to estimate the channel between the RIS and the user. In particular, the sparse structure of the mmWave channel is exploited to formulate the channel estimation as a sparse reconstruction problem. To this end, the proposed approach is derived to obtain the distribution of non-zero entries in a sparse channel. After that, the channel is reconstructed by utilizing the least-squares (LS) algorithm and compressed sensing (CS) theory. The simulation results demonstrate that the proposed channel estimation scheme is superior to existing solutions even in low signal-to-noise ratio (SNR) environments.

Keywords: channel estimation, reconfigurable intelligent surface, wireless communication, deep learning

Procedia PDF Downloads 159
17541 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine

Authors: Adriana Haulica

Abstract:

Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.

Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics

Procedia PDF Downloads 75
17540 Hull Detection from Handwritten Digit Image

Authors: Sriraman Kothuri, Komal Teja Mattupalli

Abstract:

In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.

Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm

Procedia PDF Downloads 405
17539 Availability Analysis of Process Management in the Equipment Maintenance and Repair Implementation

Authors: Onur Ozveri, Korkut Karabag, Cagri Keles

Abstract:

It is an important issue that the occurring of production downtime and repair costs when machines fail in the machine intensive production industries. In the case of failure of more than one machine at the same time, which machines will have the priority to repair, how to determine the optimal repair time should be allotted for this machines and how to plan the resources needed to repair are the key issues. In recent years, Business Process Management (BPM) technique, bring effective solutions to different problems in business. The main feature of this technique is that it can improve the way the job done by examining in detail the works of interest. In the industries, maintenance and repair works are operating as a process and when a breakdown occurs, it is known that the repair work is carried out in a series of process. Maintenance main-process and repair sub-process are evaluated with process management technique, so it is thought that structure could bring a solution. For this reason, in an international manufacturing company, this issue discussed and has tried to develop a proposal for a solution. The purpose of this study is the implementation of maintenance and repair works which is integrated with process management technique and at the end of implementation, analyzing the maintenance related parameters like quality, cost, time, safety and spare part. The international firm that carried out the application operates in a free region in Turkey and its core business area is producing original equipment technologies, vehicle electrical construction, electronics, safety and thermal systems for the world's leading light and heavy vehicle manufacturers. In the firm primarily, a project team has been established. The team dealt with the current maintenance process again, and it has been revised again by the process management techniques. Repair process which is sub-process of maintenance process has been discussed again. In the improved processes, the ABC equipment classification technique was used to decide which machine or machines will be given priority in case of failure. This technique is a prioritization method of malfunctioned machine based on the effect of the production, product quality, maintenance costs and job security. Improved maintenance and repair processes have been implemented in the company for three months, and the obtained data were compared with the previous year data. In conclusion, breakdown maintenance was found to occur in a shorter time, with lower cost and lower spare parts inventory.

Keywords: ABC equipment classification, business process management (BPM), maintenance, repair performance

Procedia PDF Downloads 195
17538 Investigating the Influence of Critical Thinking Skills on Learning Achievement Foreign Language Programs

Authors: Mostafa Fanaei, Shahram Sistani, Athare Nazri Panjaki

Abstract:

Introduction: Critical thinking skills are increasingly recognized as vital for academic success, particularly in higher education. This study examines the influence of critical thinking on learning achievement among undergraduate and master's students enrolled in foreign language programs. By investigating this correlation, educators can gain valuable insights into optimizing teaching methodologies and enhancing academic outcomes. Methods: This cross-sectional study involved 150 students from Shahid Bahonar University of Kerman, recruited via random sampling. Participants completed the Critical Thinking Questionnaire (CThQ), assessing dimensions such as analysis, evaluation, creation, remembering, understanding, and application. Academic performance was measured using the students' GPA (0- 20). Results: The participants' mean age was 21.46 ± 5.2 years, with 62.15% being female. The mean scores for critical thinking subscales were as follows: Analyzing (13.2 ± 3.5), Evaluating (12.8 ± 3.4), Creating (18.6 ± 4.8), Remembering (9.4 ± 2.1), Understanding (12.9 ± 3.3), and Applying (12.5 ± 3.2). The overall critical thinking score was 79.4 ± 18.1, and the average GPA was 15.7 ± 2.4. Significant positive correlations were found between GPA and several critical thinking subscales: Analyzing (r = 0.45, p = 0.013), Creating (r = 0.52, p < 0.001), Remembering (r = 0.29, p = 0.021), Understanding (r = 0.41, p = 0.002), and the overall CThQ score (r = 0.54, p = 0.043). Conclusion: The study demonstrates a significant positive relationship between critical thinking skills and learning achievement in foreign language programs. Enhancing critical thinking skills through educational interventions could potentially improve academic performance. Further research is recommended to explore the underlying mechanisms and long-term impacts of critical thinking on academic success.

Keywords: critical thinking, learning achievement, higher education, foreign language programs, student success

Procedia PDF Downloads 13
17537 Young People, the Internet and Inequality: What are the Causes and Consequences of Exclusion?

Authors: Albin Wallace

Abstract:

Part of the provision within educational institutions is the design, commissioning and implementation of ICT facilities to improve teaching and learning. Inevitably, these facilities focus largely on Internet Protocol (IP) based provisions including access to the World Wide Web, email, interactive software and hardware tools. Educators should be committed to the use of ICT to improve learning and teaching as well as to issues relating to the Internet and educational disadvantage, especially with respect to access and exclusion concerns. In this paper I examine some recent research into the issue of inequality and use of the Internet during which I discuss the causes and consequences of exclusion in the context of social inequality, digital literacy and digital inequality, also touching on issues of global inequality.

Keywords: inequality, internet, education, design

Procedia PDF Downloads 492
17536 Management Workspaces to Create Value

Authors: Nevruz Zogu, Shpetim Rezniqi

Abstract:

It is very important that a new environment where work shall be constructed in such a strong record to be creative and eligible for workers, can not have success in the workplace. But, is it possible to design the inner-inspire to create and collaborate? By watching and analyzing examples of creativity in business, construction managers can learn ways on how to encourage their imagination inside buildings. We struggle to find and retain talented employees and skilled labor environment is becoming more and always an important tool for recruiting and retaining employees. Managers who recognize the importance are gaining an edge over their competitors. The physical work environment is as important as its quality is often used as a recruiting tool and even to companies with The relationship between the company and the employees between strategy and behavior, between the product and the customer can reincorporated under the light of symbolic mediation of space, as instrument and interpreter of the core values and identity of the organization.

Keywords: strategy, business, quality, productivity, space, offices, assets

Procedia PDF Downloads 391
17535 Review of Friction Stir Welding of Dissimilar 5000 and 6000 Series Aluminum Alloy Plates

Authors: K. Subbaiah

Abstract:

Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg alloys 5000 Series and 6000 series have been discussed.

Keywords: 5000 series and 6000 series Al alloys, friction stir welding, tool pin profile, microstructure and properties

Procedia PDF Downloads 470
17534 A Spatial Point Pattern Analysis to Recognize Fail Bit Patterns in Semiconductor Manufacturing

Authors: Youngji Yoo, Seung Hwan Park, Daewoong An, Sung-Shick Kim, Jun-Geol Baek

Abstract:

The yield management system is very important to produce high-quality semiconductor chips in the semiconductor manufacturing process. In order to improve quality of semiconductors, various tests are conducted in the post fabrication (FAB) process. During the test process, large amount of data are collected and the data includes a lot of information about defect. In general, the defect on the wafer is the main causes of yield loss. Therefore, analyzing the defect data is necessary to improve performance of yield prediction. The wafer bin map (WBM) is one of the data collected in the test process and includes defect information such as the fail bit patterns. The fail bit has characteristics of spatial point patterns. Therefore, this paper proposes the feature extraction method using the spatial point pattern analysis. Actual data obtained from the semiconductor process is used for experiments and the experimental result shows that the proposed method is more accurately recognize the fail bit patterns.

Keywords: semiconductor, wafer bin map, feature extraction, spatial point patterns, contour map

Procedia PDF Downloads 388
17533 Exploring Equity and Inclusion in the Context of Distance Education Using a Social Location Perspective

Authors: Boadi Agyekum

Abstract:

In this study, a social location perspective is used to explore the challenges of creating opportunities that will foster lifelong education, inclusion, and equity for residents of rural communities in Ghana. The differentiated experiences of rural adults are under-researched and often unacknowledged in lifelong education literature and distance education policy. There is a need to examine carefully the structural inequalities that create disadvantages for residents of rural communities and women in pursuing distance education in designated cities in Ghana. The paper uses in-depth interviews to explore participants’ experiences of learning at a distance and to scrutinise the narratives of lifelong education. The paper reflects on the implications of the framework employed for educators and social justice in lifelong education. It further recommends the need to provide IT laboratories and fully online programs that would require stable and regular internet and access to ICT equipment for potential learning in rural communities. The social location approach presented a number of axes of diversity as comparatively more important than others; these included gender, age, education, work commitment, geography, and degree of social connectedness. This can inform lifelong education policy and programs to sustain quality education.

Keywords: equity, distance education, lifelong learning, social location, intersectionality, rural communities

Procedia PDF Downloads 105
17532 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 391
17531 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs

Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare

Abstract:

The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.

Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio

Procedia PDF Downloads 103
17530 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki

Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas

Abstract:

The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.

Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5

Procedia PDF Downloads 83
17529 Automation of Kitchen Chemical in the Textile Industry

Authors: José Luiz da Silva Neto, Renato Sipelli Silva, Érick Aragão Ribeiro

Abstract:

The automation of industrial processes plays a vital role in industries today, becoming an integral and important part of the industrial process and modern production. The process control systems are designed to maximize production, reduce costs and minimize risks in production. However, these systems are generally not deployed methodologies and planning. So that this article describes the development of an automation system of a kitchen preparation of chemicals in the textile industry based on a retrofitting methodology that provides more quality into the process at a lower cost.

Keywords: automation, textile industry, kitchen chemical, information integration

Procedia PDF Downloads 431
17528 The Use of Authentic Materials in the Chinese Language Classroom

Authors: Yiwen Jin, Jing Xiao, Pinfang Su

Abstract:

The idea of adapting authentic materials in language teaching is from the communicative method in the 1970s. Different from the language in language textbooks, authentic materials is not deliberately written, it is from the native speaker’s real life and contains real information, which can meet social needs. It could improve learners ' interest, create authentic context and improve learners ' communicative competence. Authentic materials play an important role in CFL(Chinese as a foreign language) classroom. Different types of authentic materials can be used in different ways during learning and teaching. Because of the COVID-19 pandemic,a lot of Chinese learners are learning Chinese without the real language environment. Although there are some well-written textbooks, there is a certain distance between textbook language materials and daily life. Learners cannot automatically fill this gap. That is why it is necessary to apply authentic materials as a supplement to the language textbook to create the real context. Chinese teachers around the world are working together, trying to integrate the resources and apply authentic materials through different approach. They apply authentic materials in the form of new textbooks, manuals, apps and short videos they collect and create to help Chinese learning and teaching. A review of previous research on authentic materials and the Chinese teachers’ attempt to adapt it in the classroom are offered in this manuscript.

Keywords: authentic materials, Chinese as a second language, developmental use of digital resources, materials development for language teaching

Procedia PDF Downloads 180
17527 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 46
17526 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma

Procedia PDF Downloads 161
17525 Attribution Theory and Perceived Reliability of Cellphones for Teaching and Learning

Authors: Mayowa A. Sofowora, Seraphin D. Eyono Obono

Abstract:

The use of information and communication technologies such as computers, mobile phones and the internet is becoming prevalent in today’s world; and it is facilitating access to a vast amount of data, services, and applications for the improvement of people’s lives. However, this prevalence of ICTs is hampered by the problem of low income levels in developing countries to the point where people cannot timeously replace or repair their ICT devices when damaged or lost; and this problem serves as a motivation for this study whose aim is to examine the perceptions of teachers on the reliability of cellphones when used for teaching and learning purposes. The research objectives unfolding this aim are of two types: objectives on the selection and design of theories and models, and objectives on the empirical testing of these theories and models. The first type of objectives is achieved using content analysis in an extensive literature survey, and the second type of objectives is achieved through a survey of high school teachers from the ILembe and Umgungudlovu districts in the KwaZuluNatal province of South Africa. Data collected from this questionnaire based survey is analysed in SPSS using descriptive statistics and Pearson correlations after checking the reliability and validity of the questionnaire. The main hypothesis driving this study is that there is a relationship between the demographics and the attribution identity of teachers on one hand, and their perceptions on the reliability of cellphones on the other hand, as suggested by existing literature; except that attribution identities are considered in this study under three angles: intention, knowledge and ability, and action. The results of this study confirm that the perceptions of teachers on the reliability of cellphones for teaching and learning are affected by the school location of these teachers, and by their perceptions on learners’ cellphones usage intentions and actual use.

Keywords: attribution, cellphones, e-learning, reliability

Procedia PDF Downloads 408
17524 A Comparative Evaluation of Cognitive Load Management: Case Study of Postgraduate Business Students

Authors: Kavita Goel, Donald Winchester

Abstract:

In a world of information overload and work complexities, academics often struggle to create an online instructional environment enabling efficient and effective student learning. Research has established that students’ learning styles are different, some learn faster when taught using audio and visual methods. Attributes like prior knowledge and mental effort affect their learning. ‘Cognitive load theory’, opines learners have limited processing capacity. Cognitive load depends on the learner’s prior knowledge, the complexity of content and tasks, and instructional environment. Hence, the proper allocation of cognitive resources is critical for students’ learning. Consequently, a lecturer needs to understand the limits and strengths of the human learning processes, various learning styles of students, and accommodate these requirements while designing online assessments. As acknowledged in the cognitive load theory literature, visual and auditory explanations of worked examples potentially lead to a reduction of cognitive load (effort) and increased facilitation of learning when compared to conventional sequential text problem solving. This will help learner to utilize both subcomponents of their working memory. Instructional design changes were introduced at the case site for the delivery of the postgraduate business subjects. To make effective use of auditory and visual modalities, video recorded lectures, and key concept webinars were delivered to students. Videos were prepared to free up student limited working memory from irrelevant mental effort as all elements in a visual screening can be viewed simultaneously, processed quickly, and facilitates greater psychological processing efficiency. Most case study students in the postgraduate programs are adults, working full-time at higher management levels, and studying part-time. Their learning style and needs are different from other tertiary students. The purpose of the audio and visual interventions was to lower the students cognitive load and provide an online environment supportive to their efficient learning. These changes were expected to impact the student’s learning experience, their academic performance and retention favourably. This paper posits that these changes to instruction design facilitates students to integrate new knowledge into their long-term memory. A mixed methods case study methodology was used in this investigation. Primary data were collected from interviews and survey(s) of students and academics. Secondary data were collected from the organisation’s databases and reports. Some evidence was found that the academic performance of students does improve when new instructional design changes are introduced although not statistically significant. However, the overall grade distribution of student’s academic performance has changed and skewed higher which shows deeper understanding of the content. It was identified from feedback received from students that recorded webinars served as better learning aids than material with text alone, especially with more complex content. The recorded webinars on the subject content and assessments provides flexibility to students to access this material any time from repositories, many times, and this enhances students learning style. Visual and audio information enters student’s working memory more effectively. Also as each assessment included the application of the concepts, conceptual knowledge interacted with the pre-existing schema in the long-term memory and lowered student’s cognitive load.

Keywords: cognitive load theory, learning style, instructional environment, working memory

Procedia PDF Downloads 148
17523 The Implications in the Use of English as the Medium of Instruction in Business Management Courses at Vavuniya Campus

Authors: Jeyaseelan Gnanaseelan, Subajana Jeyaseelan

Abstract:

The paper avails, in a systemic form, some of the results of the investigation into nature, functions, problems, and implications in the use of English as the medium of Instruction (EMI) in the Business Management courses at Vavuniya Campus of the University of Jaffna, located in the conflict-affected northern part of Sri Lanka. It is a case study of the responses of the students and the teachers from Tamil and Sinhala language communities of the Faculty of Business Studies. This paper analyzes the perceptions on the use of the medium, the EMI background, resources available and accessible, language abilities of the teachers and learners, learning style and pedagogy, the EMI methodology, the socio-economic and socio-political contexts typical of a non-native English learning context. The analysis is quantitative and qualitative. It finds out the functional perspective of the EMI in Sri Lanka and suggests practical strategies of contextualization and acculturation in the EMI organization and positions. The paper assesses the learner and teacher capacity in the use of English. The ethnic conflict and linguistic politics in Sri Lanka have contributed multiple factors to the current use of English as the medium. It has conflicted with its domestic realities and the globalization trends of the world at large which determines efficiency and effectiveness.

Keywords: medium of instruction, English, business management, teaching and learning

Procedia PDF Downloads 130
17522 Development of the Independent Building Permit System to Improve Productivity and Quality Service

Authors: Hartomo Soewardi, Bachtiar Jouhari

Abstract:

Ineffectiveness and inefficiency of the building permit process in Indonesia still becomes a major problems for people to apply. Long time of service, the complicated administration process, and an expensive fees are a process that causing a dissatisfaction and discomfort for applicant. Therefore, it is critical to improve the quality of service of building permit system. Objectives of this research is to develop a better process of the system to improve productivity and quality service. Lean six sigma concept by using DMAIC procedures was used to analyze the existing system. Moreover, improvement of the system was conducted by using the Axiomatic Design method. Verification test was done to test the hypothesis of the proposed system design. Result of this research shows that proposed system can produce increasing 61.8% of efficiency on service time, and more effective and easier.

Keywords: axiomatic design, bbuilding permit system, DMAIC, Lean Six Sigma

Procedia PDF Downloads 331
17521 Effect of Electromagnetic Field on Capacitive Deionization Performance

Authors: Alibi Kilybay, Emad Alhseinat, Ibrahim Mustafa, Abdulfahim Arangadi, Pei Shui, Faisal Almarzooqi

Abstract:

In this work, the electromagnetic field has been used for improving the performance of the capacitive deionization process. The effect of electromagnetic fields on the efficiency of the capacitive deionization (CDI) process was investigated experimentally. The results showed that treating the feed stream of the CDI process using an electromagnetic field can enhance the electrosorption capacity from 20% up to 70%. The effect of the degree of time of exposure, concentration, and type of ions have been examined. The electromagnetic field enhanced the salt adsorption capacity (SAC) of the Ca²⁺ ions by 70%, while the SAC enhanced 20% to the Na⁺ ions. It is hypnotized that the electrometric field affects the hydration shell around the ions and thus reduces their effective size and enhances the mass transfer. This reduction in ion effective size and increase in mass transfer enhanced the electrosorption capacity and kinetics of the CDI process.

Keywords: capacitive deionization, desalination, electromagnetic treatment, water treatment

Procedia PDF Downloads 270
17520 Application of Granular Computing Paradigm in Knowledge Induction

Authors: Iftikhar U. Sikder

Abstract:

This paper illustrates an application of granular computing approach, namely rough set theory in data mining. The paper outlines the formalism of granular computing and elucidates the mathematical underpinning of rough set theory, which has been widely used by the data mining and the machine learning community. A real-world application is illustrated, and the classification performance is compared with other contending machine learning algorithms. The predictive performance of the rough set rule induction model shows comparative success with respect to other contending algorithms.

Keywords: concept approximation, granular computing, reducts, rough set theory, rule induction

Procedia PDF Downloads 533
17519 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings

Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi

Abstract:

Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.

Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden

Procedia PDF Downloads 89
17518 Patterns Obtained by Using Knitting Technique in Textile Crafts

Authors: Özlem Erzurumlu, Nazan Oskay, Ece Melek

Abstract:

Knitting which is one of the textile manufacturing techniques is manufactured by using the system of single yarn. Knitting wares consisting of loops structurally have flexible structures. Knitting can be shaped and given volume easily due to increasing or decreasing the number of loops, being manufactured in circular form and its flexible structure. While the knitting wares are basically being manufactured to meet the requirements, it takes its place in the art field overflowing outside of industrial production later. Textile artist ensures his ideas to convert into artistic product by using textiles and non-textiles with aesthetic concerns and creative impulses. When textile crafts are observed at the present time we see that knitting technique has an extensive area of use such as sculpture, panel, installation art and performing art. It is examined how the knitting technique is used in textile crafts observing patterns obtained by this technique in textile crafts in this study.

Keywords: art, textile, knitting art, textile crafts

Procedia PDF Downloads 714