Search results for: data driven decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30540

Search results for: data driven decision making

26850 How Leader's Language Framing Affects Employees’ Perceptions and Moral Judgment in Organizations

Authors: Cindy Carvalho

Abstract:

Leaders play a crucial role in shaping employee behavior through their communication. Language is a powerful tool used by leaders to influence perceptions, frame actions, and shape organizational culture. While euphemisms and metaphors are widely used, their impact on unethical behaviors in organizational settings remains underexplored. This study investigates how euphemistic and aggressive (military) language in leaders’ speeches can influence employees’ perceptions and encourage unethical behaviors. Two studies were conducted using a between-subjects design where 200 participants for the first study and 280 participants for the second study, recruited through Prolific, were exposed to either a euphemistic or aggressive (military) version of a hypothetical CEO’s speech. They evaluated their perception of the CEO and the company’s attractiveness. In the second part, participants were presented with three vignettes describing each different daily business situation tainted with ethical issues and they were asked how likely they would engage in such behavior. The type of speech impacted the perceptions of the CEO, with the military version leading to participants judging the CEO as less trustworthy, fair, and moral. However, no significant difference in moral judgment or organizational perception was observed. Interestingly, younger participants and female participants rated the CEO more negatively compared to older and male counterparts. The findings suggest that language framing influences perceptions of leadership but may have a limited immediate impact on ethical decision-making. The study's limitations include hypothetical context, isolated focus on language, and lack of incentives. Incentives push participants to consider their responses carefully and align them with perceived norms, reducing biases like social desirability. Future research should examine real-world settings and consider factors such as age, gender, and experience to understand unethical behavior in organizations better.

Keywords: leadership communication, language framing, ethical behavior, euphemism

Procedia PDF Downloads 14
26849 Improving the Quality of Staff Performance with a Talent-Driven Approach: Case Study of SAIPA Automotive Manufacturing Company in Iran

Authors: Abdolmajid Mosleh, Afzal Ghasimi

Abstract:

The purpose of this research is to investigate and identify effective factors that can improve the quality of personal performance in industrial companies. In the present study, it was assumed that the hidden variables of talent management could be explained by an important part of the variance in improving the quality of employee performance. This research is targeted in terms of applied research. The statistical population of the research is SAIPA automobile company with a number (N=10291); the sample of 380 people was selected based on the Cochran formula in a random sampling method among employed people. The measurement tool in this research was a questionnaire of 33 items with a control questionnaire that included two talent management departments (talent identification and talent exploitation) and improvements in staff performance (enhancement of technical and specialized capabilities, managerial capability, organizational interaction, and communication). The reliability of the internal consistency method was confirmed by the Cronbach's alpha coefficient and the two half-ways. In order to determine the validity of the questionnaire structure, confirmatory factor analysis was used. Based on the results of the data analysis, the effect of talent management on improving the quality of staff performance was confirmed. Based on the results of inferential statistics and structural equations of the proposed model, it had high fitness.

Keywords: employee performance, talent management, performance improvement, SAIPA automobile manufacturing company

Procedia PDF Downloads 93
26848 Towards the Development of Islamic Accounting Standards for Baitulmal, Waqaf, and Zakat Transactions: Addressing Gaps for Enhanced Accountability

Authors: N. Farahin Ali, Naharriah Mohamed, Hafiz Majdi, Fathiyyah, Fadliana Saman

Abstract:

This paper investigates the imperative for developing Islamic accounting standards tailored to Baitulmal, waqaf, and zakat transactions, with the goal of strengthening accountability and transparency in financial reporting. Current financial reporting frameworks in Malaysia—namely, the Malaysian Financial Reporting Standards (MFRS) and Malaysian Private Entities Reporting Standards (MPERS)—are designed predominantly for conventional financial transactions and fail to fully capture the Shariah-specific nature of these religious funds. The objective of this study is to critically examine the discrepancies between these conventional reporting standards and the requirements of Shariah-compliant financial transactions, specifically for Baitulmal, waqaf, and zakat. This research adopts a qualitative methodology, utilizing case studies from four different State Islamic Religious Councils to explore the current reporting practices. The findings reveal significant gaps between the conventional frameworks and the specific needs of Shariah-compliant accounting, leading to off-balance-sheet reporting of certain transactions and inconsistencies in financial disclosures across different states. These disparities undermine both the comparability and integrity of the financial reports, raising critical concerns regarding transparency and governance. The broader implications of this study underscore the necessity for a unified Islamic accounting standard that would align more closely with Shariah principles. Such a standard would not only enhance the disclosure and presentation of baitulmal, waqaf, and zakat transactions, but also improve decision-making processes, thereby fostering greater accountability and trust in the management of these Islamic funds. This paper advocates for a concerted effort to bridge the existing gap, ensuring that the distinctive characteristics of Islamic charitable funds are appropriately reflected in the financial reporting process.

Keywords: islamic accounting, waqf, zakat, islamic finance

Procedia PDF Downloads 20
26847 Bread-Making Properties of Rice Flour Dough Using Fatty Acid Salt

Authors: T. Hamaishi, Y. Morinaga, H. Morita

Abstract:

Introduction: Rice consumption in Japan has decreased, and Japanese government has recommended use of rice flour in order to expand the consumption of rice. There are two major protein components present in flour, called gliadin and glutenin. Gluten forms when water is added to flour and is mixed. As mixing continues, glutenin interacts with gliadin to form viscoelastic matrix of gluten. Rice flour bread does not expand as much as wheat flour bread. Because rice flour is not included gluten, it cannot construct gluten network in the dough. In recent years, some food additives have been used for dough-improving agent in bread making, especially surfactants has effect in order to improve dough extensibility. Therefore, we focused to fatty acid salt which is one of anionic surfactants. Fatty acid salt is a salt consist of fatty acid and alkali, it is main components of soap. According to JECFA(FAO/WHO Joint Expert Committee on Food Additives), salts of Myristic(C14), Palmitic(C16) and Stearic(C18) could be used as food additive. They have been evaluated ADI was not specified. In this study, we investigated to improving bread-making properties of rice flour dough adding fatty acid salt. Materials and methods: The sample of fatty acid salt is myristic (C14) dissolved in KOH solution to a concentration of 350 mM and pH 10.5. Rice dough was consisted of 100 g of flour using rice flour and wheat gluten, 5 g of sugar, 1.7 g of salt, 1.7g of dry yeast, 80 mL of water and fatty acid salt. Mixing was performed for 500 times by using hand. The concentration of C14K in the dough was 10 % relative to flour weight. Amount of gluten in the dough was 20 %, 30 % relative to flour weight. Dough expansion ability test was performed to measure physical property of bread dough according to the methods of Baker’s Yeast by Japan Yeast Industry Association. In this test, 150 g of dough was filled from bottom of the cylinder and fermented at 30 °C,85 % humidity for 120 min on an incubator. The height of the expansion in the dough was measured and determined its expansion ability. Results and Conclusion: Expansion ability of rice dough with gluten content of 20 %, 30% showed 316 mL, 341 mL for 120 min. When C14K adding to the rice dough, dough expansion abilities were 314 mL, 368 mL for 120 min, there was no significant difference. Conventionally it has been known that the rice flour dough contain gluten of 20 %. The considerable improvement of dough expansion ability was achieved when added C14K to wheat flour. The experimental result shows that c14k adding to the rice dough with gluten content more than 20 % was not improving bread-making properties. In conclusion, rice bread made with gluten content more than 20 % without C14K has been suggested to contribute to the formation of the sufficient gluten network.

Keywords: expansion ability, fatty acid salt, gluten, rice flour dough

Procedia PDF Downloads 249
26846 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis

Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski

Abstract:

The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.

Keywords: cloud service, geodata cube, multiresolution, raster geodata

Procedia PDF Downloads 144
26845 A Numerical Study of the Tidal Currents in the Persian Gulf and Oman Sea

Authors: Fatemeh Sadat Sharifi, A. A. Bidokhti, M. Ezam, F. Ahmadi Givi

Abstract:

This study focuses on the tidal oscillation and its speed to create a general pattern in seas. The purpose of the analysis is to find out the amplitude and phase for several important tidal components. Therefore, Regional Ocean Models (ROMS) was rendered to consider the correlation and accuracy of this pattern. Finding tidal harmonic components allows us to predict tide at this region. Better prediction of these tides, making standard platform, making suitable wave breakers, helping coastal building, navigation, fisheries, port management and tsunami research. Result shows a fair accuracy in the SSH. It reveals tidal currents are highest in Hormuz Strait and the narrow and shallow region between Kish Island. To investigate flow patterns of the region, the results of limited size model of FVCOM were utilized. Many features of the present day view of ocean circulation have some precedent in tidal and long- wave studies. Tidal waves are categorized to be among the long waves. So that tidal currents studies have indeed effects in subsequent studies of sea and ocean circulations.

Keywords: barotropic tide, FVCOM, numerical model, OTPS, ROMS

Procedia PDF Downloads 237
26844 Risk in the South African Sectional Title Industry: An Assurance Perspective

Authors: Leandi Steenkamp

Abstract:

The sectional title industry has been a part of the property landscape in South Africa for almost half a century, and plays a significant role in addressing the housing problem in the country. Stakeholders such as owners and investors in sectional title property are in most cases not directly involved in the management thereof, and place reliance on the audited annual financial statements of bodies corporate for decision-making purposes. Although the industry seems to be highly regulated, the legislation regarding accounting and auditing of sectional title is vague and ambiguous. Furthermore, there are no industry-specific auditing and accounting standards to guide accounting and auditing practitioners in performing their work and industry financial benchmarks are not readily available. In addition, financial pressure on sectional title schemes is often very high due to the fact that some owners exercise unrealistic pressure to keep monthly levies as low as possible. All these factors have an impact on the business risk as well as audit risk of bodies corporate. Very little academic research has been undertaken on the sectional title industry in South Africa from an accounting and auditing perspective. The aim of this paper is threefold: Firstly, to discuss the findings of a literature review on uncertainties, ambiguity and confusing aspects in current legislation regarding the audit of a sectional title property that may cause or increase audit and business risk. Secondly, empirical findings of risk-related aspects from the results of interviews with three groups of body corporate role-players will be discussed. The role-players were body corporate trustee chairpersons, body corporate managing agents and accounting and auditing practitioners of bodies corporate. Specific reference will be made to business risk and audit risk. Thirdly, practical recommendations will be made on possibilities of closing the audit expectation gap, and further research opportunities in this regard will be discussed.

Keywords: assurance, audit, audit risk, body corporate, corporate governance, sectional title

Procedia PDF Downloads 270
26843 Speed Characteristics of Mixed Traffic Flow on Urban Arterials

Authors: Ashish Dhamaniya, Satish Chandra

Abstract:

Speed and traffic volume data are collected on different sections of four lane and six lane roads in three metropolitan cities in India. Speed data are analyzed to fit the statistical distribution to individual vehicle speed data and all vehicles speed data. It is noted that speed data of individual vehicle generally follows a normal distribution but speed data of all vehicle combined at a section of urban road may or may not follow the normal distribution depending upon the composition of traffic stream. A new term Speed Spread Ratio (SSR) is introduced in this paper which is the ratio of difference in 85th and 50th percentile speed to the difference in 50th and 15th percentile speed. If SSR is unity then speed data are truly normally distributed. It is noted that on six lane urban roads, speed data follow a normal distribution only when SSR is in the range of 0.86 – 1.11. The range of SSR is validated on four lane roads also.

Keywords: normal distribution, percentile speed, speed spread ratio, traffic volume

Procedia PDF Downloads 426
26842 An Exploratory Analysis of Brisbane's Commuter Travel Patterns Using Smart Card Data

Authors: Ming Wei

Abstract:

Over the past two decades, Location Based Service (LBS) data have been increasingly applied to urban and transportation studies due to their comprehensiveness and consistency. However, compared to other LBS data including mobile phone data, GPS and social networking platforms, smart card data collected from public transport users have arguably yet to be fully exploited in urban systems analysis. By using five weekdays of passenger travel transaction data taken from go card – Southeast Queensland’s transit smart card – this paper analyses the spatiotemporal distribution of passenger movement with regard to the land use patterns in Brisbane. Work and residential places for public transport commuters were identified after extracting journeys-to-work patterns. Our results show that the locations of the workplaces identified from the go card data and residential suburbs are largely consistent with those that were marked in the land use map. However, the intensity for some residential locations in terms of population or commuter densities do not match well between the map and those derived from the go card data. This indicates that the misalignment between residential areas and workplaces to a certain extent, shedding light on how enhancements to service management and infrastructure expansion might be undertaken.

Keywords: big data, smart card data, travel pattern, land use

Procedia PDF Downloads 287
26841 Tea and Its Working Methodology in the Biomass Estimation of Poplar Species

Authors: Pratima Poudel, Austin Himes, Heidi Renninger, Eric McConnel

Abstract:

Populus spp. (poplar) are the fastest-growing trees in North America, making them ideal for a range of applications as they can achieve high yields on short rotations and regenerate by coppice. Furthermore, poplar undergoes biochemical conversion to fuels without complexity, making it one of the most promising, purpose-grown, woody perennial energy sources. Employing wood-based biomass for bioenergy offers numerous benefits, including reducing greenhouse gas (GHG) emissions compared to non-renewable traditional fuels, the preservation of robust forest ecosystems, and creating economic prospects for rural communities.In order to gain a better understanding of the potential use of poplar as a biomass feedstock for biofuel in the southeastern US, the conducted a techno-economic assessment (TEA). This assessment is an analytical approach that integrates technical and economic factors of a production system to evaluate its economic viability. the TEA specifically focused on a short rotation coppice system employing a single-pass cut-and-chip harvesting method for poplar. It encompassed all the costs associated with establishing dedicated poplar plantations, including land rent, site preparation, planting, fertilizers, and herbicides. Additionally, we performed a sensitivity analysis to evaluate how different costs can affect the economic performance of the poplar cropping system. This analysis aimed to determine the minimum average delivered selling price for one metric ton of biomass necessary to achieve a desired rate of return over the cropping period. To inform the TEA, data on the establishment, crop care activities, and crop yields were derived from a field study conducted at the Mississippi Agricultural and Forestry Experiment Station's Bearden Dairy Research Center in Oktibbeha County and Pontotoc Ridge-Flatwood Branch Experiment Station in Pontotoc County.

Keywords: biomass, populus species, sensitivity analysis, technoeconomic analysis

Procedia PDF Downloads 84
26840 Disaster Education and Children with Visual Impairment

Authors: Vassilis Argyropoulos, Magda Nikolaraizi, Maria Papazafiri

Abstract:

This study describes a series of learning workshops, which took place within CUIDAR project. The workshops aimed to empower children to share their experiences and views in relation to natural hazards and disasters. The participants in the workshops were ten primary school students who had severe visual impairments or multiple disabilities and visual impairments (MDVI). The main objectives of the workshops were: a) to promote access of the children through the use of appropriate educational material such as texts in braille, enlarged text, tactile maps and the implementation of differentiated instruction, b) to make children aware regarding their rights to have access to information and to participate in planning and decision-making especially in relation to disaster education programs, and c) to encourage children to have an active role during the workshops through child-led and experiential learning activities. The children expressed their views regarding the meaning of hazards and disasters. Following, they discussed their experiences and emotions regarding natural hazards and disasters, and they chose to place the emphasis on a hazard, which was more pertinent to them, their community and their region, namely fires. Therefore, they recalled fires that have caused major disasters, and they discussed about the impact that these fires had on their community or on their country. Furthermore, they were encouraged to become aware regarding their own role and responsibility to prevent a fire or get prepared and know how to behave if a fire occurs. They realized that prevention and preparation are a matter of personal responsibility. They also felt the responsibility to inform their own families. Finally, they met important people involved in fire protection such as rescuers and firefighters and had the opportunity to carry dialogues. In conclusion, through child led workshops, experiential and accessible activities, the students had the opportunity to share their own experiences, to express their views and their questions, to broaden their knowledge and to realize their personal responsibility in disaster risk reduction, specifically in relation to fires.

Keywords: accessibility, children, disasters, visual impairment

Procedia PDF Downloads 223
26839 Ministers of Parliament and Their Official Web Sites; New Media Tool of Political Communication

Authors: Wijayanada Rupasinghe, A. H. Dinithi Jayasekara

Abstract:

In a modern democracy, new media can be used by governments to involve citizens in decision-making, and by civil society to engage people in specific issues. However new media can also be used to broaden political participation by helping citizens to communicate with their representatives and with each other. Arguably this political communication is most important during election campaigns when political parties and candidates seek to mobilize citizens and persuade them to vote for a given party or candidate. The new media must be used by Parliaments, Parliamentarians, governments and political parties as they are highly effective tools to involve and inform citizens in public policymaking and in the formation of governments. But all these groups must develop strategies to deal with a wide array of both positive and negative effects of these rapidly growing media.New media has begun to take precedent over other communication outlets in part because of its heightened accessibility and usability. Using personal website can empower the public in a way that is far faster, cheaper and more pervasive than other forms of communication. They encourage pluralism, reach young people more than other media and encourage greater participation, accountability and transparency. This research discusses the impact politicians’ personal websites has over their overall electability and likability and explores the integration of website is an essential campaign tactic on both the local and national level. This research examined the impact of having personal website have over the way constituents view politicians. This research examined how politicians can use their website in the most effective fashion and incorporate these new media outlets as essential campaign tools and tactics. A mixed-method approach using content analysis. Content analysis selected thirty websites in sri Lankan politicians. Research revealed that politician’s new media usage significantly influenced and enriched the experience an individual has with the public figure.

Keywords: election campaign ministers, new media, parliament, politicians websites

Procedia PDF Downloads 373
26838 Motives for Reshoring from China to Europe: A Hierarchical Classification of Companies

Authors: Fabienne Fel, Eric Griette

Abstract:

Reshoring, whether concerning back-reshoring or near-reshoring, is a quite recent phenomenon. Despite the economic and political interest of this topic, academic research questioning determinants of reshoring remains rare. Our paper aims at contributing to fill this gap. In order to better understand the reasons for reshoring, we conducted a study among 280 French firms during spring 2016, three-quarters of which sourced, or source, in China. 105 firms in the sample have reshored all or part of their Chinese production or supply in recent years, and we aimed to establish a typology of the motives that drove them to this decision. We asked our respondents about the history of their Chinese supplies, their current reshoring strategies, and their motivations. Statistical analysis was performed with SPSS 22 and SPAD 8. Our results show that change in commercial and financial terms with China is the first motive explaining the current reshoring movement from this country (it applies to 54% of our respondents). A change in corporate strategy is the second motive (30% of our respondents); the reshoring decision follows a change in companies’ strategies (upgrading, implementation of a CSR policy, or a 'lean management' strategy). The third motive (14% of our sample) is a mere correction of the initial offshoring decision, considered as a mistake (under-estimation of hidden costs, non-quality and non-responsiveness problems). Some authors emphasize that developing a short supply chain, involving geographic proximity between design and production, gives a competitive advantage to companies wishing to offer innovative products. Admittedly 40% of our respondents indicate that this motive could have played a part in their decision to reshore, but this reason was not enough for any of them and is not an intrinsic motive leading to leaving Chinese suppliers. Having questioned our respondents about the importance given to various problems leading them to reshore, we then performed a Principal Components Analysis (PCA), associated with an Ascending Hierarchical Classification (AHC), based on Ward criterion, so as to point out more specific motivations. Three main classes of companies should be distinguished: -The 'Cost Killers' (23% of the sample), which reshore their supplies from China only because of higher procurement costs and so as to find lower costs elsewhere. -The 'Realists' (50% of the sample), giving equal weight or importance to increasing procurement costs in China and to the quality of their supplies (to a large extend). Companies being part of this class tend to take advantage of this changing environment to change their procurement strategy, seeking suppliers offering better quality and responsiveness. - The 'Voluntarists' (26% of the sample), which choose to reshore their Chinese supplies regardless of higher Chinese costs, to obtain better quality and greater responsiveness. We emphasize that if the main driver for reshoring from China is indeed higher local costs, it is should not be regarded as an exclusive motivation; 77% of the companies in the sample, are also seeking, sometimes exclusively, more reactive suppliers, liable to quality, respect for the environment and intellectual property.

Keywords: China, procurement, reshoring, strategy, supplies

Procedia PDF Downloads 329
26837 Designing Emergency Response Network for Rail Hazmat Shipments

Authors: Ali Vaezi, Jyotirmoy Dalal, Manish Verma

Abstract:

The railroad is one of the primary transportation modes for hazardous materials (hazmat) shipments in North America. Installing an emergency response network capable of providing a commensurate response is one of the primary levers to contain (or mitigate) the adverse consequences from rail hazmat incidents. To this end, we propose a two-stage stochastic program to determine the location of and equipment packages to be stockpiled at each response facility. The raw input data collected from publicly available reports were processed, fed into the proposed optimization program, and then tested on a realistic railroad network in Ontario (Canada). From the resulting analyses, we conclude that the decisions based only on empirical datasets would undermine the effectiveness of the resulting network; coverage can be improved by redistributing equipment in the network, purchasing equipment with higher containment capacity, and making use of a disutility multiplier factor.

Keywords: hazmat, rail network, stochastic programming, emergency response

Procedia PDF Downloads 187
26836 Climate Change and Urban Flooding: The Need to Rethinking Urban Flood Management through Resilience

Authors: Suresh Hettiarachchi, Conrad Wasko, Ashish Sharma

Abstract:

The ever changing and expanding urban landscape increases the stress on urban systems to support and maintain safe and functional living spaces. Flooding presents one of the more serious threats to this safety, putting a larger number of people in harm’s way in congested urban settings. Climate change is adding to this stress by creating a dichotomy in the urban flood response. On the one hand, climate change is causing storms to intensify, resulting in more destructive, rarer floods, while on the other hand, longer dry periods are decreasing the severity of more frequent, less intense floods. This variability is creating a need to be more agile and innovative in how we design for and manage urban flooding. Here, we argue that to cope with this challenge climate change brings, we need to move towards urban flood management through resilience rather than flood prevention. We also argue that dealing with the larger variation in flood response to climate change means that we need to look at flooding from all aspects rather than the single-dimensional focus of flood depths and extents. In essence, we need to rethink how we manage flooding in the urban space. This change in our thought process and approach to flood management requires a practical way to assess and quantify resilience that is built into the urban landscape so that informed decision-making can support the required changes in planning and infrastructure design. Towards that end, we propose a Simple Urban Flood Resilience Index (SUFRI) based on a robust definition of resilience as a tool to assess flood resilience. The application of a simple resilience index such as the SUFRI can provide a practical tool that considers urban flood management in a multi-dimensional way and can present solutions that were not previously considered. When such an index is grounded on a clear and relevant definition of resilience, it can be a reliable and defensible way to assess and assist the process of adapting to the increasing challenges in urban flood management with climate change.

Keywords: urban flood resilience, climate change, flood management, flood modelling

Procedia PDF Downloads 56
26835 Artificial Intelligence in Bioscience: The Next Frontier

Authors: Parthiban Srinivasan

Abstract:

With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.

Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction

Procedia PDF Downloads 361
26834 Impact Evaluation of Vaccination against Eight-Child-Killer Diseases on under-Five Children Mortality at Mbale District, Uganda

Authors: Lukman Abiodun Nafiu

Abstract:

This study examines the impact evaluation of vaccination against eight-child-killer diseases on under-five children mortality at Mbale District. It was driven by three specific objectives which are to determine the proportion of under-five children mortality due to the eight-child-killer diseases to the total under-five children mortality; establish the cause-effect relationship between the eight-child-killer diseases and under-five children mortality; as well as establish the dependence of under-five children mortality in the location at Mbale District. A community based cross-sectional and longitudinal (panel) study design involving both quantitative and qualitative (focus group discussion and in-depth interview) approaches was employed over a period of 36 months. Multi-stage cluster design involving Health Sub-District (HSD), Forms of Ownership (FOO) and Health Facilities Centres (HFC) as the first, second and third stages respectively was used. Data was collected regarding the eight-child-killer diseases namely: measles, pneumonia, pertussis (whooping cough), diphtheria, poliomyelitis (polio), tetanus, haemophilus influenza, rotavirus gastroenteritis and mortality regarding immunized and non-immunized children aged 0-59 months. We monitored the children over a period of 24 months. The study used a sample of 384 children out of all the registered children for each year at Mbale Referral Hospital and other Primary Health Care Centres (HCIV, HCIII and HCII) at Mbale District between 2015 and 2019. These children were followed from birth to their current state (living or dead). The data collected in this study was analysed using cross tabulation and the chi-square test. The study concluded that majority of mothers at Mbale district took their children for immunization and thus reducing the occurrence of under-five children mortality. Overall, 2.3%, 4.6%, 3.1%, 5.4%, 1.5%, 3.8%, 0.0% and 0.0% of under-five children had polio, tetanus, diphtheria, measles, pertussis, pneumonia, haemophilus influenzae and rotavirus gastroenteritis respectively across all the sub counties at Mbale district during the period considered. Also, different locations (sub counties) do not have significant influence on the occurrence of these eight-child-killer diseases among the under-five children at Mbale district. Therefore, the study recommended that government and agencies should continue to work together to implement measures of vaccination programs and increasing access to basic health care with a continuous improvement on the social interventions to progress child survival.

Keywords: Diseases, Mortality, Children, Vaccination

Procedia PDF Downloads 127
26833 Effects of Initial State on Opinion Formation in Complex Social Networks with Noises

Authors: Yi Yu, Vu Xuan Nguyen, Gaoxi Xiao

Abstract:

Opinion formation in complex social networks may exhibit complex system dynamics even when based on some simplest system evolution models. An interesting and important issue is the effects of the initial state on the final steady-state opinion distribution. By carrying out extensive simulations and providing necessary discussions, we show that, while different initial opinion distributions certainly make differences to opinion evolution in social systems without noises, in systems with noises, given enough time, different initial states basically do not contribute to making any significant differences in the final steady state. Instead, it is the basal distribution of the preferred opinions that contributes to deciding the final state of the systems. We briefly explain the reasons leading to the observed conclusions. Such an observation contradicts with a long-term belief on the roles of system initial state in opinion formation, demonstrating the dominating role that opinion mutation can play in opinion formation given enough time. The observation may help to better understand certain observations of opinion evolution dynamics in real-life social networks.

Keywords: opinion formation, Deffuant model, opinion mutation, consensus making

Procedia PDF Downloads 179
26832 Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives using Taguchi Experimental Design Methodology

Authors: Pranudda Pimsee, Caroline Sablayrolles, Pascale De Caro, Julien Guyomarch, Nicolas Lesage, Mireille Montréjaud-Vignoles

Abstract:

The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 Polycyclic Aromatic Hydrocarbons (PAHs) and derivate, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity, and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For gasoline (SP95-E10) and diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.

Keywords: mornitoring, PAHs, water soluble fraction, SBSE, Taguchi experimental design

Procedia PDF Downloads 329
26831 Pattern Recognition Using Feature Based Die-Map Clustering in the Semiconductor Manufacturing Process

Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek

Abstract:

Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.

Keywords: die-map clustering, feature extraction, pattern recognition, semiconductor manufacturing process

Procedia PDF Downloads 411
26830 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 118
26829 Business Entrepreneurs in the Making

Authors: Talha Sareshwala

Abstract:

The purpose of this research paper is to revise the skills of an entrepreneur in the making and to guide future Entrepreneurs into a promising future. The study presents a broader review of entrepreneurship, starting from its definition and antecedents. A well-developed original set of guidelines can help budding entrepreneurs and practitioners seeking an answer to being successful as an entrepreneur. It is a journey full of excitement, experiences, rewards, and learning. Dedication, work ethics and a never-say-die attitude will largely contribute to the success as a businessman and an entrepreneur. This paper is sharing an experience of how an entrepreneur can act as a catalyst for young minds while ensuring them that ethics and principles do pay in business when followed in true spirit and action. It is very important for an entrepreneur to enhance his product or services, marketing skills, and market share, along with providing customer satisfaction and opportunities for teams to improve their leadership qualities. To have strong employee loyalty and job satisfaction among its employees. Based on Research objectives, primarily in-depth interviews and focused group interviews were conducted as a qualitative research method. And to support this survey, questionnaires were used as a qualitative research method to explore how Indian Entrepreneurs face the challenge of the changing, volatile socio-political environment in India.

Keywords: entrepreneur, business ethics, sales, marketing

Procedia PDF Downloads 95
26828 Multi-Indicator Evaluation of Agricultural Drought Trends in Ethiopia: Implications for Dry Land Agriculture and Food Security

Authors: Dawd Ahmed, Venkatesh Uddameri

Abstract:

Agriculture in Ethiopia is the main economic sector influenced by agricultural drought. A simultaneous assessment of drought trends using multiple drought indicators is useful for drought planning and management. Intra-season and seasonal drought trends in Ethiopia were studied using a suite of drought indicators. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), and Z-index for long-rainy, dry, and short-rainy seasons are used to identify drought-causing mechanisms. The Statistical software package R version 3.5.2 was used for data extraction and data analyses. Trend analysis indicated shifts in late-season long-rainy season precipitation into dry in the southwest and south-central portions of Ethiopia. Droughts during the dry season (October–January) were largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbated rainfall deficits during the short rainy season (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on the production of short-season crops such as tef. Droughts during the long-rainy season (June–September) were largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during long-rainy season had severe consequences on the production of corn and sorghum. PDSI was an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.

Keywords: autocorrelation, climate change, droughts, Ethiopia, food security, palmer z-index, PDSI, SPEI, SPI, trend analysis

Procedia PDF Downloads 144
26827 Review of Concepts and Tools Applied to Assess Risks Associated with Food Imports

Authors: A. Falenski, A. Kaesbohrer, M. Filter

Abstract:

Introduction: Risk assessments can be performed in various ways and in different degrees of complexity. In order to assess risks associated with imported foods additional information needs to be taken into account compared to a risk assessment on regional products. The present review is an overview on currently available best practise approaches and data sources used for food import risk assessments (IRAs). Methods: A literature review has been performed. PubMed was searched for articles about food IRAs published in the years 2004 to 2014 (English and German texts only, search string “(English [la] OR German [la]) (2004:2014 [dp]) import [ti] risk”). Titles and abstracts were screened for import risks in the context of IRAs. The finally selected publications were analysed according to a predefined questionnaire extracting the following information: risk assessment guidelines followed, modelling methods used, data and software applied, existence of an analysis of uncertainty and variability. IRAs cited in these publications were also included in the analysis. Results: The PubMed search resulted in 49 publications, 17 of which contained information about import risks and risk assessments. Within these 19 cross references were identified to be of interest for the present study. These included original articles, reviews and guidelines. At least one of the guidelines of the World Organisation for Animal Health (OIE) and the Codex Alimentarius Commission were referenced in any of the IRAs, either for import of animals or for imports concerning foods, respectively. Interestingly, also a combination of both was used to assess the risk associated with the import of live animals serving as the source of food. Methods ranged from full quantitative IRAs using probabilistic models and dose-response models to qualitative IRA in which decision trees or severity tables were set up using parameter estimations based on expert opinions. Calculations were done using @Risk, R or Excel. Most heterogeneous was the type of data used, ranging from general information on imported goods (food, live animals) to pathogen prevalence in the country of origin. These data were either publicly available in databases or lists (e.g., OIE WAHID and Handystatus II, FAOSTAT, Eurostat, TRACES), accessible on a national level (e.g., herd information) or only open to a small group of people (flight passenger import data at national airport customs office). In the IRAs, an uncertainty analysis has been mentioned in some cases, but calculations have been performed only in a few cases. Conclusion: The current state-of-the-art in the assessment of risks of imported foods is characterized by a great heterogeneity in relation to general methodology and data used. Often information is gathered on a case-by-case basis and reformatted by hand in order to perform the IRA. This analysis therefore illustrates the need for a flexible, modular framework supporting the connection of existing data sources with data analysis and modelling tools. Such an infrastructure could pave the way to IRA workflows applicable ad-hoc, e.g. in case of a crisis situation.

Keywords: import risk assessment, review, tools, food import

Procedia PDF Downloads 305
26826 Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process

Authors: Seyed-Ali Sadegh-Zadeh, Mahboobe Bahrami, Sahar Ahmadi, Seyed-Yaser Mousavi, Hamed Atashbar, Amir M. Hajiyavand

Abstract:

This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike.

Keywords: neural plasticity, brain adaptation, artificial intelligence, learning, cognitive reshaping

Procedia PDF Downloads 55
26825 A Multi-Level Approach to Improve Sustainability Performances of Industrial Agglomerations

Authors: Patrick Innocenti, Elias Montini, Silvia Menato, Marzio Sorlini

Abstract:

Documented experiences of industrial symbiosis are always triggered and driven only by economic goals: environmental and (even rarely) social results are sometimes assessed and declared as effects of virtuous behaviours, but are merely casual and un-pursued side externalities. Even worse: all the symbiotic project candidates entailing economic loss for just one of the (also dozen) partners are simply stopped without considering the overall benefit for the whole partnership. The here-presented approach aims at providing methodologies and tools to effectively manage these situations and fostering the implementation of virtuous symbiotic investments in manufacturing aggregations for a more sustainable production.

Keywords: business model, industrial symbiosis, industrial agglomerations, sustainability

Procedia PDF Downloads 292
26824 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu

Abstract:

Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame

Procedia PDF Downloads 85
26823 Life in Bequia in the Era of Climate Change: Societal Perception of Adaptation and Vulnerability

Authors: Sherry Ann Ganase, Sandra Sookram

Abstract:

This study examines adaptation measures and factors that influence adaptation decisions in Bequia by using multiple linear regression and a structural equation model. Using survey data, the results suggest that households are knowledgeable and concerned about climate change but lack knowledge about the measures needed to adapt. The findings from the SEM suggest that a positive relationship exist between vulnerability and adaptation, vulnerability and perception, along with a negative relationship between perception and adaptation. This suggests that being aware of the terms associated with climate change and knowledge about climate change is insufficient for implementing adaptation measures; instead the risk and importance placed on climate change, vulnerability experienced with household flooding, drainage and expected threat of future sea level are the main factors that influence the adaptation decision. The results obtained in this study are beneficial to all as adaptation requires a collective effort by stakeholders.

Keywords: adaptation, Bequia, multiple linear regression, structural equation model

Procedia PDF Downloads 466
26822 Single-Cell Visualization with Minimum Volume Embedding

Authors: Zhenqiu Liu

Abstract:

Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.

Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method

Procedia PDF Downloads 230
26821 Cloud Data Security Using Map/Reduce Implementation of Secret Sharing Schemes

Authors: Sara Ibn El Ahrache, Tajje-eddine Rachidi, Hassan Badir, Abderrahmane Sbihi

Abstract:

Recently, there has been increasing confidence for a favorable usage of big data drawn out from the huge amount of information deposited in a cloud computing system. Data kept on such systems can be retrieved through the network at the user’s convenience. However, the data that users send include private information, and therefore, information leakage from these data is now a major social problem. The usage of secret sharing schemes for cloud computing have lately been approved to be relevant in which users deal out their data to several servers. Notably, in a (k,n) threshold scheme, data security is assured if and only if all through the whole life of the secret the opponent cannot compromise more than k of the n servers. In fact, a number of secret sharing algorithms have been suggested to deal with these security issues. In this paper, we present a Mapreduce implementation of Shamir’s secret sharing scheme to increase its performance and to achieve optimal security for cloud data. Different tests were run and through it has been demonstrated the contributions of the proposed approach. These contributions are quite considerable in terms of both security and performance.

Keywords: cloud computing, data security, Mapreduce, Shamir's secret sharing

Procedia PDF Downloads 310