Search results for: balance and stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4690

Search results for: balance and stability

1060 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity

Procedia PDF Downloads 131
1059 Exploring Selected Nigerian Fictional Work and Films as Sources of Peace Building and Conflict Resolution in the Natural Resource Extraction Regions of Nigeria: A Social Conflict Theoretical Perspective and Analysis

Authors: Joyce Onoromhenre Agofure

Abstract:

Research has shown how fictional work and films reflect the destruction of the environment due to the exploitation of oil, gas, gold, and forest products by multinational companies for profits but overlook discussions on conflict resolution and peacebuilding. However, this paper examines the manner art forms project peace and conflict resolution, thereby contributing to mediation and stability geared towards changing appalling situations in the resource extraction regions of Nigeria. This paper draws from selected Nigerian films- Blood and Oil (2019), directed by Curtis Graham, Black November (2012), directed by Jeta Amata, and a novel- Death of Eternity (2007), by Adamu Kyuka Usman. The study seeks to show that the disruptions caused in the natural resource regions of Nigeria have not only left adverse effects on the social well-being of the people but require resolutions through means of peacebuilding. By adopting the theoretical insights of Social Conflict, this paper focuses on artistic processes that enhance peacebuilding and conflict resolution in non-violent ways by using scenes, visual effects, themes, and images that can educate by shaping opinions, influencing attitudes, and changing ideas and behavioral patterns of individuals and communities. Put together; the research will open up critical perceptions brought about by the artists of study to shed light on the dire need to sustain peace and actively participate in conflict resolution in natural resource extraction spaces.

Keywords: natural resource, extraction, conflict resolution, peace building

Procedia PDF Downloads 60
1058 Study on Energy Transfer in Collapsible Soil During Laboratory Proctor Compaction Test

Authors: Amritanshu Sandilya, M. V. Shah

Abstract:

Collapsible soils such as loess are a common geotechnical challenge due to their potential to undergo sudden and severe settlement under certain loading conditions. The need for filling engineering to increase developing land has grown significantly in recent years, which has created several difficulties in managing soil strength and stability during compaction. Numerous engineering problems, such as roadbed subsidence and pavement cracking, have been brought about by insufficient fill strength. Therefore, strict control of compaction parameters is essential to reduce these distresses. Accurately measuring the degree of compaction, which is often represented by compactness is an important component of compaction control. For credible predictions of how collapsible soils will behave under complicated loading situations, the accuracy of laboratory studies is essential. Therefore, this study aims to investigate the energy transfer in collapsible soils during laboratory Proctor compaction tests to provide insights into how energy transfer can be optimized to achieve more accurate and reliable results in compaction testing. The compaction characteristics in terms of energy of loess soil have been studied at moisture content corresponding to dry of optimum, at the optimum and wet side of optimum and at different compaction energy levels. The hammer impact force (E0) and soil bottom force (E) were measured using an impact load cell mounted at the bottom of the compaction mould. The variation in energy consumption ratio (E/ E0) was observed and compared with the compaction curve of the soil. The results indicate that the plot of energy consumption ratio versus moisture content can serve as a reliable indicator of the compaction characteristics of the soil in terms of energy.

Keywords: soil compaction, proctor compaction test, collapsible soil, energy transfer

Procedia PDF Downloads 64
1057 Analyzing Water Waves in Underground Pumped Storage Reservoirs: A Combined 3D Numerical and Experimental Approach

Authors: Elena Pummer, Holger Schuettrumpf

Abstract:

By today underground pumped storage plants as an outstanding alternative for classical pumped storage plants do not exist. They are needed to ensure the required balance between production and demand of energy. As a short to medium term storage pumped storage plants have been used economically over a long period of time, but their expansion is limited locally. The reasons are in particular the required topography and the extensive human land use. Through the use of underground reservoirs instead of surface lakes expansion options could be increased. Fulfilling the same functions, several hydrodynamic processes result in the specific design of the underground reservoirs and must be implemented in the planning process of such systems. A combined 3D numerical and experimental approach leads to currently unknown results about the occurring wave types and their behavior in dependence of different design and operating criteria. For the 3D numerical simulations, OpenFOAM was used and combined with an experimental approach in the laboratory of the Institute of Hydraulic Engineering and Water Resources Management at RWTH Aachen University, Germany. Using the finite-volume method and an explicit time discretization, a RANS-Simulation (k-ε) has been run. Convergence analyses for different time discretization, different meshes etc. and clear comparisons between both approaches lead to the result, that the numerical and experimental models can be combined and used as hybrid model. Undular bores partly with secondary waves and breaking bores occurred in the underground reservoir. Different water levels and discharges change the global effects, defined as the time-dependent average of the water level as well as the local processes, defined as the single, local hydrodynamic processes (water waves). Design criteria, like branches, directional changes, changes in cross-section or bottom slope, as well as changes in roughness have a great effect on the local processes, the global effects remain unaffected. Design calculations for underground pumped storage plants were developed on the basis of existing formulae and the results of the hybrid approach. Using the design calculations reservoirs heights as well as oscillation periods can be determined and lead to the knowledge of construction and operation possibilities of the plants. Consequently, future plants can be hydraulically optimized applying the design calculations on the local boundary conditions.

Keywords: energy storage, experimental approach, hybrid approach, undular and breaking Bores, 3D numerical approach

Procedia PDF Downloads 185
1056 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye

Authors: Rahul Jarariya

Abstract:

The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.

Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21

Procedia PDF Downloads 153
1055 The Connection between De Minimis Rule and the Effect on Trade

Authors: Pedro Mario Gonzalez Jimenez

Abstract:

The novelties introduced by the last Notice on agreements of minor importance tighten the application of the ‘De minimis’ safe harbour in the European Union. However, the undetermined legal concept of effect on trade between the Member States becomes importance at the same time. Therefore, the current analysis that the jurist should carry out in the European Union to determine if an agreement appreciably restrict competition under Article 101 of the Treaty on the Functioning of the European Union is double. Hence, it is necessary to know how to balance the significance in competition and the significance in effect on trade between the Member States. It is a crucial issue due to the negative delimitation of restriction of competition affects the positive one. The methodology of this research is rather simple. Beginning with a historical approach to the ‘De Minimis Rule’, their main problems and uncertainties will be found. So, after the analysis of normative documents and the jurisprudence of the Court of Justice of the European Union some proposals of ‘Lege ferenda’ will be offered. These proposals try to overcome the contradictions and questions that currently exist in the European Union as a consequence of the current legal regime of agreements of minor importance. The main findings of this research are the followings: Firstly, the effect on trade is another way to analyze the importance of an agreement different from the ‘De minimis rule’. In point of fact, this concept is singularly adapted to go through agreements that have as object the prevention, restriction or distortion of competition, as it is observed in the most famous European Union case-law. Thanks to the effect on trade, as long as the proper requirements are met there is no a restriction of competition under article 101 of the Treaty on the Functioning of the European Union, even if the agreement had an anti-competitive object. These requirements are an aggregate market share lower than 5% on any of the relevant markets affected by the agreement and turnover lower than 40 million of Euros. Secondly, as the Notice itself says ‘it is also intended to give guidance to the courts and competition authorities of the Member States in their application of Article 101 of the Treaty, but it has no binding force for them’. This reality makes possible the existence of different statements among the different Member States and a confusing perception of what a restriction of competition is. Ultimately, damage on trade between the Member States could be observed for this reason. The main conclusion is that the significant effect on trade between Member States is irrelevant in agreements that restrict competition because of their effects but crucial in agreements that restrict competition because of their object. Thus, the Member States should propose the incorporation of a similar concept in their legal orders in order to apply the content of the Notice. Otherwise, the significance of the restrictive agreement on competition would not be properly assessed.

Keywords: De minimis rule, effect on trade, minor importance agreements, safe harbour

Procedia PDF Downloads 155
1054 Method for Controlling the Groundwater Polluted by the Surface Waters through Injection Wells

Authors: Victorita Radulescu

Abstract:

Introduction: The optimum exploitation of agricultural land in the presence of an aquifer polluted by the surface sources requires close monitoring of groundwater level in both periods of intense irrigation and in absence of the irrigations, in times of drought. Currently in Romania, in the south part of the country, the Baragan area, many agricultural lands are confronted with the risk of groundwater pollution in the absence of systematic irrigation, correlated with the climate changes. Basic Methods: The non-steady flow of the groundwater from an aquifer can be described by the Bousinesq’s partial differential equation. The finite element method was used, applied to the porous media needed for the water mass balance equation. By the proper structure of the initial and boundary conditions may be modeled the flow in drainage or injection systems of wells, according to the period of irrigation or prolonged drought. The boundary conditions consist of the groundwater levels required at margins of the analyzed area, in conformity to the reality of the pollutant emissaries, following the method of the double steps. Major Findings/Results: The drainage condition is equivalent to operating regimes on the two or three rows of wells, negative, as to assure the pollutant transport, modeled with the variable flow in groups of two adjacent nodes. In order to obtain the level of the water table, in accordance with the real constraints, are needed, for example, to be restricted its top level below of an imposed value, required in each node. The objective function consists of a sum of the absolute values of differences of the infiltration flow rates, increased by a large penalty factor when there are positive values of pollutant. In these conditions, a balanced structure of the pollutant concentration is maintained in the groundwater. The spatial coordinates represent the modified parameters during the process of optimization and the drainage flows through wells. Conclusions: The presented calculation scheme was applied to an area having a cross-section of 50 km between two emissaries with various levels of altitude and different values of pollution. The input data were correlated with the measurements made in-situ, such as the level of the bedrock, the grain size of the field, the slope, etc. This method of calculation can also be extended to determine the variation of the groundwater in the aquifer following the flood wave propagation in envoys.

Keywords: environmental protection, infiltrations, numerical modeling, pollutant transport through soils

Procedia PDF Downloads 130
1053 Preparation and Characterization of Chitosan Nanoparticles for Delivery of Oligonucleotides

Authors: Gyati Shilakari Asthana, Abhay Asthana, Dharm Veer Kohli, Suresh Prasad Vyas

Abstract:

Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self-assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1, and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, the particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.

Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide

Procedia PDF Downloads 829
1052 A Basic Modeling Approach for the 3D Protein Structure of Insulin

Authors: Daniel Zarzo Montes, Manuel Zarzo Castelló

Abstract:

Proteins play a fundamental role in biology, but their structure is complex, and it is a challenge for teachers to conceptually explain the differences between their primary, secondary, tertiary, and quaternary structures. On the other hand, there are currently many computer programs to visualize the 3D structure of proteins, but they require advanced training and knowledge. Moreover, it becomes difficult to visualize the sequence of amino acids in these models, and how the protein conformation is reached. Given this drawback, a simple and instructive procedure is proposed in order to teach the protein structure to undergraduate and graduate students. For this purpose, insulin has been chosen because it is a protein that consists of 51 amino acids, a relatively small number. The methodology has consisted of the use of plastic atom models, which are frequently used in organic chemistry and biochemistry to explain the chirality of biomolecules. For didactic purposes, when the aim is to teach the biochemical foundations of proteins, a manipulative system seems convenient, starting from the chemical structure of amino acids. It has the advantage that the bonds between amino acids can be conveniently rotated, following the pattern marked by the 3D models. First, the 51 amino acids were modeled, and then they were linked according to the sequence of this protein. Next, the three disulfide bonds that characterize the stability of insulin have been established, and then the alpha-helix structure has been formed. In order to reach the tertiary 3D conformation of this protein, different interactive models available on the Internet have been visualized. In conclusion, the proposed methodology seems very suitable for biology and biochemistry students because they can learn the fundamentals of protein modeling by means of a manipulative procedure as a basis for understanding the functionality of proteins. This methodology would be conveniently useful for a biology or biochemistry laboratory practice, either at the pre-graduate or university level.

Keywords: protein structure, 3D model, insulin, biomolecule

Procedia PDF Downloads 30
1051 Common Health Problems of Filipino Overseas Household Service Workers: Implications for Wellness

Authors: Veronica Ramirez

Abstract:

For over 40 years now, the Philippines has been supplying Household Service Workers (HSWs) globally. As a requirement of the Philippine Overseas Employment Agency (POEA), all Filipinos applying for overseas work undergo medical examination and a certificate of good health is submitted to the foreign employer before hiring. However, there are workplace-related health problems that develop during employment such as musculoskeletal strain or injury, back pain, hypertension and other illnesses. Some workers are in good working conditions but are on call more than 12 hours per day. There are also those who experience heavy physical work with short rest periods or time off. They can also be easily exposed to disease outbreaks and epidemics. It was the objective of this study to determine the common health problems of Filipino Overseas Service Workers and analyze their implications to wellness in the workplace. Specifically, it sought to describe the work conditions of HSWs and determine the work-related factors affecting their health. It also identified the medical care they avail of and how they perceive their health and wellness as determinants of well-being. Finally, it proposes ways to promote wellness among HSWs. This study focused on physical illnesses and does not include mental problems experienced by HSWs. Using a questionnaire, primary data were gathered online and through survey of HSW rehires who were retaking Pre-Departure Orientation Seminar at recruitment agencies. The 2010 Health Benefit Availment data from the Overseas Workers Welfare Administration (OWWA) was also utilized. Descriptive analysis was employed on the data gathered. Key stakeholders in the migration industry were also interviewed. Previous research studies, reports and literature on migration and wellness were used as secondary data. The study found that Filipino overseas HSWs are vulnerable to physical injury and experience body pains such as back, hip and shoulder pain. Long hours of work, work hazards and lack of rest due to poor accommodations can aggravate their physical condition. Although health insurance and health care are available, HSWs are not aware how to avail them. On the basis of the findings, a Wellness Program can be designed that include health awareness, health care availment, occupational ergonomics, safety and health, work and leisure balance, developing emotional intelligence, anger management and spirituality.

Keywords: health, household service worker, overseas, wellness

Procedia PDF Downloads 231
1050 The Use of Five Times Sit-To-Stand Test in Ambulatory People with Spinal Cord Injury When Tested with or without Hands

Authors: Lalita Khuna, Sugalya Amatachaya, Pipatana Amatachaya, Thiwabhorn Thaweewannakij, Pattra Wattanapan

Abstract:

The five times sit-to-stand test (FTSST) has been widely used to quantify lower extremity motor strength (LEMS), dynamic balance ability, and risk of falls in many individuals. Recently, it has been used in ambulatory patients with spinal cord injury (SCI) but variously using with or without hands according to patients’ ability. This difference might affect the validity of the test in these individuals. Thus, this study assessed the concurrent validity of the FTSST in ambulatory individuals with SCI, separately for those who could complete the test with or without hands using LEMS and standard functional measures as gold standards. Moreover, the data of the tests from those who completed the FTSST with and without hands were compared. A total of 56 ambulatory participants with SCI who could complete sit-to-stand with or without hands were assessed for the time to complete the FTSST according to their ability. Then they were assessed for their LEMS scores and functional abilities, including the 10-meter walk test (10MWT), the walking index for spinal cord injury II (WISCI II), the timed up and go test (TUGT), and the 6-minute walk test (6MWT). The Mann-Whitney U test was used to compare the different findings between the participants who performed the FTSST with and without hands. The Spearman rank correlation coefficient (ρ) was applied to analyze the levels of correlation between the FTSST and standard tests (LEMS scores and functional measures). There were significant differences in the data between the participants who performed the test with and without hands (p < 0.01). The time to complete the FTSST of the participants who performed the test without hands showed moderate to strong correlation with total LEMS scores and all functional measures (ρ = -0.71 to 0.69, p < 0.001). On the contrary, the FTSST data of those who performed the test with hands were significantly correlated only with the 10MWT, TUGT, and 6MWT (ρ = -0.47 to 0.57, p < 0.01). The present findings confirm the concurrent validity of the FTSST when performed without hands for LEMS and functional mobility necessary for the ability of independence and safety of ambulatory individuals with SCI. However, the test using hands distort the ability of the outcomes to reflect LEMS and WISCI II that reflect lower limb functions. By contrast, the 10MWT, TUGT, and 6MWT allowed upper limb contribution in the tests. Therefore, outcomes of these tests showed a significant correlation to the outcomes of FTSST when assessed using hands. Consequently, the use of FTSST with or without hands needs to consider the clinical application of the outcomes, i.e., to reflect lower limb functions or mobility of the patients.

Keywords: mobility, lower limb muscle strength, clinical test, rehabilitation

Procedia PDF Downloads 119
1049 Investigating English Dominance in a Chinese-English Dual Language Program: Teachers' Language Use and Investment

Authors: Peizhu Liu

Abstract:

Dual language education, also known as immersion education, differs from traditional language programs that teach a second or foreign language as a subject. Instead, dual language programs adopt a content-based approach, using both a majority language (e.g., English, in the case of the United States) and a minority language (e.g., Spanish or Chinese) as a medium of instruction to teach math, science, and social studies. By granting each language of instruction equal status, dual language education seeks to educate not only meaningfully but equitably and to foster tolerance and appreciation of diversity, making it essential for immigrants, refugees, indigenous peoples, and other marginalized students. Despite the cognitive and academic benefits of dual language education, recent literature has revealed that English is disproportionately privileged across dual language programs. Scholars have expressed concerns about the unbalanced status of majority and minority languages in dual language education, as favoring English in this context may inadvertently reaffirm its dominance and moreover fail to serve the needs of children whose primary language is not English. Through a year-long study of a Chinese-English dual language program, the extensively disproportionate use of English has also been observed by the researcher. However, despite the fact that Chinese-English dual language programs are the second-most popular program type after Spanish in the United States, this issue remains underexplored in the existing literature on Chinese-English dual language education. In fact, the number of Chinese-English dual language programs being offered in the U.S. has grown rapidly, from 8 in 1988 to 331 as of 2023. Using Norton and Darvin's investment model theory, the current study investigates teachers' language use and investment in teaching Chinese and English in a Chinese-English dual language program at an urban public school in New York City. The program caters to a significant number of minority children from working-class families. Adopting an ethnographic and discourse analytic approach, this study seeks to understand language use dynamics in the program and how micro- and macro-factors, such as students' identity construction, parents' and teachers' language ideologies, and the capital associated with each language, influence teachers' investment in teaching Chinese and English. The research will help educators and policymakers understand the obstacles that stand in the way of the goal of dual language education—that is, the creation of a more inclusive classroom, which is achieved by regarding both languages of instruction as equally valuable resources. The implications for how to balance the use of the majority and minority languages will also be discussed.

Keywords: dual language education, bilingual education, language immersion education, content-based language teaching

Procedia PDF Downloads 62
1048 Experimental and Numerical Studies of Droplet Formation

Authors: Khaled Al-Badani, James Ren, Lisa Li, David Allanson

Abstract:

Droplet formation is an important process in many engineering systems and manufacturing procedures, which includes welding, biotechnologies, 3D printing, biochemical, biomedical fields and many more. The volume and the characteristics of droplet formation are generally depended on various material properties, microfluidics and fluid mechanics considerations. Hence, a detailed investigation of this process, with the aid of numerical computational tools, are essential for future design optimization and process controls of many engineering systems. This will also improve the understanding of changes in the properties and the structures of materials, during the formation of the droplet, which is important for new material developments to achieve different functions, pending the requirements of the application. For example, the shape of the formed droplet is critical for the function of some final products, such as the welding nugget during Capacitor Discharge Welding process, or PLA 3D printing, etc. Although, most academic journals on droplet formation, focused on issued with material transfer rate, surface tension and residual stresses, the general emphasis on the characteristics of droplet shape has been overlooked. The proposed work for this project will examine theoretical methodologies, experimental techniques, and numerical modelling, using ANSYS FLUENT, to critically analyse and highlight optimization methods regarding the formation of pendant droplet. The project will also compare results from published data with experimental and numerical work, concerning the effects of key material parameters on the droplet shape. These effects include changes in heating/cooling rates, solidification/melting progression and separation/break-up times. From these tests, a set of objectives is prepared, with an intention of improving quality, stability and productivity in modelling metal welding and 3D printing.

Keywords: computer modelling, droplet formation, material distortion, materials forming, welding

Procedia PDF Downloads 268
1047 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications

Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.

Keywords: geobacillus, optimization, production, xylanase

Procedia PDF Downloads 293
1046 Electrochemical/Electro-Catalytic Applications of Novel Alcohol Substituted Metallophthalocyanines

Authors: Ipek Gunay, Efe B. Orman, Metin Ozer, Bekir Salih, Ali R. Ozkaya

Abstract:

Phthalocyanines with macrocyclic ring containing at least three heteroatoms have nine or more membered structures. Metal-free phthalocyanines react with metal salts to obtain chelate complexes. This is one of the most important features of metal-free phthalocyanine as ligand structure. Although phthalocyanines have very similar properties with porphyrins, they have some advantages such as lower cost, easy to prepare, and chemical and thermal stability. It’s known that Pc compounds have shown one-electron metal-and/or ligand-based reversible or quasi-reversible reduction and oxidation processes. The redox properties of phthalocyanines are critically related to the desirable properties of these compounds in their technological applications. Thus, Pc complexes have also been receiving increasing interest in the area of fuel cells due to their high electrocatalytic activity in dioxygen reduction and fuel cell applications. In this study, novel phthalocyanine complexes coordinated with Fe(II) and Co (II) to be used as catalyst were synthesized. Aiming this goal, a new nitrile ligand was synthesized starting from 4-hydroxy-3,5-dimethoxy benzyl alcohol and 4-nitrophthalonitrile in the presence of K2CO3 as catalyst. After the isolation of the new type of nitrile and metal complexes, the characterization of mentioned compounds was achieved by IR, H-NMR and UV-vis methods. In addition, the electrochemical behaviour of Pc complexes was identified by cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemical measurements. Furthermore, the catalytic performances of Pc complexes for oxygen reduction were tested by dynamic voltammetry measurements, carried out by the combined system of rotating ring-disk electrode and potentiostat, in a medium similar to fuel-cell working conditions.

Keywords: phthalocyanine, electrocatalysis, electrochemistry, in-situ spectroelectrochemistry

Procedia PDF Downloads 294
1045 Connectivity: Connecting ActivityRethinking Streets as Public Space under the Six Dimensions of Urban Space Design in the Context of Bangladesh

Authors: Manal Anis, Bin Bakhti Sayeed

Abstract:

With the encroachment of automobile upon our communities for decades and the concomitant urban sprawl resulting in a loss of public place, it was only a matter of time before people, realizing the role of streets in stimulating urban prosperity, would start reclaiming them to rebuild their communities. In order for this restoration of communities to take effect it is imperative that streets be freed from the dominance of motor vehicles. A holistic approach to pedestrian-friendly street environment can help build communities that embody the cities in which they are found. While the developed countries are finding more and more innovative ways to integrate walkable streets to foster communal living, the developing countries still have a long way to go. Since Dhaka is still struggling to balance the growing needs of accommodating automobiles for increased population with the loss of urban community life that comes with it, it is high time that alternate approaches are looked into. This study aims to understand streets as a living corridor through which one discovers and identifies with the city. The research area is chosen to be Manik Mia Avenue, overlooking the South Plaza of the National Parliament Building in Dhaka city. Being the site of supreme power, it is precisely this symbolic importance that the National Parliament Building has in the psyche of Bangladeshis, which has given Manik Mia Avenue a significant place in the country’s history. Above all, being an avenue it is essentially a neutral territory, universally accessible, inclusive and pluralist. The needs of the Avenue’s frequent users are analyzed with the help of a multi-method approach to survey consisting of an empirical study, a questionnaire survey and interview with relevant users. The research then tries to understand the concept of walkability by exploring the different ways in which the built environment influences walking. For this analysis, the six dimensions of Matthew Carmona are taken as a guideline for a holistic approach toward the different interacting facets of an urban public space. Based on the studies, a set of criteria is proposed to evaluate, plan and design streets that are more contextual in nature. The study concludes with how the existing street patterns of Dhaka city can be rethought and redesigned to cater to peoples’ need for a public place. The proposal is meant to be an inspiration for further studies in this respect in the context of Bangladesh.

Keywords: public space, six dimensions, street, urban, walkability

Procedia PDF Downloads 201
1044 The Effect of Torsional Angle on Reversible Electron Transfer in Donor: Acceptor Frameworks Using Bis(Imino)Pyridines as Proxy

Authors: Ryan Brisbin, Hassan Harb, Justin Debow, Hrant Hratchian, Ryan Baxter

Abstract:

Donor-Acceptor (DA) frameworks are crucial parts of any technology requiring charge transport. This type of behavior is ubiquitous across technologies from semi conductors to solar panels. Currently, most DA systems involve metallic components, but progressive research is being pursued to design fully organic DA systems to be used as both organic semi-conductors and light emitting diodes. These systems are currently comprised of conductive polymers and salts. However, little is known about the effect of various physical aspects (size, torsional angle, electron density) have on the act of reversible charge transfer. Herein, the effect of torsional angle on reductive stability in bis(imino)pyridines is analyzed using a combination of single crystal analysis and electro-chemical peak current ratios from cyclic voltammetry. The computed free energies of reduction and electron attachment points were also investigated through density functional theory and natural ionization orbital theory to gain greater understanding of the global effect torsional angles have on electron transfer in bis(imino)pyridines. Findings indicated that torsional angles are a multi-variable parameter affected by both local steric constraints and resonant electronic contributions. Local steric impacted torsional angles demonstrated a negligible effect on electrochemical reversibility, while resonant affected torsional angles were observed to significantly alter the electrochemical reversibility.

Keywords: cyclic voltammetry, bis(imino)pyridines, structure-activity relationship, torsional angles

Procedia PDF Downloads 212
1043 Detection and Quantification of Ochratoxin A in Food by Aptasensor

Authors: Moez Elsaadani, Noel Durand, Brice Sorli, Didier Montet

Abstract:

Governments and international instances are trying to improve the food safety system to prevent, reduce or avoid the increase of food borne diseases. This food risk is one of the major concerns for the humanity. The contamination by mycotoxins is a threat to the health and life of humans and animals. One of the most common mycotoxin contaminating feed and foodstuffs is Ochratoxin A (OTA), which is a secondary metabolite, produced by Aspergillus and Penicillium strains. OTA has a chronic toxic effect and proved to be mutagenic, nephrotoxic, teratogenic, immunosuppressive, and carcinogenic. On the other side, because of their high stability, specificity, affinity, and their easy chemical synthesis, aptamer based methods are applied to OTA biosensing as alternative to traditional analytical technique. In this work, five aptamers have been tested to confirm qualitatively and quantitatively their binding with OTA. In the same time, three different analytical methods were tested and compared based on their ability to detect and quantify the OTA. The best protocol that was established to quantify free OTA from linked OTA involved an ultrafiltration method in green coffee solution with. OTA was quantified by HPLC-FLD to calculate the binding percentage of all five aptamers. One aptamer (The most effective with 87% binding with OTA) has been selected to be our biorecognition element to study its electrical response (variation of electrical properties) in the presence of OTA in order to be able to make a pairing with a radio frequency identification (RFID). This device, which is characterized by its low cost, speed, and a simple wireless information transmission, will implement the knowledge on the mycotoxins molecular sensors (aptamers), an electronic device that will link the information, the quantification and make it available to operators.

Keywords: aptamer, aptasensor, detection, Ochratoxin A

Procedia PDF Downloads 154
1042 Position of the Constitutional Court of the Russian Federation on the Matter of Restricting Constitutional Rights of Citizens Concerning Banking Secrecy

Authors: A. V. Shashkova

Abstract:

The aim of the present article is to analyze the position of the Constitutional Court of the Russian Federation on the matter of restricting the constitutional rights of citizens to inviolability of professional and banking secrecy in effecting controlling activities. The methodological ground of the present Article represents the dialectic scientific method of the socio-political, legal and organizational processes with the principles of development, integrity, and consistency, etc. The consistency analysis method is used while researching the object of the analysis. Some public-private research methods are also used: the formally-logical method or the comparative legal method, are used to compare the understanding of the ‘secrecy’ concept. The aim of the present article is to find the root of the problem and to give recommendations for the solution of the problem. The result of the present research is the author’s conclusion on the necessity of the political will to improve Russian legislation with the aim of compliance with the provisions of the Constitution. It is also necessary to establish a clear balance between the constitutional rights of the individual and the limit of these rights when carrying out various control activities by public authorities. Attempts by the banks to "overdo" an anti-money laundering law under threat of severe sanctions by the regulators actually led to failures in the execution of normal economic activity. Therefore, individuals face huge problems with payments on the basis of clearing, in addition to problems with cash withdrawals. The Bank of Russia sets requirements for banks to execute Federal Law No. 115-FZ too high. It is high place to attract political will here. As well, recent changes in Russian legislation, e.g. allowing banks to refuse opening of accounts unilaterally, simplified banking activities in the country. The article focuses on different theoretical approaches towards the concept of “secrecy”. The author gives an overview of the practices of Spain, Switzerland and the United States of America on the matter of restricting the constitutional rights of citizens to inviolability of professional and banking secrecy in effecting controlling activities. The Constitutional Court of the Russian Federation basing on the Constitution of the Russian Federation has its special understanding of the issue, which should be supported by further legislative development in the Russian Federation.

Keywords: constitutional court, restriction of constitutional rights, bank secrecy, control measures, money laundering, financial control, banking information

Procedia PDF Downloads 163
1041 LiTa2PO8-based Composite Solid Polymer Electrolytes for High-Voltage Cathodes in Lithium-Metal Batteries

Authors: Kumlachew Zelalem Walle, Chun-Chen Yang

Abstract:

Solid-state Lithium metal batteries (SSLMBs) that contain polymer and ceramic solid electrolytes have received considerable attention as an alternative to substitute liquid electrolytes in lithium metal batteries (LMBs) for highly safe, excellent energy storage performance and stability under elevated temperature situations. Here, a novel fast Li-ion conducting material, LiTa₂PO₈ (LTPO), was synthesized and electrochemical performance of as-prepared powder and LTPO-incorporated composite solid polymer electrolyte (LTPO-CPE) membrane were investigated. The as-prepared LTPO powder was homogeneously dispersed in polymer matrices, and a hybrid solid electrolyte membrane was synthesized via a simple solution-casting method. The room temperature total ionic conductivity (σt) of the LTPO pellet and LTPO-CPE membrane were 0.14 and 0.57 mS cm-1, respectively. A coin battery with NCM811 cathode is cycled under 1C between 2.8 to 4.5 V at room temperature, achieving a Coulombic efficiency of 99.3% with capacity retention of 74.1% after 300 cycles. Similarly, the LFP cathode also delivered an excellent performance at 0.5C with an average Coulombic efficiency of 100% without virtually capacity loss (the maximum specific capacity is at 27th: 138 mAh g−1 and 500th: 131.3 mAh g−1). These results demonstrates the feasibility of a high Li-ion conductor LTPO as a filler, and the developed polymer/ceramic hybrid electrolyte has potential to be a high-performance electrolyte for high-voltage cathodes, which may provide a fresh platform for developing more advanced solid-state electrolytes.

Keywords: li-ion conductor, lithium-metal batteries, composite solid electrolytes, liTa2PO8, high-voltage cathode

Procedia PDF Downloads 41
1040 Evaluation on Heat and Drought Tolerance Capacity of Chickpea

Authors: Derya Yucel, Nigar Angın, Dürdane Mart, Meltem Turkeri, Volkan Catalkaya, Celal Yucel

Abstract:

Chickpea (Cicer arietinum L.) is one of the important legumes widely grown for dietery proteins in semi-arid Mediteranean climatic conditions. To evaluate the genetic diversity with improved heat and drought tolerance capacity in chickpea, thirty-four selected chickpea genotypes were tested under different field-growing conditions (rainfed winter sowing, irrigated-late sowing and rainfed-late sowing) in 2015 growing season. A factorial experiment in randomized complete block design with 3 reps was conducted at the Eastern Mediterranean Research Institute Adana, Turkey. Based on grain yields under different growing conditions, several indices were calculated to identify economically higher-yielding chickpea genotypes with greater heat and drought tolerance capacity. Average across chickpea genotypes, the values of tolerance index, mean productivity, yield index, yield stability index, stress tolerance index, stress susceptibility index, and geometric mean productivity were ranged between 1.1 to 218, 38 to 202, 0.3 to 1.7, 0.2 to 1, 0.1 to 1.2, 0.02 to 1.4, and 36 to 170 for drought stress and 3 to 54, 23 to 118, 0.3 to 1.7, 0.4 to 0.9, 0.2 to 2, 0.2to 2.3, and 23 to 118 for heat stress, respectively. There were highly significant differences observed among the tested chickpea genotypes response to drought and heat stresses. Among the chickpea genotypes, the Aksu, Arda, Çakır, F4 09 (X 05 TH 21-16189), FLIP 03-108 were identified with a higher drought and heat tolerance capacity. Based on our field studies, it is suggested that the drought and heat tolerance indicators of plants can be used by breeders to select stress-resistant economically productive chickpea genotypes suitable to grow under Mediteranean climatic conditions.

Keywords: irrigation, rainfed, stress susceptibility, tolerance indice

Procedia PDF Downloads 218
1039 The Applications of Toyota Production System to Reduce Wastes in Agricultural Products Packing Process: A Study of Onion Packing Plant

Authors: P. Larpsomboonchai

Abstract:

Agro-industry is one of major industries that has strong impacts on national economic incomes, growth, stability, and sustainable development. Moreover, this industry also has strong influences on social, cultural and political issues. Furthermore, this industry, as producing primary and secondary products, is facing challenges from such diverse factors such as demand inconsistency, intense international competition, technological advancements and new competitors. In order to maintain and to improve industry’s competitiveness in both domestics and international markets, science and technology are key factors. Besides hard sciences and technologies, modern industrial engineering concepts such as Just in Time (JIT) Total Quality Management (TQM), Quick Response (QR), Supply Chain Management (SCM) and Lean can be very effective to supportant to increase efficiency and effectiveness of these agricultural products on world stage. Onion is one of Thailand’s major export products which brings back national incomes. But, it also facing challenges in many ways. This paper focused its interests in onion packing process and its related activities such as storage and shipment from one of major packing plant and storage in Mae Wang District, Chiang Mai, Thailand, by applying Toyota Production System (TPS) or Lean concepts, to improve process capability throughout the entire packing and distribution process which will be profitable for the whole onion supply chain. And it will be beneficial to other related agricultural products in Thailand and other ASEAN countries.

Keywords: packing process, Toyota Production System (TPS), lean concepts, waste reduction, lean in agro-industries activities

Procedia PDF Downloads 254
1038 Spectroscopic Study of Tb³⁺ Doped Calcium Aluminozincate Phosphor for Display and Solid-State Lighting Applications

Authors: Sumandeep Kaur, Allam Srinivasa Rao, Mula Jayasimhadri

Abstract:

In recent years, rare earth (RE) ions doped inorganic luminescent materials are seeking great attention due to their excellent physical and chemical properties. These materials offer high thermal and chemical stability and exhibit good luminescence properties due to the presence of RE ions. The luminescent properties of these materials are attributed to their intra-configurational f-f transitions in RE ions. A series of Tb³⁺ doped calcium aluminozincate has been synthesized via sol-gel method. The structural and morphological studies have been carried out by recording X-ray diffraction patterns and SEM image. The luminescent spectra have been recorded for a comprehensive study of their luminescence properties. The XRD profile reveals the single-phase orthorhombic crystal structure with an average crystallite size of 65 nm as calculated by using DebyeScherrer equation. The SEM image exhibits completely random, irregular morphology of micron size particles of the prepared samples. The optimization of luminescence has been carried out by varying the dopant Tb³⁺ concentration within the range from 0.5 to 2.0 mol%. The as-synthesized phosphors exhibit intense emission at 544 nm pumped at 478 nm excitation wavelength. The optimized Tb³⁺ concentration has been found to be 1.0 mol% in the present host lattice. The decay curves show bi-exponential fitting for the as-synthesized phosphor. The colorimetric studies show green emission with CIE coordinates (0.334, 0.647) lying in green region for the optimized Tb³⁺ concentration. This report reveals the potential utility of Tb³⁺ doped calcium aluminozincate phosphors for display and solid-state lighting devices.

Keywords: concentration quenching, phosphor, photoluminescence, XRD

Procedia PDF Downloads 125
1037 Imputation of Incomplete Large-Scale Monitoring Count Data via Penalized Estimation

Authors: Mohamed Dakki, Genevieve Robin, Marie Suet, Abdeljebbar Qninba, Mohamed A. El Agbani, Asmâa Ouassou, Rhimou El Hamoumi, Hichem Azafzaf, Sami Rebah, Claudia Feltrup-Azafzaf, Nafouel Hamouda, Wed a.L. Ibrahim, Hosni H. Asran, Amr A. Elhady, Haitham Ibrahim, Khaled Etayeb, Essam Bouras, Almokhtar Saied, Ashrof Glidan, Bakar M. Habib, Mohamed S. Sayoud, Nadjiba Bendjedda, Laura Dami, Clemence Deschamps, Elie Gaget, Jean-Yves Mondain-Monval, Pierre Defos Du Rau

Abstract:

In biodiversity monitoring, large datasets are becoming more and more widely available and are increasingly used globally to estimate species trends and con- servation status. These large-scale datasets challenge existing statistical analysis methods, many of which are not adapted to their size, incompleteness and heterogeneity. The development of scalable methods to impute missing data in incomplete large-scale monitoring datasets is crucial to balance sampling in time or space and thus better inform conservation policies. We developed a new method based on penalized Poisson models to impute and analyse incomplete monitoring data in a large-scale framework. The method al- lows parameterization of (a) space and time factors, (b) the main effects of predic- tor covariates, as well as (c) space–time interactions. It also benefits from robust statistical and computational capability in large-scale settings. The method was tested extensively on both simulated and real-life waterbird data, with the findings revealing that it outperforms six existing methods in terms of missing data imputation errors. Applying the method to 16 waterbird species, we estimated their long-term trends for the first time at the entire North African scale, a region where monitoring data suffer from many gaps in space and time series. This new approach opens promising perspectives to increase the accuracy of species-abundance trend estimations. We made it freely available in the r package ‘lori’ (https://CRAN.R-project.org/package=lori) and recommend its use for large- scale count data, particularly in citizen science monitoring programmes.

Keywords: biodiversity monitoring, high-dimensional statistics, incomplete count data, missing data imputation, waterbird trends in North-Africa

Procedia PDF Downloads 125
1036 Non-Linear Load-Deflection Response of Shape Memory Alloys-Reinforced Composite Cylindrical Shells under Uniform Radial Load

Authors: Behrang Tavousi Tehrani, Mohammad-Zaman Kabir

Abstract:

Shape memory alloys (SMA) are often implemented in smart structures as the active components. Their ability to recover large displacements has been used in many applications, including structural stability/response enhancement and active structural acoustic control. SMA wires or fibers can be embedded with composite cylinders to increase their critical buckling load, improve their load-deflection behavior, and reduce the radial deflections under various thermo-mechanical loadings. This paper presents a semi-analytical investigation on the non-linear load-deflection response of SMA-reinforced composite circular cylindrical shells. The cylinder shells are under uniform external pressure load. Based on first-order shear deformation shell theory (FSDT), the equilibrium equations of the structure are derived. One-dimensional simplified Brinson’s model is used for determining the SMA recovery force due to its simplicity and accuracy. Airy stress function and Galerkin technique are used to obtain non-linear load-deflection curves. The results are verified by comparing them with those in the literature. Several parametric studies are conducted in order to investigate the effect of SMA volume fraction, SMA pre-strain value, and SMA activation temperature on the response of the structure. It is shown that suitable usage of SMA wires results in a considerable enhancement in the load-deflection response of the shell due to the generation of the SMA tensile recovery force.

Keywords: airy stress function, cylindrical shell, Galerkin technique, load-deflection curve, recovery stress, shape memory alloy

Procedia PDF Downloads 167
1035 Xylanase Impact beyond Performance: A Prebiotic Approach in Laying Hens

Authors: Veerle Van Hoeck, Ingrid Somers, Dany Morisset

Abstract:

Anti-nutritional factors such as non-starch polysaccharides (NSP) are present in viscous cereals used to feed poultry. Therefore, exogenous carbohydrases are commonly added to monogastric feed to degrade these NSP. Our hypothesis is that xylanase not only improves laying hen performance and digestibility but also induces a significant shift in microbial composition within the intestinal tract and, thereby, can cause a prebiotic effect. In this context, a better understanding of whether and how the chicken gut flora can be modulated by xylanase is needed. To do so, in the herein laying hen study, the effects of dietary supplementation of xylanase on performance, digestibility, and cecal microbiome were evaluated. A total of 96 HiSex laying hens was used in this experiment (3 diets and 16 replicates of 2 hens). Xylanase was added to the diets at concentrations of 0, 45,000 (15 g/t XygestTM HT) and 90,000 U/kg (30 g/t Xygest HT). The diets were based on wheat (~55 %), soybean, and sunflower meal. The lowest dosage, 45,000 U/kg, significantly increased average egg weight and improved feed efficiency compared to the control treatment (p < 0.05). Egg quality parameters were significantly improved in the experiment in response to the xylanase addition. For example, during the last 28 days of the trial, the 45,000 U/kg and the 90,000 U/kg treatments exhibited an increase in Haugh units and albumin heights (p < 0.05). Compared with the control, organic matter digestibility and N retention were drastically improved in the 45,000 U/kg treatment group, which implies better nutrient digestibility at this lowest recommended dosage compared to the control (p < 0.05). Furthermore, gross energy and crude fat digestibility were improved significantly for birds fed 90,000 U/kg group compared to the control. Importantly, 16S rRNA gene analysis revealed that xylanase at 45,000 U/kg dosages can exert a prebiotic effect. This conclusion was drawn based on studying the sequence variation in the 16S rRNA gene in order to characterize diverse microbial communities of the cecal content. A significant increase in beneficial bacteria (Lactobacilli spp and Enterococcus casseliflavus) was documented when adding 45,000 U/kg xylanase to the diet of laying hens. In conclusion, dietary supplementation of xylanase, even at the lowest dose of (45,000 U/kg), significantly improved laying hen performance and digestibility. Furthermore, it is generally accepted that a proper bacterial balance between the number of beneficial bacteria and pathogenic bacteria in the intestine is vital for the host. It seems that the xylanase enzyme is able to modulate the laying hen microbiome beneficially and thus exerts a prebiotic effect. This microbiome plasticity in response to the xylanase provides an attractive target for stimulating intestinal health.

Keywords: laying hen, prebiotic, XygestTM HT, xylanase

Procedia PDF Downloads 105
1034 Suitability of Direct Strength Method-Based Approach for Web Crippling Strength of Flange Fastened Cold-Formed Steel Channel Beams Subjected to Interior Two-Flange Loading: A Comprehensive Investigation

Authors: Hari Krishnan K. P., Anil Kumar M. V.

Abstract:

The Direct Strength Method (DSM) is used for the computation of the design strength of members whose behavior is governed by any form of buckling. DSM based semiempirical equations have been successfully used for cold-formed steel (CFS) members subjected to compression, bending, and shear. The DSM equations for the strength of a CFS member are based on the parameters accounting for strength [yield load (Py), yield moment (My), and shear yield load (Vy) for compression, bending, and shear respectively] and stability [buckling load (Pcr), buckling moment (Mcr), and shear buckling load (Vcr) for compression, bending and shear respectively]. The buckling of column and beam shall be governed by local, distortional, or global buckling modes and their interaction. Recently DSM-based methods are extended for the web crippling strength of CFS beams also. Numerous DSM-based expressions were reported in the literature, which is the function of loading case, cross-section shape, and boundary condition. Unlike members subjected to axial load, bending, or shear, no unified expression for the design web crippling strength irrespective of the loading case, cross-section shape, and end boundary conditions are available yet. This study, based on nonlinear finite element analysis results, shows that the slenderness of the web, which shall be represented either using web height to thickness ratio (h=t) or Pcr has negligible contribution to web crippling strength. Hence, the results in this paper question the suitability of DSM based approach for the web crippling strength of CFS beams.

Keywords: cold-formed steel, beams, DSM-based procedure, interior two flanged loading, web crippling

Procedia PDF Downloads 73
1033 Thermal Performance of an Air-Water Heat Exchanger (AWHE) Operating in Groundwater and Hot-Humid Climate

Authors: César Ramírez-Dolores, Jorge Wong-Loya, Jorge Andaverde, Caleb Becerra

Abstract:

Low-depth geothermal energy can take advantage of the use of the subsoil as an air conditioning technique, being used as a passive system or coupled to an active cooling and/or heating system. This source of air conditioning is possible because at a depth less than 10 meters, the subsoil temperature is practically homogeneous and tends to be constant regardless of the climatic conditions on the surface. The effect of temperature fluctuations on the soil surface decreases as depth increases due to the thermal inertia of the soil, causing temperature stability; this effect presents several advantages in the context of sustainable energy use. In the present work, the thermal behavior of a horizontal Air-Water Heat Exchanger (AWHE) is evaluated, and the thermal effectiveness and temperature of the air at the outlet of the prototype immersed in groundwater is experimentally determined. The thermohydraulic aspects of the heat exchanger were evaluated using the Number of Transfer Units-Efficiency (NTU-ε) method under conditions of groundwater flow in a coastal region of sandy soil (southeastern Mexico) and air flow induced by a blower, the system was constructed of polyvinyl chloride (PVC) and sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger operates in groundwater, it shows high thermal gains allowing better heat transfer, therefore, it significantly reduces the air temperature at the outlet of the system, which increases the thermal effectiveness of the system in values > 80%, this passive technique is relevant for building cooling applications and could represent a significant development in terms of thermal comfort for hot locations in emerging economy countries.

Keywords: convection, earth, geothermal energy, thermal comfort

Procedia PDF Downloads 49
1032 Temperature and Substrate Orientation Effects on the Thermal Stability of Graphene Sheet Attached on the Si Surface

Authors: Wen-Jay Lee, Kuo-Ning Chiang

Abstract:

The graphene binding with silicon substrate has apparently Schottky barriers property, which can be used in the application of solar cell and light source. Because graphene has only one atom layer, the atomistic structure of graphene binding with the silicon surface plays an important role to affect the properties of graphene. In this work, temperature effect on the morphology of graphene sheet attached on different crystal planes of silicon substrates are investigated by Molecular dynamics (MD) (LAMMPS, developed by Sandia National Laboratories). The results show that the covered graphene sheet would cause the structural deformation of the surface Si atoms of stubtrate. To achieve a stable state in the binding process, the surface Si atoms would adjust their position and fit the honeycomb structure of graphene after the graphene attaches to the Si surface. The height contour of graphene on different plane of silicon surfaces presents different pattern, leading the local residual stress at the interface. Due to the high density of dangling bond on the Si (111)7x7 surface, the surface of Si(111)7x7 is not matching with the graphene so well in contrast with Si(100)2x1and Si(111)2x1. Si(111)7x7 is found that only partial silicon adatoms are rearranged on surface after the attachment when the temperature is lower than 200K, As the temperature gradually increases, the deformation of surface structure becomes significant, as well as the residue stress. With increasing temperature till the 815K, the graphene sheet begins to destroy and mixes with the silicon atoms. For the Si(100)2x1 and Si(111)2x1, the silicon surface structure keep its structural arrangement with a higher temperature. With increasing temperature, the residual stress gradually decrease till a critical temperatures. When the temperature is higher than the critical temperature, the residual stress gradually increases and the structural deformation is found on the surface of the Si substrates.

Keywords: molecular dynamics, graphene, silicon, Schottky barriers, interface

Procedia PDF Downloads 301
1031 Synthesis of Pd Nanoparticles Confined in Graphene Oxide Framework as Nano Catalyst with Improved Activity and Recyclability in Suzuki-Miyaura Cross-Coupling Reaction

Authors: Thuy Phuong Nhat Tran, Ashutosh Thakur, Toshiaki Taniike

Abstract:

Recently, covalently linked graphene oxide frameworks (GOFs) have attracted considerable attention in gas absorbance and water purification as well-defined microporous materials. In spite of their potential advantages such as a controllable pore dimension, adjustable hydrophobicity, and structural stability, these materials have been scarcely employed in heterogeneous catalysis. Here we demonstrate a novel and facile method to synthesize Pd nanoparticles (NPs) confined in a GOF (Pd@GOF). The GOF with uniform interlayer space was obtained by the intercalation of diboronic acid between graphene oxide layers. It was found that Pd NPs were generated inside the graphitic gallery spaces of the GOF, and thus, formed Pd NPs were well-dispersed with a narrow particle size distribution. The synthesized Pd@GOF emerged as an efficient nanocatalyst based on its superior performance (product yield and recyclability) toward Suzuki-Miyaura cross-coupling reaction in both polar and apolar solvents, which has been hardly observed for previously reported graphene-based Pd nanocatalysts. Furthermore, the rational comparison of the catalytic performance between two kinds of Pd@GOF (Pd NPs encapsulated in a diboronic ester-intercalated GOF and in a monoboronic ester-intercalated GOF) firmly confirmed the essential role of a rigid framework design in the stabilization of Pd NPs. Based on these results, the covalently assembled GOF was proposed as a promising scaffold for hosting noble metal NPs to construct desired metal@GOF nanocatalysts with improved activity and durability.

Keywords: graphene oxide framework, palladium nanocatalyst, pore confinement, Suzuki-Miyaura cross-coupling reaction

Procedia PDF Downloads 120