Search results for: information centric network
11062 Designing Information Systems in Education as Prerequisite for Successful Management Results
Authors: Vladimir Simovic, Matija Varga, Tonco Marusic
Abstract:
This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.Keywords: designing, education management, information systems, matrix technology, process affinity
Procedia PDF Downloads 43911061 The Study of the Socio-Economic and Environmental Impact on the Semi-Arid Environments Using GIS in the Eastern Aurès, Algeria
Authors: Benmessaoud Hassen
Abstract:
We propose in this study to address the impact of socio-economic and environmental impact on the physical environment, especially their spatiotemporal dynamics in semi-arid and arid eastern Aurès. Including 11 municipalities, the study area spreads out over a relatively large surface area of about 60.000 ha. The hindsight is quite important and is determined by 03 days of analysis of environmental variation spread over thirty years (between 1987 and 2007). The multi-source data acquired in this context are integrated into a geographic information system (GIS).This allows, among other indices to calculate areas and classes for each thematic layer of the 4 layers previously defined by a method inspired MEDALUS (Mediterranean Desertification and Land Use).The database created is composed of four layers of information (population, livestock, farming and land use). His analysis in space and time has been supplemented by a validation of the ground truth. Once the database has corrected it used to develop the comprehensive map with the calculation of the index of socio-economic and environmental (ISCE). The map supports and the resulting information does not consist only of figures on the present situation but could be used to forecast future trends.Keywords: impact of socio-economic and environmental, spatiotemporal dynamics, semi-arid environments, GIS, Eastern Aurès
Procedia PDF Downloads 32511060 Use of Information and Communication Technologies in Enhancing Health Care Delivery for Human Immunodeficiency Virus Patients in Bamenda Health District
Authors: Abanda Wilfred Chick
Abstract:
Background: According to World Health Organization (WHO), the role of Information and Communication Technologies (ICT) in health sectors of developing nations has been demonstrated to have had a great improvement of fifty percent reduction in mortality and or twenty-five-fifty percent increase in productivity. The objective of this study was to assess the use of information and communication technologies in enhancing health care delivery for Human Immunodeficiency Virus (HIV) patients in Bamenda Health District. Methods: This was a descriptive-analytical cross-sectional study in which 388 participants were consecutively selected amongst health personnel and HIV patients from public and private health institutions involved in Human Immunodeficiency Virus management. Data on socio-demographic variables, the use of information and communication technologies tools, and associated challenges were collected using structured questionnaires. Descriptive statistics with a ninety-five percent confidence interval were used to summarize findings, while Cramer’s V test, logistic regression, and Chi-square test were used to measure the association between variables, Epi info version7.2, MS Excel, and SPSS version 25.0 were utilized for data entry and statistical analysis respectively. Results: Of the participants, one-quarter were health personnel, and three-quarters were HIV patients. For both groups of participants, there was a significant relationship between the use of ICT and demographic information such as level of education, marital status, and age (p<0.05). For the impediments to using ICT tools, a greater proportion identified the high cost of airtime or internet bundles, followed by an average proportion that indicated inadequate training on ICT tools; for health personnel, the majority said inadequate training on ICT tools/applications and half said unavailability of electricity. Conclusion: Not up to half of the HIV patients effectively make use of ICT tools/applications to receive health care. Of health personnel, three quarters use ICTs, and only one quarter effectively use mobile phones and one-third of computers, respectively, to render care to HIV patients.Keywords: ICT tools, HIV patients, health personnel, health care delivery
Procedia PDF Downloads 8411059 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: aerodynamic angles, air data system, flight test, neural network, unmanned aerial vehicle, virtual sensor
Procedia PDF Downloads 22111058 An Analysis of Twitter Use of Slow Food Movement in the Context of Online Activism
Authors: Kubra Sultan Yuzuncuyil, Aytekin İsman, Berkay Bulus
Abstract:
With the developments of information and communication technologies, the forms of molding public opinion have changed. In the presence of Internet, the notion of activism has been endowed with digital codes. Activists have engaged the use of Internet into their campaigns and the process of creating collective identity. Activist movements have been incorporating the relevance of new communication technologies for their goals and opposition. Creating and managing activism through Internet is called Online Activism. In this main, Slow Food Movement which was emerged within the philosophy of defending regional, fair and sustainable food has been engaging Internet into their activist campaign. This movement supports the idea that a new food system which allows strong connections between plate and planet is possible. In order to make their voices heard, it has utilized social networks and develop particular skills in the framework online activism. This study analyzes online activist skills of Slow Food Movement (SFM) develop and attempts to measure its effectiveness. To achieve this aim, it adopts the model proposed by Sivitandies and Shah and conduct both qualitiative and quantiative content analysis on social network use of Slow Food Movement. In this regard, the sample is chosen as the official profile and analyzed between in a three month period respectively March-May 2017. It was found that SFM develops particular techniques that appeal to the model of Sivitandies and Shah. The prominent skill in this regard was found as hyperlink abbreviation and use of multimedia elements. On the other hand, there are inadequacies in hashtag and interactivity use. The importance of this study is that it highlights and discusses how online activism can be engaged into a social movement. It also reveals current online activism skills of SFM and their effectiveness. Furthermore, it makes suggestions to enhance the related abilities and strengthen its voice on social networks.Keywords: slow food movement, Twitter, internet, online activism
Procedia PDF Downloads 28111057 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike
Authors: Hong Yu, Dirk Heider, Suresh Advani
Abstract:
Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.Keywords: carbon composite, joule heating, lightning strike, resistor network
Procedia PDF Downloads 22811056 Post-Experts in Polish Mainstream Media: Quantitative and Qualitative Analysis of Selected Information Programs
Authors: Aldona Guzik
Abstract:
Experts have always played a special role in society. Drawing on their opinions was and most certainly is one of the most important strategies that direct people when they make decisions; something often used with the aim of exerting influence and ensuring social conformism. Many factors decide on who becomes an expert. The most important of these have hitherto been: the possession of extensive knowledge, charisma, authority as well as experience. Increasingly, however, these factors are insufficient and may even be deemed unnecessary. This state of affairs has been brought about (among other things) by the development of the media and the media’s influence on our lives. The inspiration to write the present article has its grounding in the book by Tom Nichols The Death of Expertise. The Campaign Against Established Knowledge and Why it Matters, in which the author claims that in our present-day open society experts and their expertise count for increasingly less for everyone who has unlimited access to the Internet and education. This has, in turn, resulted in the creation of so-called ‘collective wisdom,’ which is placed higher than any of the specialist knowledge proclaimed by experts. However, this is an incomplete picture, because admittedly, access to knowledge is nowadays unlimited, but on the other hand, the ubiquitous risk causes that the expert is someone who allows them to minimize it. Therefore, a modern society so readily refers to their opinion; from the smallest matters, eg home appliance, to important political issues. Hence, many information services include numerous experts (scientists, journalists, specialists, celebrities), whose task is to explain to the viewers in a simple way the presented reality. However, more and more often their role is also to give credence to what they explain. Hence the questions arise: who are the experts, what is their typology and what roles they play in Polish information services? To answer them, quantitative and qualitative research was used, such as analysis of lists of 100 most influential experts, analysis of expert profiles and their statements in three differentiated information services (TVN - commercial, TVP1 - public, TV Trwam - non-commercial/religious). They will be the basis for answering the above-mentioned questions and, above all, determining their role in information services in Poland.Keywords: experts, media, public discours, symbolic elites
Procedia PDF Downloads 12911055 Korean Men’s Interest in Gonzo Pornography and Use of Condoms
Authors: Chyng Sun
Abstract:
This brief report examines correlations between Korean men’s interest in gonzo pornography, perceptions of pornography’s functional value, and use of condoms. The report found that, neither a higher interest in gonzo or the perception that pornography is a source of sexual information was directly related to condom utilization. However, interest in gonzo pornography interacted with pornography perceptions to predict condomless sex. The findings suggest that Korean men who 1) had higher interest in viewing gonzo pornography, and 2) had a tendency to view pornography as a source of sexual information, are more likely to have sex without condoms. That is, when viewers consider pornography to be a form of sexual education, they are more likely to use the learned pornographic script to inform their sexual behavior.Keywords: Korean, male, pornography, sexuality
Procedia PDF Downloads 15411054 Performance Assessment of Carrier Aggregation-Based Indoor Mobile Networks
Authors: Viktor R. Stoynov, Zlatka V. Valkova-Jarvis
Abstract:
The intelligent management and optimisation of radio resource technologies will lead to a considerable improvement in the overall performance in Next Generation Networks (NGNs). Carrier Aggregation (CA) technology, also known as Spectrum Aggregation, enables more efficient use of the available spectrum by combining multiple Component Carriers (CCs) in a virtual wideband channel. LTE-A (Long Term Evolution–Advanced) CA technology can combine multiple adjacent or separate CCs in the same band or in different bands. In this way, increased data rates and dynamic load balancing can be achieved, resulting in a more reliable and efficient operation of mobile networks and the enabling of high bandwidth mobile services. In this paper, several distinct CA deployment strategies for the utilisation of spectrum bands are compared in indoor-outdoor scenarios, simulated via the recently-developed Realistic Indoor Environment Generator (RIEG). We analyse the performance of the User Equipment (UE) by integrating the average throughput, the level of fairness of radio resource allocation, and other parameters, into one summative assessment termed a Comparative Factor (CF). In addition, comparison of non-CA and CA indoor mobile networks is carried out under different load conditions: varying numbers and positions of UEs. The experimental results demonstrate that the CA technology can improve network performance, especially in the case of indoor scenarios. Additionally, we show that an increase of carrier frequency does not necessarily lead to improved CF values, due to high wall-penetration losses. The performance of users under bad-channel conditions, often located in the periphery of the cells, can be improved by intelligent CA location. Furthermore, a combination of such a deployment and effective radio resource allocation management with respect to user-fairness plays a crucial role in improving the performance of LTE-A networks.Keywords: comparative factor, carrier aggregation, indoor mobile network, resource allocation
Procedia PDF Downloads 17811053 Investigation of Projected Organic Waste Impact on a Tropical Wetland in Singapore
Authors: Swee Yang Low, Dong Eon Kim, Canh Tien Trinh Nguyen, Yixiong Cai, Shie-Yui Liong
Abstract:
Nee Soon swamp forest is one of the last vestiges of tropical wetland in Singapore. Understanding the hydrological regime of the swamp forest and implications for water quality is critical to guide stakeholders in implementing effective measures to preserve the wetland against anthropogenic impacts. In particular, although current field measurement data do not indicate a concern with organic pollution, reviewing the ways in which the wetland responds to elevated organic waste influx (and the corresponding impact on dissolved oxygen, DO) can help identify potential hotspots, and the impact on the outflow from the catchment which drains into downstream controlled watercourses. An integrated water quality model is therefore developed in this study to investigate spatial and temporal concentrations of DO levels and organic pollution (as quantified by biochemical oxygen demand, BOD) within the catchment’s river network under hypothetical, projected scenarios of spiked upstream inflow. The model was developed using MIKE HYDRO for modelling the study domain, as well as the MIKE ECO Lab numerical laboratory for characterising water quality processes. Model parameters are calibrated against time series of observed discharges at three measurement stations along the river network. Over a simulation period of April 2014 to December 2015, the calibrated model predicted that a continuous spiked inflow of 400 mg/l BOD will elevate downstream concentrations at the catchment outlet to an average of 12 mg/l, from an assumed nominal baseline BOD of 1 mg/l. Levels of DO were decreased from an initial 5 mg/l to 0.4 mg/l. Though a scenario of spiked organic influx at the swamp forest’s undeveloped upstream sub-catchments is currently unlikely to occur, the outcomes nevertheless will be beneficial for future planning studies in understanding how the water quality of the catchment will be impacted should urban redevelopment works be considered around the swamp forest.Keywords: hydrology, modeling, water quality, wetland
Procedia PDF Downloads 14011052 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment
Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM
Procedia PDF Downloads 11611051 Jordan Water District Interactive Billing and Accounting Information System
Authors: Adrian J. Forca, Simeon J. Cainday III
Abstract:
The Jordan Water District Interactive Billing and Accounting Information Systems is designed for Jordan Water District to uplift the efficiency and effectiveness of its services to its customers. It is designed to process computations of water bills in accurate and fast way through automating the manual process and ensures that correct rates and fees are applied. In addition to billing process, a mobile app will be integrated into it to support rapid and accurate water bill generation. An interactive feature will be incorporated to support electronic billing to customers who wish to receive water bills through the use of electronic mail. The system will also improve, organize and avoid data inaccuracy in accounting processes because data will be stored in a database which is designed logically correct through normalization. Furthermore, strict programming constraints will be plunged to validate account access privilege based on job function and data being stored and retrieved to ensure data security, reliability, and accuracy. The system will be able to cater the billing and accounting services of Jordan Water District resulting in setting forth the manual process and adapt to the modern technological innovations.Keywords: accounting, bill, information system, interactive
Procedia PDF Downloads 25111050 Microwave Imaging by Application of Information Theory Criteria in MUSIC Algorithm
Authors: Majid Pourahmadi
Abstract:
The performance of time-reversal MUSIC algorithm will be dramatically degrades in presence of strong noise and multiple scattering (i.e. when scatterers are close to each other). This is due to error in determining the number of scatterers. The present paper provides a new approach to alleviate such a problem using an information theoretic criterion referred as minimum description length (MDL). The merits of the novel approach are confirmed by the numerical examples. The results indicate the time-reversal MUSIC yields accurate estimate of the target locations with considerable noise and multiple scattering in the received signals.Keywords: microwave imaging, time reversal, MUSIC algorithm, minimum description length (MDL)
Procedia PDF Downloads 33711049 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 14211048 A Preliminary Finding Regarding Nutrition Information Needs among Family Physicians in Turkey
Authors: F. Nur Baran Aksakal, Özge Dinç, H. Tanju Besler, Begüm Mutuş, Özlem Üliç Çatar, Orhan Aydoğdu, Serhat Ünal
Abstract:
Healthy eating habits are associated not only with the newborn, child, and maternal health but also with longer life expectancy by acting as a protective factor against non-communicable diseases such as obesity, diabetes, cardiovascular diseases, and cancer. The role of nutrition in medical education is to provide information about the relationship between healthy nutrition and malnutrition as well as diet-related non-communicable diseases. Considering the information pollution experienced in the field of nutrition and health in the society, it is seen that more than half of the population receives information from family physicians as the closest counseling unit. However, postgraduate nutrition education programs for physicians and other health professionals who wish to improve their current knowledge of the role of nutrition communication in the prevention and management of chronic diseases are limited worldwide. However, nutrition courses are either not included in the undergraduate medical education curriculum of physicians or they are insufficient. Based on this need, the main aim of the study group was to develop a "Nutrition and Nutrition Communication Training for Physicians" program that would be conducted in cooperation with the Sabri Ülker Foundation and the Federation of Family Physicians Associations (AHEF). This program is the first online nutrition and nutrition communication information platform for physicians in Turkey. This program aims to present the concept of adequate and balanced nutrition to physicians, the importance of nutrition in diseases with scientific data, and to gain communication skills that may be necessary while transferring scientific information to the public. A needs assessment questionnaire was applied to identify pre-program training needs. A study plan was made to allow the participation of all family physicians in the population, and a complete inventory was targeted. In other words, we aimed to reach the whole source without taking a section of the population. Participation in the training is based on volunteerism. The needs assessment study is conducted using 25,102 family physicians for whom email addresses are available. The online questionnaire was sent to all the family physicians with a reminder email one week after the first one, and 1308 responded. Considering the topics determined, a training program was prepared for family physicians under eight online training titles, starting in March 2022, and conducted once every two weeks. The number of audience members present at each session was between 1217 and 1673, and a minimum of 17 and a maximum of 53 questions were received in each session. We strongly believe that to prevent individuals' health problems and to have better control over chronic diseases, the information level of physicians should be increased via these kinds of interventions, and better collaboration between family physicians and dieticians should be established.Keywords: nutrition communication, nutrition training, communication, nutrition
Procedia PDF Downloads 9911047 Trends, Status, and Future Directions of Artificial Intelligence in Human Resources Disciplines: A Bibliometric Analysis
Authors: Gertrude I. Hewapathirana, Loi A. Nguyen, Mohammed M. Mostafa
Abstract:
Artificial intelligence (AI) technologies and tools are swiftly integrating into many functions of all organizations as a competitive drive to enhance innovations, productivity, efficiency, faster and precise decision making to keep up with rapid changes in the global business arena. Despite increasing research on AI technologies in production, manufacturing, and information management, AI in human resource disciplines is still lagging. Though a few research studies on HR informatics, recruitment, and HRM in general, how to integrate AI in other HR functional disciplines (e.g., compensation, training, mentoring and coaching, employee motivation) is rarely researched. Many inconsistencies of research hinder developing up-to-date knowledge on AI in HR disciplines. Therefore, exploring eight research questions, using bibliometric network analysis combined with a meta-analysis of published research literature. The authors attempt to generate knowledge on the role of AI in improving the efficiency of HR functional disciplines. To advance the knowledge for the benefit of researchers, academics, policymakers, and practitioners, the study highlights the types of AI innovations and outcomes, trends, gaps, themes and topics, fast-moving disciplines, key players, and future directions.AI in HR informatics in high tech firms is the dominant theme in many research publications. While there is increasing attention from researchers and practitioners, there are many gaps between the promise, potential, and real AI applications in HR disciplines. A higher knowledge gap raised many unanswered questions regarding legal, ethical, and morale aspects of AI in HR disciplines as well as the potential contributions of AI in HR disciplines that may guide future research directions. Though the study provides the most current knowledge, it is limited to peer-reviewed empirical, theoretical, and conceptual research publications stored in the WoS database. The implications for theory, practice, and future research are discussed.Keywords: artificial intelligence, human resources, bibliometric analysis, research directions
Procedia PDF Downloads 9711046 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model
Authors: Anshika Kankane, Dongshik Kang
Abstract:
Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching
Procedia PDF Downloads 10711045 Health Literacy: Collaboration between Clinician and Patient
Authors: Cathy Basterfield
Abstract:
Issue: To engage in one’s own health care, health professionals need to be aware of an individual’s specific skills and abilities for best communication. One of the most discussed is health literacy. One of the assumed skills and abilities for adults is an individuals’ health literacy. Background: A review of publicly available health content appears to assume all adult readers will have a broad and full capacity to read at a high level of literacy, often at a post-school education level. Health information writers and clinicians need to recognise one critical area for why there may be little or no change in a person’s behaviour, or no-shows to appointments. Perhaps unintentionally, they are miscommunicating with the majority of the adult population. Health information contains many literacy domains. It usually includes technical medical terms or jargon. Many fact sheets and other information require scientific literacy with or without specific numerical literacy. It may include graphs, percentages, timing, distance, or weights. Each additional word or concept in these domains decreases the readers' ability to meaningfully read, understand and know what to do with the information. An attempt to begin to read the heading where long or unfamiliar words are used will reduce the readers' motivation to attempt to read. Critically people who have low literacy are overwhelmed when pages are covered with lots of words. People attending a health environment may be unwell or anxious about a diagnosis. These make it harder to read, understand and know what to do with the information. But access to health information must consider an even wider range of adults, including those with poor school attainment, migrants, and refugees. It is also homeless people, people with mental health illnesses, or people who are ageing. People with low literacy also may include people with lifelong disabilities, people with acquired disabilities, people who read English as a second (or third) language, people who are Deaf, or people who are vision impaired. Outcome: This paper will discuss Easy English, which is developed for adults. It uses the audiences’ everyday words, short sentences, short words, and no jargon. It uses concrete language and concrete, specific images to support the text. It has been developed in Australia since the mid-2000s. This paper will showcase various projects in the health domain which use Easy English to improve the understanding and functional use of written information for the large numbers of adults in our communities who do not have the health literacy to manage a range of day to day reading tasks. See examples from consent forms, fact sheets and choice options, instructions, and other functional documents, where Easy English has been developed. This paper will ask individuals to reflect on their own work practice and consider what written information must be available in Easy English. It does not matter how cutting-edge a new treatment is; when adults can not read or understand what it is about and the positive and negative outcomes, they are less likely to be engaged in their own health journey.Keywords: health literacy, inclusion, Easy English, communication
Procedia PDF Downloads 12711044 Structural Elucidation of Intact Rough-Type Lipopolysaccharides using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots
Authors: Abanoub Mikhael, Darryl Hardie, Derek Smith, Helena Petrosova, Robert Ernst, David Goodlett
Abstract:
Lipopolysaccharide (LPS) is a hallmark virulence factor of Gram-negative bacteria. It is a complex, structurally het- erogeneous mixture due to variations in number, type, and position of its simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of intact R-type lipopolysaccharide complex mixture (lipooligo- saccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and un- equivocal structural assignments. In addition to FAIMS gas phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.Keywords: lipopolysaccharide, ion mobility MS, Kendrick mass defect, Tandem mass spectrometry
Procedia PDF Downloads 7111043 Efficient Backup Protection for Hybrid WDM/TDM GPON System
Authors: Elmahdi Mohammadine, Ahouzi Esmail, Najid Abdellah
Abstract:
This contribution aims to present a new protected hybrid WDM/TDM PON architecture using Wavelength Selective Switches and Optical Line Protection devices. The objective from using these technologies is to improve flexibility and enhance the protection of GPON networks.Keywords: Wavlenght Division Multiplexed Passive Optical Network (WDM-PON), Time Division Multiplexed PON (TDM-PON), architecture, Protection, Wavelength Selective Switches (WSS), Optical Line Protection (OLP)
Procedia PDF Downloads 54211042 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 16011041 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 5511040 Applied Complement of Probability and Information Entropy for Prediction in Student Learning
Authors: Kennedy Efosa Ehimwenma, Sujatha Krishnamoorthy, Safiya Al‑Sharji
Abstract:
The probability computation of events is in the interval of [0, 1], which are values that are determined by the number of outcomes of events in a sample space S. The probability Pr(A) that an event A will never occur is 0. The probability Pr(B) that event B will certainly occur is 1. This makes both events A and B a certainty. Furthermore, the sum of probabilities Pr(E₁) + Pr(E₂) + … + Pr(Eₙ) of a finite set of events in a given sample space S equals 1. Conversely, the difference of the sum of two probabilities that will certainly occur is 0. This paper first discusses Bayes, the complement of probability, and the difference of probability for occurrences of learning-events before applying them in the prediction of learning objects in student learning. Given the sum of 1; to make a recommendation for student learning, this paper proposes that the difference of argMaxPr(S) and the probability of student-performance quantifies the weight of learning objects for students. Using a dataset of skill-set, the computational procedure demonstrates i) the probability of skill-set events that have occurred that would lead to higher-level learning; ii) the probability of the events that have not occurred that requires subject-matter relearning; iii) accuracy of the decision tree in the prediction of student performance into class labels and iv) information entropy about skill-set data and its implication on student cognitive performance and recommendation of learning.Keywords: complement of probability, Bayes’ rule, prediction, pre-assessments, computational education, information theory
Procedia PDF Downloads 16111039 Mathematics Anxiety and Attitude among Nigerian University Library and Information Science Undergraduate Students
Authors: Fredrick Olatunji Ajegbomogun, Clement Ola Adekoya
Abstract:
Mathematics has, for ages, been an essential subject in the education curriculum across the globe. The word mathematics scares the majority of undergraduate students and even more library and information science (LIS) students who have not seen the pertinence of the subject to their academic pursuits. This study investigated mathematics anxiety and attitudes among LIS undergraduate students in Nigerian universities. The study adopted a descriptive survey research design. Multi-stage and convenient sampling techniques were used for the study. Data were collected using a questionnaire and analyzed using descriptive statistical tools. It was found that mathematics is important in LIS education. The students displayed a high level of anxiety toward mathematics. The students have a negative attitude toward mathematics. However, the hypotheses tested revealed that while the LIS female undergraduate students displayed low levels of anxiety and a positive attitude toward mathematics, the level of anxiety of the male undergraduate students was high, and their attitude toward mathematics was negative. It was recommended that LIS undergraduate students develop a positive attitude towards mathematics and appreciate that the paradigm shift in the practice of librarianship is towards mathematics as a way of developing technological tools (hardware and software) to facilitate the effective delivery of library services.Keywords: anxiety, attitude, library and information science, mathematics anxiety, undergraduate students, Nigerian universities
Procedia PDF Downloads 15711038 Ports and Airports: Gateways to Vector-Borne Diseases in Portugal Mainland
Authors: Maria C. Proença, Maria T. Rebelo, Maria J. Alves, Sofia Cunha
Abstract:
Vector-borne diseases are transmitted to humans by mosquitos, sandflies, bugs, ticks, and other vectors. Some are re-transmitted between vectors, if the infected human has a new contact when his levels of infection are high. The vector is infected for lifetime and can transmit infectious diseases not only between humans but also from animals to humans. Some vector borne diseases are very disabling and globally account for more than one million deaths worldwide. The mosquitoes from the complex Culex pipiens sl. are the most abundant in Portugal, and we dispose in this moment of a data set from the surveillance program that has been carried on since 2006 across the country. All mosquitos’ species are included, but the large coverage of Culex pipiens sl. and its importance for public health make this vector an interesting candidate to assess risk of disease amplification. This work focus on ports and airports identified as key areas of high density of vectors. Mosquitoes being ectothermic organisms, the main factor for vector survival and pathogen development is temperature. Minima and maxima local air temperatures for each area of interest are averaged by month from data gathered on a daily basis at the national network of meteorological stations, and interpolated in a geographic information system (GIS). The range of temperatures ideal for several pathogens are known and this work shows how to use it with the meteorological data in each port and airport facility, to focus an efficient implementation of countermeasures and reduce simultaneously risk transmission and mitigation costs. The results show an increased alert with decreasing latitude, which corresponds to higher minimum and maximum temperatures and a lower amplitude range of the daily temperature.Keywords: human health, risk assessment, risk management, vector-borne diseases
Procedia PDF Downloads 41911037 Emerging Social Media Presence of International Organisations - Challenges and Opportunities
Authors: Laura Hervai
Abstract:
One of the most significant phenomena of the 2000s was the emergence of social media sites and web 2.0 that revolutionized communication processes. Social networking platforms have fundamentally changed social and political participation of the public, which require organisations in the public and non-profit sector not only to adapt to these new trends but also to actively engage their audiences. Opportunity for interaction, freer expression of opinion and the proliferation of user generated content are major changes brought by web 2.0 technologies. Furthermore, due to the wide penetration of mobile technologies, social media sites are capable of connecting underdeveloped regions to the global flow of information. Taking advantage of these characteristics, organisations have the opportunity to engage much wider audiences, exploit new ways to raise awareness or reach out to regions that are difficult to access. The early adopters of these new communication tools soon recognized the need of developing social media guidelines for their organisations as well as the increased workload that they require. While ten years ago communication officers could handle their organisation’s social media presence, today it is a separate profession. International organisations face several challenges related to their social media presence. Early adopters have contributed to the development of best practices among which the ethics of social media usage still remained problematic. Another challenge for international organisations is to adapt to country-specific social media trends while they have to comply with the requirements of their parent organisation as well. However in the 21st century social media presence can be crucial to the successful operation of international organisations, their importance is still not taken seriously enough. The measurement of the effects and influence of social networking on the organisations’ productivity is an unsolved problem thus further research should focus on this matter. Research methods included primary research of major IGOs’ and NGOs’ social media presence and guidelines along with secondary research of social media statistics and scientific articles in the topic.Keywords: international organisations, non-profit sector, NGO, social media, social network
Procedia PDF Downloads 30711036 Development of Building Information Modeling for Cultural Heritage: The Case of West Theater in Gadara (Umm Qais), Jordan
Authors: Amal Alatar
Abstract:
The architectural legacy is considered a significant factor, which left its features on the shape of buildings and historical and archaeological sites all over the world. In this framework, this paper focuses on Umm Qais town, located in Northern Jordan, which includes archaeological remains of the ancient Decapolis city of Gadara, still the witness of the originality and architectural identity of the city. 3D modeling is a public asset and a valuable resource for cultural heritage. This technique allows the possibility to make accurate representations of objects, structures, and surfaces. Hence, these representations increase valuable assets when thinking about cultural heritage. The Heritage Building Information Modeling (HBIM) is considered an effective tool to represent information on Cultural Heritage (CH) which can be used for documentation, restoration, conservation, presentation, and research purposes. Therefore, this paper focus on the interdisciplinary project of the virtualization of the West Theater in Gadara (Umm Qais) for 3D documentation and structural studies. The derived 3D model of the cultural heritage is the basis for further archaeological studies; the challenges of the work stay in the acquisition, processing, and integration of the multi-resolution data as well as their interactive visualization.Keywords: archaeology, 3D modeling, Umm Qais, culture heritage, Jordan
Procedia PDF Downloads 10111035 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation
Authors: Lo Kar Yin, Law Ka Mei
Abstract:
Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its discipline. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC Engineering and Construction Contract (ECC) Options A and C.Keywords: building information modeling, cost estimation, quantity take-off, modeling techniques
Procedia PDF Downloads 18811034 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology
Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando
Abstract:
Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry
Procedia PDF Downloads 15111033 The Impact of Motivation on Employee Performance in South Korea
Authors: Atabong Awung Lekeazem
Abstract:
The purpose of this paper is to identify the impact or role of incentives on employee’s performance with a particular emphasis on Korean workers. The process involves defining and explaining the different types of motivation. In defining them, we also bring out the difference between the two major types of motivations. The second phase of the paper shall involve gathering data/information from a sample population and then analyzing the data. In the analysis, we shall get to see the almost similar mentality or value which Koreans attach to motivation, which a slide different view coming only from top management personnel. The last phase shall have us presenting the data and coming to a conclusion from which possible knowledge on how managers and potential managers can ignite the best out of their employees.Keywords: motivation, employee’s performance, Korean workers, business information systems
Procedia PDF Downloads 414