Search results for: mixed effects models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18729

Search results for: mixed effects models

15039 Fears of Strangers: Causes of Anonymity Rejection on Virtual World

Authors: Proud Arunrangsiwed

Abstract:

This research is a collaborative narrative research, which is mixed with issues of selected papers and researcher's experience as an anonymous user on social networking sites. The objective of this research is to understand the reasons of the regular users who reject to contact with anonymous users, and to study the communication traditions used in the selected studies. Anonymous users are rejected by regular users, because of the fear of cyber bully, the fear of unpleasant behaviors, and unwillingness of changing communication norm. The suggestion for future research design is to use longitudinal design or quantitative design; and the theory in rhetorical tradition should be able to help develop a strong trust message.

Keywords: anonymous, anonymity, online identity, trust message, reliability

Procedia PDF Downloads 359
15038 Estimation of Probabilistic Fatigue Crack Propagation Models of AZ31 Magnesium Alloys under Various Load Ratio Conditions by Using the Interpolation of a Random Variable

Authors: Seon Soon Choi

Abstract:

The essential purpose is to present the good fatigue crack propagation model describing a stochastic fatigue crack growth behavior in a rolled magnesium alloy, AZ31, under various load ratio conditions. Fatigue crack propagation experiments were carried out in laboratory air under four conditions of load ratio, R, using AZ31 to investigate the crack growth behavior. The stochastic fatigue crack growth behavior was analyzed using an interpolation of random variable, Z, introduced to an empirical fatigue crack propagation model. The empirical fatigue models used in this study are Paris-Erdogan model, Walker model, Forman model, and modified Forman model. It was found that the random variable is useful in describing the stochastic fatigue crack growth behaviors under various load ratio conditions. The good probabilistic model describing a stochastic fatigue crack growth behavior under various load ratio conditions was also proposed.

Keywords: magnesium alloys, fatigue crack propagation model, load ratio, interpolation of random variable

Procedia PDF Downloads 410
15037 Chemical Control Management Strategies for Corm Rot in Gladiolus communis L. under Field Conditions

Authors: Shahbaz Ahmad, Muhammad Ali, Sahar Naz

Abstract:

Corm rot is caused by the fungus Fusarium oxysporum f.sp. gladioli and it causes remarkable losses to the growers. Experiment was conducted in order to find some viable recommendations for this agronomically as well as economically important problem. Four fungicides, namely Carbendazim, Mancozeb, Thiophanate methyl and Chlorothalonil were used to control corm rot in gladiolus field. Fungicides were applied singly as foliar, in irrigation as well as with sulphuric acid in variable doses. The results revealed that application of all fungicides was variably effective to control corm rot in acid mixed irrigation followed by fungicide in irrigation. The application of all fungicides in various combinations was observed to be ineffective at all three doses.

Keywords: gladiolus, corm rot, Fusarium oxysporum, fungicides

Procedia PDF Downloads 434
15036 Examining the Factors That Mediate the Effects of Mindfulness on Conflict Resolution Strategies

Authors: Franco Ceasar Agbalog, Shintaro Yukawa

Abstract:

Mindfulness is increasingly being used as a method for resolving conflict. However, less is known about how its positive outcome develops. To better understand the underlying effects of mindfulness on conflict resolution strategies, this study examines the potential mediating factors between them. The researchers hypothesized that Emotional Intelligence (EI) mediates the effects of mindfulness on conflict resolution strategies due to its similar components to the benefits of mindfulness, such as awareness and control of one’s emotions, awareness and understanding of other’s emotions, and cultivation of compassion and empathy. Using a random sampling, 157 participants completed three questionnaires: Five Facet Mindfulness Questionnaire (FFMQ), Trait Emotional Intelligence Questionnaire-Short Form (TEIQue-SF), and Rahim Organizational Conflict Inventory-II (ROCI-II). Utilizing the SPSS Process, results showed a significant relationship between mindfulness and EI. However, among the five approaches to conflict resolution, only the integrating style was significantly related to EI. Following the principle of Mediation Analysis, mindfulness has an indirect effect on integrating style. Moreover, mindfulness and conflict resolution strategies were not significantly related. This is a rather surprising result because research literature has always indicated a positive relationship between the two variables. These findings imply that although integrating style is generally considered the best approach in handling conflict, each style may be appropriate depending on the situation. Mindfulness allows practitioners to have a holistic view of the conflict situation and choose the approach they think best for that specific situation. This could explain why statistically, there is no direct effect of mindfulness on conflict resolution strategies. This work provides basis for the necessity to investigate the factors of conflict instead of the conflict resolution strategies; factors that can be manipulated and may be directly influenced by mindfulness.

Keywords: conflict resolution strategies, emotional intelligence, mindfulness and conflict, ROCI-II integrating style

Procedia PDF Downloads 363
15035 Servitization in Machine and Plant Engineering: Leveraging Generative AI for Effective Product Portfolio Management Amidst Disruptive Innovations

Authors: Till Gramberg

Abstract:

In the dynamic world of machine and plant engineering, stagnation in the growth of new product sales compels companies to reconsider their business models. The increasing shift toward service orientation, known as "servitization," along with challenges posed by digitalization and sustainability, necessitates an adaptation of product portfolio management (PPM). Against this backdrop, this study investigates the current challenges and requirements of PPM in this industrial context and develops a framework for the application of generative artificial intelligence (AI) to enhance agility and efficiency in PPM processes. The research approach of this study is based on a mixed-method design. Initially, qualitative interviews with industry experts were conducted to gain a deep understanding of the specific challenges and requirements in PPM. These interviews were analyzed using the Gioia method, painting a detailed picture of the existing issues and needs within the sector. This was complemented by a quantitative online survey. The combination of qualitative and quantitative research enabled a comprehensive understanding of the current challenges in the practical application of machine and plant engineering PPM. Based on these insights, a specific framework for the application of generative AI in PPM was developed. This framework aims to assist companies in implementing faster and more agile processes, systematically integrating dynamic requirements from trends such as digitalization and sustainability into their PPM process. Utilizing generative AI technologies, companies can more quickly identify and respond to trends and market changes, allowing for a more efficient and targeted adaptation of the product portfolio. The study emphasizes the importance of an agile and reactive approach to PPM in a rapidly changing environment. It demonstrates how generative AI can serve as a powerful tool to manage the complexity of a diversified and continually evolving product portfolio. The developed framework offers practical guidelines and strategies for companies to improve their PPM processes by leveraging the latest technological advancements while maintaining ecological and social responsibility. This paper significantly contributes to deepening the understanding of the application of generative AI in PPM and provides a framework for companies to manage their product portfolios more effectively and adapt to changing market conditions. The findings underscore the relevance of continuous adaptation and innovation in PPM strategies and demonstrate the potential of generative AI for proactive and future-oriented business management.

Keywords: servitization, product portfolio management, generative AI, disruptive innovation, machine and plant engineering

Procedia PDF Downloads 82
15034 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis

Authors: Daniel Murrant, Andrew Quinn, Lee Chapman

Abstract:

A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.

Keywords: climate change, power station cooling, UK water-energy nexus, water abstraction, water resources

Procedia PDF Downloads 294
15033 Effects of PAHs on Blood Thyroidal Hormones of Liza klunzingeri in the Northern Part of Hormuz Strait (Persian Gulf)

Authors: Fateme Afkhami, Mohsen Ehsanpour, Maryam Ehsanpour, Majid Afkhami

Abstract:

This study was conducted to determine the effects of polycyclic aromatic hydrocarbons (PAHs) on thyroidal hormones of Liza klunzingeri and to monitor marine pollution from northern part of Hormuz strait (Persian Gulf). Results showed the highest total PAHs levels (268.56 µg/kg) were in the fish samples and the lowest are obtained from water samples (3.12 µg/kg). Also, highest of PAHs levels in fish, sediment and water were found in St3. There was a positive correlation between T3 and T4, with PAHs results. T4 had a significant positive correlation (P<0.05).

Keywords: PAHs, thyroidal hormones, Liza klunzingeri, Hormuz Strait, Persian Gulf

Procedia PDF Downloads 703
15032 Microplastic Storages in Riverbed Sediments: Experimental on the Settling Process and Its Deposits

Authors: Alvarez Barrantes, Robert Dorrell, Christopher Hackney, Anne Baar, Roberto Fernandez, Daniel Parsons

Abstract:

Microplastic particles entering fluvial environments are deposited with natural sediments. Their settling properties can change by the absorption or adsorption of contaminants, organic matter, and organisms. These deposits include positively, neutrally, and negatively buoyant particles. This study aims to understand how plastic particles of different densities interact with natural sediments as they settle and how they are stored within the sediment deposit. The results of this study contribute to a better understanding of the deposition of microplastic particles and associated pollution in rivers. A set of 48 experiments was designed to investigate the settling process of microplastic particles in freshwater. The experimental work describes the vertical variation of cohesive and/or non-cohesive sediment versus microplastic densities in deposited sediment. The experiment consisted of adding microplastic particles, sediment, and water in a waterproof carton tube of a height of 24 cm and a diameter of 5 cm. The plastic selected is positively, neutrally, and negatively buoyant. The sediments consist of sand and clay with four different concentrations. The mixture of materials was shaken until is thoroughly mixed and left to settle for 24 hours. After the settlement, the tubes were frozen at -20 °C to be able to cut them and measure the thickness of the deposits and analyze the sediment and plastic distribution. The most representative experiments were repeated in a glass tube of the same size; to analyse the influences of current flows and depositional process. Finally, the glass tube experiments were used to study organic materials adsorption in plastic, settling the sample for four months. Defined microplastic layers were identified as the density of the plastic change. Preliminary results show that most of the positive buoyancy particles floated, neutral buoyancy particles form a layer above the sediment and negative buoyancy particles mixed with the sediment. The vertical grain size distribution of the deposits was analysed to determine deposition variation with and without plastic. It is expected that the positively buoyant particles are trapped in the sediment by the currents flows and sink due to organic material adsorption. Finally, the experiments will explain how microplastic particles, including positively buoyant ones, are stored in natural sediment deposits.

Keywords: microplastic adsorption process, microplastic deposition in natural sediment, microplastic pollution in rivers, storages of positive buoyancy microplastic particles

Procedia PDF Downloads 194
15031 Modulation of Tamoxifen-Induced Cytotoxicity in Breast Cancer Cell Lines by 3-Bromopyruvate

Authors: Yasmin M. Attia, Hanan S. El-Abhar, Mahmoud M. Al Marzabani, Samia A. Shouman

Abstract:

Background: Tamoxifen (TAM) is the most commonly used hormone therapy for the treatment of early and metastatic breast cancer. Although it significantly decreases the tumor recurrence rate and provides an overall benefit, as much as 20–30% of women still relapse during or after long-term therapy. 3-Bromopyruvate (3-BP) is a promising agent with impressive antitumor effects in several models of animal tumors and cell lines. Aim: This study was designed to investigate the combined effect of (TAM) and (3-BP) in breast cancer cells and to explore their molecular interaction via assessment of apoptotic, angiogenic, and metastatic markers. Methods: In vitro cytotoxicity study was carried out for both compounds to determine the combination regimen producing a synergistic effect and mechanistic pathways were studied using RT-PCR and western techniques. Moreover, the anti-oncolytic and anti-angiogenic potentials were assessed in mice bearing solid Ehrlich carcinoma (SEC). Results: The combined treatment significantly increased the expressions and protein levels of caspase 7, 9, and 3 and decreased of angiogenic markers VEGF, HIF-1α, and HK2 compared to cells treated with either drug individually. However, there were no significant changes in MMP-2 and MMP-9 protein levels. Interestingly, the in vivo results supported the in vitro findings; there was a decrease in the tumor volume and VEFG using immunohistochemistry in the combination-treated groups compared to either TAM or 3-BP treated one. Conclusion: 3-BP synergizes the cytotoxic effect of TAM by increasing apoptosis and decreasing angiogenesis which makes this combination a promising regimen to be applied clinically.

Keywords: tamoxifen, 3-bromopyruvate, breast cancer, cytotoxicity, angiogenesis

Procedia PDF Downloads 226
15030 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint

Authors: M. Najafi, F. Rahimi Dehgolan

Abstract:

In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.

Keywords: non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method

Procedia PDF Downloads 370
15029 Development of a Mixed-Reality Hands-Free Teleoperated Robotic Arm for Construction Applications

Authors: Damith Tennakoon, Mojgan Jadidi, Seyedreza Razavialavi

Abstract:

With recent advancements of automation in robotics, from self-driving cars to autonomous 4-legged quadrupeds, one industry that has been stagnant is the construction industry. The methodologies used in a modern-day construction site consist of arduous physical labor and the use of heavy machinery, which has not changed over the past few decades. The dangers of a modern-day construction site affect the health and safety of the workers due to performing tasks such as lifting and moving heavy objects and having to maintain unhealthy posture to complete repetitive tasks such as painting, installing drywall, and laying bricks. Further, training for heavy machinery is costly and requires a lot of time due to their complex control inputs. The main focus of this research is using immersive wearable technology and robotic arms to perform the complex and intricate skills of modern-day construction workers while alleviating the physical labor requirements to perform their day-to-day tasks. The methodology consists of mounting a stereo vision camera, the ZED Mini by Stereolabs, onto the end effector of an industrial grade robotic arm, streaming the video feed into the Virtual Reality (VR) Meta Quest 2 (Quest 2) head-mounted display (HMD). Due to the nature of stereo vision, and the similar field-of-views between the stereo camera and the Quest 2, human-vision can be replicated on the HMD. The main advantage this type of camera provides over a traditional monocular camera is it gives the user wearing the HMD a sense of the depth of the camera scene, specifically, a first-person view of the robotic arm’s end effector. Utilizing the built-in cameras of the Quest 2 HMD, open-source hand-tracking libraries from OpenXR can be implemented to track the user’s hands in real-time. A mixed-reality (XR) Unity application can be developed to localize the operator's physical hand motions with the end-effector of the robotic arm. Implementing gesture controls will enable the user to move the robotic arm and control its end-effector by moving the operator’s arm and providing gesture inputs from a distant location. Given that the end effector of the robotic arm is a gripper tool, gripping and opening the operator’s hand will translate to the gripper of the robot arm grabbing or releasing an object. This human-robot interaction approach provides many benefits within the construction industry. First, the operator’s safety will be increased substantially as they can be away from the site-location while still being able perform complex tasks such as moving heavy objects from place to place or performing repetitive tasks such as painting walls and laying bricks. The immersive interface enables precision robotic arm control and requires minimal training and knowledge of robotic arm manipulation, which lowers the cost for operator training. This human-robot interface can be extended to many applications, such as handling nuclear accident/waste cleanup, underwater repairs, deep space missions, and manufacturing and fabrication within factories. Further, the robotic arm can be mounted onto existing mobile robots to provide access to hazardous environments, including power plants, burning buildings, and high-altitude repair sites.

Keywords: construction automation, human-robot interaction, hand-tracking, mixed reality

Procedia PDF Downloads 80
15028 A Study on Improvement of Performance of Anti-Splash Device for Cargo Oil Tank Vent Pipe Using CFD Simulation and Artificial Neural Network

Authors: Min-Woo Kim, Ok-Kyun Na, Jun-Ho Byun, Jong-Hwan Park, Seung-Hwa Yang, Joon-Hong Park, Young-Chul Park

Abstract:

This study is focused on the comparative analysis and improvement to grasp the flow characteristic of the Anti-Splash Device located under the P/V Valve and new concept design models using the CFD analysis and Artificial Neural Network. The P/V valve located upper deck to solve the pressure rising and vacuum condition of inner tank of the liquid cargo ships occurred oil outflow accident by transverse and longitudinal sloshing force. Anti-Splash Device is fitted to improve and prevent this problem in the shipbuilding industry. But the oil outflow accidents are still reported by ship owners. Thus, four types of new design model are presented by study. Then, comparative analysis is conducted with new models and existing model. Mostly the key criterion of this problem is flux in the outlet of the Anti-Splash Device. Therefore, the flow and velocity are grasped by transient analysis. And then it decided optimum model and design parameters to develop model. Later, it needs to develop an Anti-Splash Device by Flow Test to get certification and verification using experiment equipment.

Keywords: anti-splash device, P/V valve, sloshing, artificial neural network

Procedia PDF Downloads 590
15027 Compression-Extrusion Test to Assess Texture of Thickened Liquids for Dysphagia

Authors: Jesus Salmeron, Carmen De Vega, Maria Soledad Vicente, Mireia Olabarria, Olaia Martinez

Abstract:

Dysphagia or difficulty in swallowing affects mostly elder people: 56-78% of the institutionalized and 44% of the hospitalized. Liquid food thickening is a necessary measure in this situation because it reduces the risk of penetration-aspiration. Until now, and as proposed by the American Dietetic Association in 2002, possible consistencies have been categorized in three groups attending to their viscosity: nectar (50-350 mPa•s), honey (350-1750 mPa•s) and pudding (>1750 mPa•s). The adequate viscosity level should be identified for every patient, according to her/his impairment. Nevertheless, a systematic review on dysphagia diet performed recently indicated that there is no evidence to suggest that there is any transition of clinical relevance between the three levels proposed. It was also stated that other physical properties of the bolus (slipperiness, density or cohesiveness, among others) could influence swallowing in affected patients and could contribute to the amount of remaining residue. Texture parameters need to be evaluated as possible alternative to viscosity. The aim of this study was to evaluate the instrumental extrusion-compression test as a possible tool to characterize changes along time in water thickened with various products and in the three theoretical consistencies. Six commercial thickeners were used: NM® (NM), Multi-thick® (M), Nutilis Powder® (Nut), Resource® (R), Thick&Easy® (TE) and Vegenat® (V). All of them with a modified starch base. Only one of them, Nut, also had a 6,4% of gum (guar, tara and xanthan). They were prepared as indicated in the instructions of each product and dispensing the correspondent amount for nectar, honey and pudding consistencies in 300 mL of tap water at 18ºC-20ºC. The mixture was stirred for about 30 s. Once it was homogeneously spread, it was dispensed in 30 mL plastic glasses; always to the same height. Each of these glasses was used as a measuring point. Viscosity was measured using a rotational viscometer (ST-2001, Selecta, Barcelona). Extrusion-compression test was performed using a TA.XT2i texture analyzer (Stable Micro Systems, UK) with a 25 mm diameter cylindrical probe (SMSP/25). Penetration distance was set at 10 mm and a speed of 3 mm/s. Measurements were made at 1, 5, 10, 20, 30, 40, 50 and 60 minutes from the moment samples were mixed. From the force (g)–time (s) curves obtained in the instrumental assays, maximum force peak (F) was chosen a reference parameter. Viscosity (mPa•s) and F (g) showed to be highly correlated and had similar development along time, following time-dependent quadratic models. It was possible to predict viscosity using F as an independent variable, as they were linearly correlated. In conclusion, compression-extrusion test could be an alternative and a useful tool to assess physical characteristics of thickened liquids.

Keywords: compression-extrusion test, dysphagia, texture analyzer, thickener

Procedia PDF Downloads 368
15026 The Effects of Family Economic Situation (Poverty) on the Domestic Violence

Authors: Fatemeh Noughani, Seyd Mehdi Sadat

Abstract:

Violence against women as a global problem is not confined to any geographical and cultural area. The thoughts and opinions propagating the violence are seen in many cultural beliefs of societies. However, the shape, type and nature of it is different in different cultures. Also, many Iranian women have experienced different dimensions of domestic violence in their lives. This experience may vary with the family economic situation and poverty. Therefore, this research had studied the effects of family economic situation (poverty) on the increase of domestic violence against women. The sample of this study includes 126 married women older than 8 years old and they were selected by stratified and quota sampling method. The results showed that there is a direct and significant between the family economic situation and employment situation of women and domestic violence against women. More precisely, having economic capital, financial ability, affects the couple’s relationship and will solve their many social problems and perhaps, it seem that in terms of economic violence, the men who have higher economic capital, exert the lowest level of economic violence against their wives.

Keywords: economic situation , domestic violence, poverty, Iran

Procedia PDF Downloads 410
15025 Replacement of the Distorted Dentition of the Cone Beam Computed Tomography Scan Models for Orthognathic Surgery Planning

Authors: T. Almutairi, K. Naudi, N. Nairn, X. Ju, B. Eng, J. Whitters, A. Ayoub

Abstract:

Purpose: At present Cone Beam Computed Tomography (CBCT) imaging does not record dental morphology accurately due to the scattering produced by metallic restorations and the reported magnification. The aim of this pilot study is the development and validation of a new method for the replacement of the distorted dentition of CBCT scans with the dental image captured by the digital intraoral camera. Materials and Method: Six dried skulls with orthodontics brackets on the teeth were used in this study. Three intra-oral markers made of dental stone were constructed which were attached to orthodontics brackets. The skulls were CBCT scanned, and occlusal surface was captured using TRIOS® 3D intraoral scanner. Marker based and surface based registrations were performed to fuse the digital intra-oral scan(IOS) into the CBCT models. This produced a new composite digital model of the skull and dentition. The skulls were scanned again using the commercially accurate Laser Faro® arm to produce the 'gold standard' model for the assessment of the accuracy of the developed method. The accuracy of the method was assessed by measuring the distance between the occlusal surfaces of the new composite model and the 'gold standard' 3D model of the skull and teeth. The procedure was repeated a week apart to measure the reproducibility of the method. Results: The results showed no statistically significant difference between the measurements on the first and second occasions. The absolute mean distance between the new composite model and the laser model ranged between 0.11 mm to 0.20 mm. Conclusion: The dentition of the CBCT can be accurately replaced with the dental image captured by the intra-oral scanner to create a composite model. This method will improve the accuracy of orthognathic surgical prediction planning, with the final goal of the fabrication of a physical occlusal wafer without to guide orthognathic surgery and eliminate the need for dental impression.

Keywords: orthognathic surgery, superimposition, models, cone beam computed tomography

Procedia PDF Downloads 198
15024 Molecular Modeling and Prediction of the Physicochemical Properties of Polyols in Aqueous Solution

Authors: Maria Fontenele, Claude-Gilles Dussap, Vincent Dumouilla, Baptiste Boit

Abstract:

Roquette Frères is a producer of plant-based ingredients that employs many processes to extract relevant molecules and often transforms them through chemical and physical processes to create desired ingredients with specific functionalities. In this context, Roquette encounters numerous multi-component complex systems in their processes, including fibers, proteins, and carbohydrates, in an aqueous environment. To develop, control, and optimize both new and old processes, Roquette aims to develop new in silico tools. Currently, Roquette uses process modelling tools which include specific thermodynamic models and is willing to develop computational methodologies such as molecular dynamics simulations to gain insights into the complex interactions in such complex media, and especially hydrogen bonding interactions. The issue at hand concerns aqueous mixtures of polyols with high dry matter content. The polyols mannitol and sorbitol molecules are diastereoisomers that have nearly identical chemical structures but very different physicochemical properties: for example, the solubility of sorbitol in water is 2.5 kg/kg of water, while mannitol has a solubility of 0.25 kg/kg of water at 25°C. Therefore, predicting liquid-solid equilibrium properties in this case requires sophisticated solution models that cannot be based solely on chemical group contributions, knowing that for mannitol and sorbitol, the chemical constitutive groups are the same. Recognizing the significance of solvation phenomena in polyols, the GePEB (Chemical Engineering, Applied Thermodynamics, and Biosystems) team at Institut Pascal has developed the COSMO-UCA model, which has the structural advantage of using quantum mechanics tools to predict formation and phase equilibrium properties. In this work, we use molecular dynamics simulations to elucidate the behavior of polyols in aqueous solution. Specifically, we employ simulations to compute essential metrics such as radial distribution functions and hydrogen bond autocorrelation functions. Our findings illuminate a fundamental contrast: sorbitol and mannitol exhibit disparate hydrogen bond lifetimes within aqueous environments. This observation serves as a cornerstone in elucidating the divergent physicochemical properties inherent to each compound, shedding light on the nuanced interplay between their molecular structures and water interactions. We also present a methodology to predict the physicochemical properties of complex solutions, taking as sole input the three-dimensional structure of the molecules in the medium. Finally, by developing knowledge models, we represent some physicochemical properties of aqueous solutions of sorbitol and mannitol.

Keywords: COSMO models, hydrogen bond, molecular dynamics, thermodynamics

Procedia PDF Downloads 42
15023 Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients

Authors: Elnaz Saeedi, Jamileh Abolaghasemi, Mohsen Nasiri Tousi, Saeedeh Khosravi

Abstract:

Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients’ survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients’ survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis 'B' with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year’s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients’ death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable.

Keywords: frailty model, latent variables, liver cirrhosis, parametric distribution

Procedia PDF Downloads 261
15022 Stability Assessment of Chamshir Dam Based on DEM, South West Zagros

Authors: Rezvan Khavari

Abstract:

The Zagros fold-thrust belt in SW Iran is a part of the Alpine-Himalayan system which consists of a variety of structures with different sizes or geometries. The study area is Chamshir Dam, which is located on the Zohreh River, 20 km southeast of Gachsaran City (southwest Iran). The satellite images are valuable means available to geologists for locating geological or geomorphological features expressing regional fault or fracture systems, therefore, the satellite images were used for structural analysis of the Chamshir dam area. As well, using the DEM and geological maps, 3D Models of the area have been constructed. Then, based on these models, all the acquired fracture traces data were integrated in Geographic Information System (GIS) environment by using Arc GIS software. Based on field investigation and DEM model, main structures in the area consist of Cham Shir syncline and two fault sets, the main thrust faults with NW-SE direction and small normal faults in NE-SW direction. There are three joint sets in the study area, both of them (J1 and J3) are the main large fractures around the Chamshir dam. These fractures indeed consist with the normal faults in NE-SW direction. The third joint set in NW-SE is normal to the others. In general, according to topography, geomorphology and structural geology evidences, Chamshir dam has a potential for sliding in some parts of Gachsaran formation.

Keywords: DEM, chamshir dam, zohreh river, satellite images

Procedia PDF Downloads 482
15021 The Relations between Language Diversity and Similarity and Adults' Collaborative Creative Problem Solving

Authors: Z. M. T. Lim, W. Q. Yow

Abstract:

Diversity in individual problem-solving approaches, culture and nationality have been shown to have positive effects on collaborative creative processes in organizational and scholastic settings. For example, diverse graduate and organizational teams consisting of members with both structured and unstructured problem-solving styles were found to have more creative ideas on a collaborative idea generation task than teams that comprised solely of members with either structured or unstructured problem-solving styles. However, being different may not always provide benefits to the collaborative creative process. In particular, speaking different languages may hinder mutual engagement through impaired communication and thus collaboration. Instead, sharing similar languages may have facilitative effects on mutual engagement in collaborative tasks. However, no studies have explored the relations between language diversity and adults’ collaborative creative problem solving. Sixty-four Singaporean English-speaking bilingual undergraduates were paired up into similar or dissimilar language pairs based on the second language they spoke (e.g., for similar language pairs, both participants spoke English-Mandarin; for dissimilar language pairs, one participant spoke English-Mandarin and the other spoke English-Korean). Each participant completed the Ravens Progressive Matrices Task individually. Next, they worked in pairs to complete a collaborative divergent thinking task where they used mind-mapping techniques to brainstorm ideas on a given problem together (e.g., how to keep insects out of the house). Lastly, the pairs worked on a collaborative insight problem-solving task (Triangle of Coins puzzle) where they needed to flip a triangle of ten coins around by moving only three coins. Pairs who had prior knowledge of the Triangle of Coins puzzle were asked to complete an equivalent Matchstick task instead, where they needed to make seven squares by moving only two matchsticks based on a given array of matchsticks. Results showed that, after controlling for intelligence, similar language pairs completed the collaborative insight problem-solving task faster than dissimilar language pairs. Intelligence also moderated these relations. Among adults of lower intelligence, similar language pairs solved the insight problem-solving task faster than dissimilar language pairs. These differences in speed were not found in adults with higher intelligence. No differences were found in the number of ideas generated in the collaborative divergent thinking task between similar language and dissimilar language pairs. In conclusion, sharing similar languages seem to enrich collaborative creative processes. These effects were especially pertinent to pairs with lower intelligence. This provides guidelines for the formation of groups based on shared languages in collaborative creative processes. However, the positive effects of shared languages appear to be limited to the insight problem-solving task and not the divergent thinking task. This could be due to the facilitative effects of other factors of diversity as found in previous literature. Background diversity, for example, may have a larger facilitative effect on the divergent thinking task as compared to the insight problem-solving task due to the varied experiences individuals bring to the task. In conclusion, this study contributes to the understanding of the effects of language diversity in collaborative creative processes and challenges the general positive effects that diversity has on these processes.

Keywords: bilingualism, diversity, creativity, collaboration

Procedia PDF Downloads 317
15020 Numerical Pricing of Financial Options under Irrational Exercise Times and Regime-Switching Models

Authors: Mohammad Saber Rohi, Saghar Heidari

Abstract:

In this paper, we studied the pricing problem of American options under a regime-switching model with the possibility of a non-optimal exercise policy (early or late exercise time) which is called an irrational strategy. For this, we consider a Markovmodulated model for the dynamic of the underlying asset as an alternative model to the classical Balck-Scholes-Merton model (BSM) and an intensity-based model for the irrational strategy, to provide more realistic results for American option prices under the irrational behavior in real financial markets. Applying a partial differential equation (PDE) approach, the pricing problem of American options under regime-switching models can be formulated as coupled PDEs. To solve the resulting systems of PDEs in this model, we apply a finite element method as the numerical solving procedure to the resulting variational inequality. Under some appropriate assumptions, we establish the stability of the method and compare its accuracy to some recent works to illustrate the suitability of the proposed model and the accuracy of the applied numerical method for the pricing problem of American options under the regime-switching model with irrational behaviors.

Keywords: irrational exercise strategy, rationality parameter, regime-switching model, American option, finite element method, variational inequality

Procedia PDF Downloads 73
15019 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: environmental internet of things, EIoT, machine learning, anomaly detection, environment monitoring

Procedia PDF Downloads 151
15018 Effect of Pollution and Ethylene-Diurea on Bean Plants Grown in KSA

Authors: Abdel Rahman A. Alzandi

Abstract:

The primary objectives of this investigation were to examine the interactive effects of three air quality treatments, ethylene-diurea (EDU) and two irrigation conditions on physiological characteristics of kidney beans (Phaseolus vulgaris L.) during its whole growth. These plants were grown in 12-open top chambers (OTC's). Ethylene-diurea (EDU) was used as a factor to evaluate O3 pollution impact on plant growth. The air quality treatments consisted of charcoal filtered (CF) air, nonfiltered (NF) air and ambient air (AA) were irrigated and non- irrigated. Leaf samples were collected from upper canopy positions six times (pre- EDU addition, week after four EDU's addition, at the time of harvesting). Maximal differences in leaf carbohydrate, N contents, pigments and total lipids were observed in response to moisture conditions in presence and absence of EDU applications. Significant reduction were noted for air quality treatments regarding carbohydrate and pigment fractions but not for all cases of leaf N and lipid contents under O3 effects only. Minimal differences were found for first EDU application while maximal ones were recorded at 200 mg l-1 of treatments. The EDU treatments stimulated carbohydrate and pigment contents at the upper canopy position with higher levels for both NF and AA compared to untreated conditions. The NF and AA treatments caused lower total carbohydrate and pigment contents in the canopy position before harvesting of EDU applications. The stimulation in leaf carbohydrates by the EDU treatment, compared to the non-treated EDU of AA and NF treatments, provides a rational explanation for the counteracting effects of EDU against moderate exposures to O3 regarding grain yields in C3 plants.

Keywords: leaf contents, moisture relations, EDU additions, global climate change, kidney bean

Procedia PDF Downloads 350
15017 Inferring Influenza Epidemics in the Presence of Stratified Immunity

Authors: Hsiang-Yu Yuan, Marc Baguelin, Kin O. Kwok, Nimalan Arinaminpathy, Edwin Leeuwen, Steven Riley

Abstract:

Traditional syndromic surveillance for influenza has substantial public health value in characterizing epidemics. Because the relationship between syndromic incidence and the true infection events can vary from one population to another and from one year to another, recent studies rely on combining serological test results with syndromic data from traditional surveillance into epidemic models to make inference on epidemiological processes of influenza. However, despite the widespread availability of serological data, epidemic models have thus far not explicitly represented antibody titre levels and their correspondence with immunity. Most studies use dichotomized data with a threshold (Typically, a titre of 1:40 was used) to define individuals as likely recently infected and likely immune and further estimate the cumulative incidence. Underestimation of Influenza attack rate could be resulted from the dichotomized data. In order to improve the use of serosurveillance data, here, a refinement of the concept of the stratified immunity within an epidemic model for influenza transmission was proposed, such that all individual antibody titre levels were enumerated explicitly and mapped onto a variable scale of susceptibility in different age groups. Haemagglutination inhibition titres from 523 individuals and 465 individuals during pre- and post-pandemic phase of the 2009 pandemic in Hong Kong were collected. The model was fitted to serological data in age-structured population using Bayesian framework and was able to reproduce key features of the epidemics. The effects of age-specific antibody boosting and protection were explored in greater detail. RB was defined to be the effective reproductive number in the presence of stratified immunity and its temporal dynamics was compared to the traditional epidemic model using use dichotomized seropositivity data. Deviance Information Criterion (DIC) was used to measure the fitness of the model to serological data with different mechanisms of the serological response. The results demonstrated that the differential antibody response with age was present (ΔDIC = -7.0). The age-specific mixing patterns with children specific transmissibility, rather than pre-existing immunity, was most likely to explain the high serological attack rates in children and low serological attack rates in elderly (ΔDIC = -38.5). Our results suggested that the disease dynamics and herd immunity of a population could be described more accurately for influenza when the distribution of immunity was explicitly represented, rather than relying only on the dichotomous states 'susceptible' and 'immune' defined by the threshold titre (1:40) (ΔDIC = -11.5). During the outbreak, RB declined slowly from 1.22[1.16-1.28] in the first four months after 1st May. RB dropped rapidly below to 1 during September and October, which was consistent to the observed epidemic peak time in the late September. One of the most important challenges for infectious disease control is to monitor disease transmissibility in real time with statistics such as the effective reproduction number. Once early estimates of antibody boosting and protection are obtained, disease dynamics can be reconstructed, which are valuable for infectious disease prevention and control.

Keywords: effective reproductive number, epidemic model, influenza epidemic dynamics, stratified immunity

Procedia PDF Downloads 260
15016 A Data-Driven Compartmental Model for Dengue Forecasting and Covariate Inference

Authors: Yichao Liu, Peter Fransson, Julian Heidecke, Jonas Wallin, Joacim Rockloev

Abstract:

Dengue, a mosquito-borne viral disease, poses a significant public health challenge in endemic tropical or subtropical countries, including Sri Lanka. To reveal insights into the complexity of the dynamics of this disease and study the drivers, a comprehensive model capable of both robust forecasting and insightful inference of drivers while capturing the co-circulating of several virus strains is essential. However, existing studies mostly focus on only one aspect at a time and do not integrate and carry insights across the siloed approach. While mechanistic models are developed to capture immunity dynamics, they are often oversimplified and lack integration of all the diverse drivers of disease transmission. On the other hand, purely data-driven methods lack constraints imposed by immuno-epidemiological processes, making them prone to overfitting and inference bias. This research presents a hybrid model that combines machine learning techniques with mechanistic modelling to overcome the limitations of existing approaches. Leveraging eight years of newly reported dengue case data, along with socioeconomic factors, such as human mobility, weekly climate data from 2011 to 2018, genetic data detecting the introduction and presence of new strains, and estimates of seropositivity for different districts in Sri Lanka, we derive a data-driven vector (SEI) to human (SEIR) model across 16 regions in Sri Lanka at the weekly time scale. By conducting ablation studies, the lag effects allowing delays up to 12 weeks of time-varying climate factors were determined. The model demonstrates superior predictive performance over a pure machine learning approach when considering lead times of 5 and 10 weeks on data withheld from model fitting. It further reveals several interesting interpretable findings of drivers while adjusting for the dynamics and influences of immunity and introduction of a new strain. The study uncovers strong influences of socioeconomic variables: population density, mobility, household income and rural vs. urban population. The study reveals substantial sensitivity to the diurnal temperature range and precipitation, while mean temperature and humidity appear less important in the study location. Additionally, the model indicated sensitivity to vegetation index, both max and average. Predictions on testing data reveal high model accuracy. Overall, this study advances the knowledge of dengue transmission in Sri Lanka and demonstrates the importance of incorporating hybrid modelling techniques to use biologically informed model structures with flexible data-driven estimates of model parameters. The findings show the potential to both inference of drivers in situations of complex disease dynamics and robust forecasting models.

Keywords: compartmental model, climate, dengue, machine learning, social-economic

Procedia PDF Downloads 84
15015 Analysis of Environmental Sustainability in Post- Earthquake Reconstruction : A Case of Barpak, Nepal

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

Barpak in northern Nepal represents a unique identity expressed through the local rituals, values, lifeways and the styles of vernacular architecture. The traditional residential buildings and construction practices adopted by the dominant ethnic groups: Ghales and Gurungs, reflect environmental, social, cultural and economic concerns. However, most of these buildings did not survive the Gorkha earthquake in 2015 that made many residents skeptical about their strength to resist future disasters. This led Barpak residents to prefer modern housing designs primarily for the strength but additionally for convenience and access to earthquake relief funds. Post-earthquake reconstruction has transformed the cohesive community, developed over hundreds of years into a haphazard settlement with the imposition of externally-driven building models. Housing guidelines provided for the community reconstruction and earthquake resilience have been used as a singular template, similar to other communities on different geographical locations. The design and construction of these buildings do not take into account the local, historical, environmental, social, cultural and economic context of Barpak. In addition to the physical transformation of houses and the settlement, the consequences continue to develop challenges to sustainability. This paper identifies the major challenges for environmental sustainability with the construction of new houses in post-earthquake Barpak. Mixed methods such as interviews, focus groups, site observation, and documentation, and analysis of housing and neighborhood design have been used for data collection. The discernible changing situation of this settlement due to the new housing has included reduced climatic adaptation and thermal comfort, increased consumption of agricultural land and water, minimized use of local building materials, and an increase in energy demand. The research has identified that reconstruction housing practices happening in Barpak, while responding to crucial needs for disaster recovery and resilience, are also leading this community towards an unsustainable future. This study has also integrated environmental, social, cultural and economic parameters into an assessment framework that could be used to develop place-based design guidelines in the context of other post-earthquake reconstruction efforts. This framework seeks to minimize the unintended repercussions of unsustainable reconstruction interventions, support the vitality of vernacular architecture and traditional lifeways and respond to context-based needs in coordination with residents.

Keywords: earthquake, environment, reconstruction, sustainability

Procedia PDF Downloads 115
15014 Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Hekmat R. Madian, Sherif A. El-Safty, Mohamed A. Shenashen

Abstract:

After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation.

Keywords: silicone antifouling, environmentally friendly, nanocomposites, nanofillers, fouling repellency, hydrophobicity

Procedia PDF Downloads 114
15013 Relationship between Physical Activity Level and Functional Movement in 16-years old Schoolchildren: A Multilevel Modelling Approach

Authors: Josip Karuc, Marjeta Mišigoj-Duraković, Goran Marković, Vedran Hadžić, Michael J. Duncan, Hrvoje Podnar, Maroje Sorić

Abstract:

As a part of the CRO-PALS longitudinal study, this investigation aimed to examine the association between different levels of physical activity (PA) and movement quality in 16-years old school children. The total number of participants in this research was 725. Movement quality was assessed via the Functional Movement Screen (FMSTM), and the PA level was estimated using the School Health Action, Planning, and Evaluation System (SHAPES) questionnaire. In addition, body fat and socioeconomic status (SES) were assessed. In order to investigate the association between total FMS score and different levels of PA, multilevel modeling was employed for boys (n=359) and girls (n=366) separately. All models were adjusted for age, body fat, and SES. Among boys, MVPA, MPA, and VPA were not significant predictors of the total FMS score (β=0.000, p=0.78; β=-0.002, p=0.455; β=0.004, p=0.158, respectively). On the contrary, among girls, VPA and MVPA showed significant effects on the total FMS score (β=0.011, p=0.001, β=0.005, p=0.006, respectively). The findings of this research provide evidence that the intensity of PA is a minor but relevant factor in describing the association between PA and movement quality in adolescent girls but not in boys. This means that the PA level does not guarantee optimal functional movement patterns. Therefore, practicing functional movement patterns in an isolated manner and at moderate to vigorous intensity could be beneficial in order to reduce the risk of injury incidence and potential orthopedic abnormalities in later life. This work was supported by the Croatian Science Foundation, grant no: IP-2016-06-9926 and grant no: DOK-2018-01-2328.

Keywords: functional movement screen, fundamental movement patterns, movement quality, pediatric

Procedia PDF Downloads 161
15012 Evaluation of Serine and Branched Chain Amino Acid Levels in Depression and the Beneficial Effects of Exercise in Rats

Authors: V. A. Doss, R. Sowndarya, K. Juila Rose Mary

Abstract:

Objective: Amino acid neurotransmitter system dysfunction plays a major role in the pathophysiology of depression. The objective of the present study was to identify the amino acids as possible metabolite biomarkers for depression using GCMS (Gas Chromatography Mass Spectrometry) before and after exercise regimen in brain samples of depression induced animal models. Methods: Depression-like behaviour was induced by Chronic Unpredictable mild stress (CUMS). Severity of depression was measured by forced swim test (FST) and sucrose consumption test (SCT). Swimming protocol was followed for 4 weeks of exercise treatment. Brain obtained from depressed and exercise treated rats were used for the metabolite analysis by GCMS. Subsequent statistical analysis obtained by ANOVA followed by post hoc test revealed significant metabolic changes. Results: Amino acids such as alanine, glycine, serine, glutamate, homocysteine, proline and branched chain aminoacids (BCAs) Leucine, Isoleucine, Valine were determined in brain samples of control, depressed and exercised groups. Among these amino acids, the levels of D-Serine and branched chain amino acids were found to be decreased in depression induced rats. After four weeks of swimming exercise regimen, there were improvements in the levels of serine and Branched chain amino acids. Conclusion: We suggest that Serine and BCAs may be investigated as potential metabolite markers using GCMS and their beneficial metabolic changes in Exercise.

Keywords: metabolomics, depression, forced swim test, exercise, amino acid metabolites, GCMS, biomarker

Procedia PDF Downloads 326
15011 Sequential Mixed Methods Study to Examine the Potentiality of Blackboard-Based Collaborative Writing as a Solution Tool for Saudi Undergraduate EFL Students’ Writing Difficulties

Authors: Norah Alosayl

Abstract:

English is considered the most important foreign language in the Kingdom of Saudi Arabia (KSA) because of the usefulness of English as a global language compared to Arabic. As students’ desire to improve their English language skills has grown, English writing has been identified as the most difficult problem for Saudi students in their language learning. Although the English language in Saudi Arabia is taught beginning in the seventh grade, many students have problems at the university level, especially in writing, due to a gap between what is taught in secondary and high schools and university expectations- pupils generally study English at school, based on one book with few exercises in vocabulary and grammar exercises, and there are no specific writing lessons. Moreover, from personal teaching experience at King Saud bin Abdulaziz University, students face real problems with their writing. This paper revolves around the blackboard-based collaborative writing to help the undergraduate Saudi EFL students, in their first year enrolled in two sections of ENGL 101 in the first semester of 2021 at King Saud bin Abdulaziz University, practice the most difficult skill they found in their writing through a small group. Therefore, a sequential mixed methods design will be suited. The first phase of the study aims to highlight the most difficult skill experienced by students from an official writing exam that is evaluated by their teachers through an official rubric used in King Saud bin Abdulaziz University. In the second phase, this study will intend to investigate the benefits of social interaction on the process of learning writing. Students will be provided with five collaborative writing tasks via discussion feature on Blackboard to practice a skill that they found difficult in writing. the tasks will be formed based on social constructivist theory and pedagogic frameworks. The interaction will take place between peers and their teachers. The frequencies of students’ participation and the quality of their interaction will be observed through manual counting, screenshotting. This will help the researcher understand how students actively work on the task through the amount of their participation and will also distinguish the type of interaction (on task, about task, or off-task). Semi-structured interviews will be conducted with students to understand their perceptions about the blackboard-based collaborative writing tasks, and questionnaires will be distributed to identify students’ attitudes with the tasks.

Keywords: writing difficulties, blackboard-based collaborative writing, process of learning writing, interaction, participations

Procedia PDF Downloads 191
15010 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid

Authors: Eyad Almaita

Abstract:

In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.

Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption

Procedia PDF Downloads 345