Search results for: squared prediction risk
4561 Asset Liability Modelling for Pension Funds by Introducing Leslie Model for Population Dynamics
Authors: Kristina Sutiene, Lina Dapkute
Abstract:
The paper investigates the current demographic trends that exert the sustainability of pension systems in most EU regions. Several drivers usually compose the demographic challenge, coming from the structure and trends of population in the country. As the case of research, three main variables of demographic risk in Lithuania have been singled out and have been used in making up the analysis. Over the last two decades, the country has presented a peculiar demographic situation characterized by pessimistic fertility trends, negative net migration rate and rising life expectancy that make the significant changes in labor-age population. This study, therefore, sets out to assess the relative impact of these risk factors both individually and in aggregate, while assuming economic trends to evolve historically. The evidence is presented using data of pension funds that operate in Lithuania and are financed by defined-contribution plans. To achieve this goal, the discrete-time pension fund’s value model is developed that reflects main operational modalities: contribution income from current participants and new entrants, pension disbursement and administrative expenses; it also fluctuates based on returns from investment activity. Age-structured Leslie population dynamics model has been integrated into the main model to describe the dynamics of fertility, migration and mortality rates upon age. Validation has concluded that Leslie model adequately fits the current population trends in Lithuania. The elasticity of pension system is examined using Loimaranta efficiency as a measure for comparison of plausible long-term developments of demographic risks. With respect to the research question, it was found that demographic risks have different levels of influence on future value of aggregated pension funds: The fertility rates have the highest importance, while mortality rates give only a minor impact. Further studies regarding the role of trying out different economic scenarios in the integrated model would be worthwhile.Keywords: asset liability modelling, Leslie model, pension funds, population dynamics
Procedia PDF Downloads 2694560 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook
Authors: Chien-Jen Liu, Shu Ching Yang
Abstract:
Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.Keywords: technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness
Procedia PDF Downloads 3464559 The Role of Brand Loyalty in Generating Positive Word of Mouth among Malaysian Hypermarket Customers
Authors: S. R. Nikhashemi, Laily Haj Paim, Ali Khatibi
Abstract:
Structural Equation Modeling (SEM) was used to test a hypothesized model explaining Malaysian hypermarket customers’ perceptions of brand trust (BT), customer perceived value (CPV) and perceived service quality (PSQ) on building their brand loyalty (CBL) and generating positive word-of-mouth communication (WOM). Self-administered questionnaires were used to collect data from 374 Malaysian hypermarket customers from Mydin, Tesco, Aeon Big and Giant in Kuala Lumpur, a metropolitan city of Malaysia. The data strongly supported the model exhibiting that BT, CPV and PSQ are prerequisite factors in building customer brand loyalty, while PSQ has the strongest effect on prediction of customer brand loyalty compared to other factors. Besides, the present study suggests the effect of the aforementioned factors via customer brand loyalty strongly contributes to generate positive word of mouth communication.Keywords: brand trust, perceived value, Perceived Service Quality, Brand loyalty, positive word of mouth communication
Procedia PDF Downloads 4824558 Bankruptcy Prediction Analysis on Mining Sector Companies in Indonesia
Authors: Devina Aprilia Gunawan, Tasya Aspiranti, Inugrah Ratia Pratiwi
Abstract:
This research aims to classify the mining sector companies based on Altman’s Z-score model, and providing an analysis based on the Altman’s Z-score model’s financial ratios to provide a picture about the financial condition in mining sector companies in Indonesia and their viability in the future, and to find out the partial and simultaneous impact of each of the financial ratio variables in the Altman’s Z-score model, namely (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), toward the financial condition represented by the Z-score itself. Among 38 mining sector companies listed in Indonesia Stock Exchange (IDX), 28 companies are selected as research sample according to the purposive sampling criteria.The results of this research showed that during 3 years research period at 2010-2012, the amount of the companies that was predicted to be healthy in each year was less than half of the total sample companies and not even reach up to 50%. The multiple regression analysis result showed that all of the research hypotheses are accepted, which means that (WC/TA), (RE/TA), (EBIT/TA), (MVE/TL), and (S/TA), both partially and simultaneously had an impact towards company’s financial condition.Keywords: Altman’s Z-score model, financial condition, mining companies, Indonesia
Procedia PDF Downloads 5294557 Early Impact Prediction and Key Factors Study of Artificial Intelligence Patents: A Method Based on LightGBM and Interpretable Machine Learning
Authors: Xingyu Gao, Qiang Wu
Abstract:
Patents play a crucial role in protecting innovation and intellectual property. Early prediction of the impact of artificial intelligence (AI) patents helps researchers and companies allocate resources and make better decisions. Understanding the key factors that influence patent impact can assist researchers in gaining a better understanding of the evolution of AI technology and innovation trends. Therefore, identifying highly impactful patents early and providing support for them holds immeasurable value in accelerating technological progress, reducing research and development costs, and mitigating market positioning risks. Despite the extensive research on AI patents, accurately predicting their early impact remains a challenge. Traditional methods often consider only single factors or simple combinations, failing to comprehensively and accurately reflect the actual impact of patents. This paper utilized the artificial intelligence patent database from the United States Patent and Trademark Office and the Len.org patent retrieval platform to obtain specific information on 35,708 AI patents. Using six machine learning models, namely Multiple Linear Regression, Random Forest Regression, XGBoost Regression, LightGBM Regression, Support Vector Machine Regression, and K-Nearest Neighbors Regression, and using early indicators of patents as features, the paper comprehensively predicted the impact of patents from three aspects: technical, social, and economic. These aspects include the technical leadership of patents, the number of citations they receive, and their shared value. The SHAP (Shapley Additive exPlanations) metric was used to explain the predictions of the best model, quantifying the contribution of each feature to the model's predictions. The experimental results on the AI patent dataset indicate that, for all three target variables, LightGBM regression shows the best predictive performance. Specifically, patent novelty has the greatest impact on predicting the technical impact of patents and has a positive effect. Additionally, the number of owners, the number of backward citations, and the number of independent claims are all crucial and have a positive influence on predicting technical impact. In predicting the social impact of patents, the number of applicants is considered the most critical input variable, but it has a negative impact on social impact. At the same time, the number of independent claims, the number of owners, and the number of backward citations are also important predictive factors, and they have a positive effect on social impact. For predicting the economic impact of patents, the number of independent claims is considered the most important factor and has a positive impact on economic impact. The number of owners, the number of sibling countries or regions, and the size of the extended patent family also have a positive influence on economic impact. The study primarily relies on data from the United States Patent and Trademark Office for artificial intelligence patents. Future research could consider more comprehensive data sources, including artificial intelligence patent data, from a global perspective. While the study takes into account various factors, there may still be other important features not considered. In the future, factors such as patent implementation and market applications may be considered as they could have an impact on the influence of patents.Keywords: patent influence, interpretable machine learning, predictive models, SHAP
Procedia PDF Downloads 494556 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.Keywords: opinion mining, opinion summarization, sentiment analysis, text mining
Procedia PDF Downloads 3324555 Epidemiology and Risk Factors of Injury and Stress Fractures in Male and Female Runners
Authors: Balazs Patczai, Katalin Gocze, Gabriella Kiss, Dorottya Szabo, Tibor Mintal
Abstract:
Introduction: Running has become increasingly popular on a global scale in the past decades. Amateur athletes are taking their sport to a new level in an attempt to surpass their performance goals. The aim of our study was to assess the musculoskeletal condition of amateur runners and the prevalence of injuries with a special focus on stress fracture risk. Methods: The cross sectional analysis included ankle mobility, hamstring and lower back flexibility, the use of Renne’s test for iliotibial band syndrome, functional tests for trunk and rotary stability, and measurements of bone density. Data was collected at 2 major half-marathon events in Hungary. Results: Participants (n=134) mean age was 41.76±8.57 years (males: 40.67±8.83, females: 42.08±8.56). Measures of hamstring and lower back flexibility fell into the category of good for both genders (males: 7.13±6.83cm, females: 10.17±6.67cm). No side asymmetry nor gender differences were characteristic in the case of ankle mobility. Trunk stability was significantly better for males than in females (p=0.004). Markers of bone health were in the low normal range for females and were significantly better for males (T-score: p=0.003, T-ratio: p=0.014, Z-score: p=0.034, Z-ratio: p=0.011). 5.2% of females had a previous stress fracture and 24.1% experienced irregular menstrual cycles during the past year. As for the knowledge on the possible association of energy deficiency, menstrual disturbances and their effect on bone health, Only 8.6% of females have heard of the female athlete triad either during their studies or from a health professional. Discussion: The overall musculoskeletal state was satisfactory for both genders both physically and functionally. More attention and effort should be placed on primary and secondary prevention of amateur runners. Very few active women are well informed about the effects of low energy availability and menstrual dysfunction and the negative impact these have on bone health.Keywords: bone health, flexibility, running, stress fracture
Procedia PDF Downloads 1254554 Evidence Based Dietary Pattern in South Asian Patients: Setting Goals
Authors: Ananya Pappu, Sneha Mishra
Abstract:
Introduction: The South Asian population experiences unique health challenges that predisposes this demographic to cardiometabolic diseases at lower BMIs. South Asians may therefore benefit from recommendations specific to their cultural needs. Here, we focus on current BMI guidelines for Asians with a discussion of South Asian dietary practices and culturally tailored interventions. By integrating traditional dietary practices with modern nutritional recommendations, this manuscript aims to highlight effective strategies to improving health outcomes among South Asians. Background: The South Asian community, including individuals from India, Pakistan, Bangladesh, and Sri Lanka, experiences high rates of cardiovascular diseases, cancers, diabetes, and strokes. Notably, the prevalence of diabetes and cardiovascular disease among Asians is elevated at BMIs below the WHO's standard overweight threshold. As it stands, a BMI of 25-30 kg/m² is considered overweight in non-Asians, while this cutoff is reduced to 23-27.4 kg/m² in Asians. This discrepancy can be attributed to studies which have shown different associations between BMI and health risks in Asians compared to other populations. Given these significant challenges, optimizing lifestyle management for cardiometabolic risk factors is crucial. Tailored interventions that consider cultural context seem to be the best approach for ensuring the success of both dietary and physical activity interventions in South Asian patients. Adopting a whole food, plant-based diet (WFPD) is one such strategy. The WFPD suggests that half of one meal should consist of non-starchy vegetables. In the South Asian diet, this includes traditional vegetables such as okra, tindora, eggplant, and leafy greens including amaranth, collards, chard, and mustards. A quarter of the meal should include plant-based protein sources like cooked beans, lentils, and paneer, with the remaining quarter comprising healthy grains or starches such as whole wheat breads, millets, tapioca, and barley. Adherence to the WFPD has been shown to improve cardiometabolic risk factors including weight, BMI, total cholesterol, HbA1c, and reduces the risk of developing non-alcoholic fatty liver disease (NAFLD). Another approach to improving dietary habits is timing meals. Many of the major cultures and religions in the Indian subcontinent incorporate religious fasting. Time-restricted eating (TRE), also known as intermittent fasting, is a practice akin to traditional fasting, which involves consuming all daily calories within a specific window. TRE has been shown to improve insulin resistance in prediabetic and diabetic patients. Common regimens include completing all meals within an 8-hour window, consuming a low-calorie diet every other day, and the 5:2 diet, which involves fasting twice weekly. These fasting practices align with the natural circadian rhythm, potentially enhancing metabolic health and reducing obesity and diabetes risks. Conclusion: South Asians develop cardiometabolic disease at lower BMIs; hence, it is important to counsel patients about lifestyle interventions that decrease their risk. Traditional South Asian diets can be made more nutrient-rich by incorporating vegetables, plant proteins like lentils and beans, and substituting refined grains for whole grains. Ultimately, the best diet is one to which a patient can adhere. It is therefore important to find a regimen that aligns with a patient’s cultural and traditional food practices.Keywords: BMI, diet, obesity, South Asian, time-restricted eating
Procedia PDF Downloads 434553 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 5504552 Surprise Fraudsters Before They Surprise You: A South African Telecommunications Case Study
Authors: Ansoné Human, Nantes Kirsten, Tanja Verster, Willem D. Schutte
Abstract:
Every year the telecommunications industry suffers huge losses due to fraud. Mobile fraud, or generally, telecommunications fraud is the utilisation of telecommunication products or services to acquire money illegally from or failing to pay a telecommunication company. A South African telecommunication operator developed two internal fraud scorecards to mitigate future risks of application fraud events. The scorecards aim to predict the likelihood of an application being fraudulent and surprise fraudsters before they surprise the telecommunication operator by identifying fraud at the time of application. The scorecards are utilised in the vetting process to evaluate the applicant in terms of the fraud risk the applicant would present to the telecommunication operator. Telecommunication providers can utilise these scorecards to profile customers, as well as isolate fraudulent and/or high-risk applicants. We provide the complete methodology utilised in the development of the scorecards. Furthermore, a Determination and Discrimination (DD) ratio is provided in the methodology to select the most influential variables from a group of related variables. Throughout the development of these scorecards, the following was revealed regarding fraudulent cases and fraudster behaviour within the telecommunications industry: Fraudsters typically target high-value handsets. Furthermore, debit order dates scheduled for the end of the month have the highest fraud probability. The fraudsters target specific stores. Applicants who acquire an expensive package and receive a medium-income, as well as applicants who obtain an expensive package and receive a high income, have higher fraud percentages. If one month prior to application, the status of an account is already in arrears (two months or more), the applicant has a high probability of fraud. The applicants with the highest average spend on calls have a higher probability of fraud. If the amount collected changes from month to month, the likelihood of fraud is higher. Lastly, young and middle-aged applicants have an increased probability of being targeted by fraudsters than other ages.Keywords: application fraud scorecard, predictive modeling, regression, telecommunications
Procedia PDF Downloads 1204551 Removal of Nickel Ions from Industrial Effluents by Batch and Column Experiments: A Comparison of Activated Carbon with Pinus Roxburgii Saw Dust
Authors: Sardar Khana, Zar Ali Khana
Abstract:
Rapid industrial development and urbanization contribute a lot to wastewater discharge. The wastewater enters into natural aquatic ecosystems from industrial activities and considers as one of the main sources of water pollution. Discharge of effluents loaded with heavy metals into the surrounding environment has become a key issue regarding human health risk, environment, and food chain contamination. Nickel causes fatigue, cancer, headache, heart problems, skin diseases (Nickel Itch), and respiratory disorders. Nickel compounds such as Nickel Sulfide and Nickel oxides in industrial environment, if inhaled, have an association with an increased risk of lung cancer. Therefore the removal of Nickel from effluents before discharge is necessary. Removal of Nickel by low-cost biosorbents is an efficient method. This study was aimed to investigate the efficiency of activated carbon and Pinusroxburgiisaw dust for the removal of Nickel from industrial effluents using commercial Activated Carbon, and raw P.roxburgii saw dust. Batch and column adsorption experiments were conducted for the removal of Nickel. The study conducted indicates that removal of Nickel greatly dependent on pH, contact time, Nickel concentration, and adsorbent dose. Maximum removal occurred at pH 9, contact time of 600 min, and adsorbent dose of 1 g/100 mL. The highest removal was 99.62% and 92.39% (pH based), 99.76% and 99.9% (dose based), 99.80% and 100% (agitation time), 92% and 72.40% (Ni Conc. based) for P.roxburgii saw dust and activated Carbon, respectively. Similarly, the Ni removal in column adsorption was 99.77% and 99.99% (bed height based), 99.80% and 99.99% (Concentration based), 99.98%, and 99.81% (flow rate based) during column studies for Nickel using P.Roxburgiisaw dust and activated carbon, respectively. Results were compared with Freundlich isotherm model, which showed “r2” values of 0.9424 (Activated carbon) and 0.979 (P.RoxburgiiSaw Dust). While Langmuir isotherm model values were 0.9285 (Activated carbon) and 0.9999 (P.RoxburgiiSaw Dust), the experimental results were fitted to both the models. But the results were in close agreement with Langmuir isotherm model.Keywords: nickel removal, batch, and column, activated carbon, saw dust, plant uptake
Procedia PDF Downloads 1304550 Geothermal Prospect Prediction at Mt. Ciremai Using Fault and Fracture Density Method
Authors: Rifqi Alfadhillah Sentosa, Hasbi Fikru Syabi, Stephen
Abstract:
West Java is a province in Indonesia which has a number of volcanoes. One of those volcanoes is Mt. Ciremai, located administratively at Kuningan and Majalengka District, and is known for its significant geothermal potential in Java Island. This research aims to assume geothermal prospects at Mt. Ciremai using Fault and Fracture Density (FFD) Method, which is correlated to the geochemistry of geothermal manifestations around the mountain. This FFD method is using SRTM data to draw lineaments, which are assumed associated with fractures and faults in the research area. These faults and fractures were assumed as the paths for reservoir fluids to reached surface as geothermal manifestations. The goal of this method is to analyze the density of those lineaments found in the research area. Based on this FFD Method, it is known that area with high density of lineaments located on Mt. Kromong at the northern side of Mt. Ciremai. This prospect area is proven by its higher geothermometer values compared to geothermometer values calculated at the south area of Mt. Ciremai.Keywords: geothermal prospect, fault and fracture density, Mt. Ciremai, surface manifestation
Procedia PDF Downloads 3684549 Synoptic Analysis of a Heavy Flood in the Province of Sistan-Va-Balouchestan: Iran January 2020
Authors: N. Pegahfar, P. Ghafarian
Abstract:
In this research, the synoptic weather conditions during the heavy flood of 10-12 January 2020 in the Sistan-va-Balouchestan Province of Iran will be analyzed. To this aim, reanalysis data from the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR), NCEP Global Forecasting System (GFS) analysis data, measured data from a surface station together with satellite images from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) have been used from 9 to 12 January 2020. Atmospheric parameters both at the lower troposphere and also at the upper part of that have been used, including absolute vorticity, wind velocity, temperature, geopotential height, relative humidity, and precipitation. Results indicated that both lower-level and upper-level currents were strong. In addition, the transport of a large amount of humidity from the Oman Sea and the Red Sea to the south and southeast of Iran (Sistan-va-Balouchestan Province) led to the vast and unexpected precipitation and then a heavy flood.Keywords: Sistan-va-Balouchestn Province, heavy flood, synoptic, analysis data
Procedia PDF Downloads 1024548 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data
Authors: Chico Horacio Jose Sambo
Abstract:
Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.Keywords: neural network, permeability, multilayer perceptron, well log
Procedia PDF Downloads 4034547 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations
Authors: Sarra Hasni, Sami Faiz
Abstract:
In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation
Procedia PDF Downloads 254546 Traction Behavior of Linear Piezo-Viscous Lubricants in Rough Elastohydrodynamic Lubrication Contacts
Authors: Punit Kumar, Niraj Kumar
Abstract:
The traction behavior of lubricants with the linear pressure-viscosity response in EHL line contacts is investigated numerically for smooth as well as rough surfaces. The analysis involves the simultaneous solution of Reynolds, elasticity and energy equations along with the computation of lubricant properties and surface temperatures. The temperature modified Doolittle-Tait equations are used to calculate viscosity and density as functions of fluid pressure and temperature, while Carreau model is used to describe the lubricant rheology. The surface roughness is assumed to be sinusoidal and it is present on the nearly stationary surface in near-pure sliding EHL conjunction. The linear P-V oil is found to yield much lower traction coefficients and slightly thicker EHL films as compared to the synthetic oil for a given set of dimensionless speed and load parameters. Besides, the increase in traction coefficient attributed to surface roughness is much lower for the former case. The present analysis emphasizes the importance of employing realistic pressure-viscosity response for accurate prediction of EHL traction.Keywords: EHL, linear pressure-viscosity, surface roughness, traction, water/glycol
Procedia PDF Downloads 3824545 Study of Radiological and Chemical Effects of Uranium in Ground Water of SW and NE Punjab, India
Authors: Komal Saini, S. K. Sahoo, B. S. Bajwa
Abstract:
The Laser Fluorimetery Technique has been used for the microanalysis of uranium content in water samples collected from different sources like the hand pumps, tube wells in the drinking water samples of SW & NE Punjab, India. The geographic location of the study region in NE Punjab is between latitude 31.21º- 32.05º N and longitude 75.60º-76.14º E and for SW Punjab is between latitude 29.66º-30.48º N and longitude 74.69º-75.54º E. The purpose of this study was mainly to investigate the uranium concentration levels of ground water being used for drinking purposes and to determine its health effects, if any, to the local population of these regions. In the present study 131 samples of drinking water collected from different villages of SW and 95 samples from NE, Punjab state, India have been analyzed for chemical and radiological toxicity. In the present investigation, uranium content in water samples of SW Punjab ranges from 0.13 to 908 μgL−1 with an average of 82.1 μgL−1 whereas in samples collected from NE- Punjab, it ranges from 0 to 28.2 μgL−1 with an average of 4.84 μgL−1. Thus, revealing that in the SW- Punjab 54 % of drinking water samples have uranium concentration higher than international recommended limit of 30 µgl-1 (WHO, 2011) while 35 % of samples exceeds the threshold of 60 µgl-1 recommended by our national regulatory authority of Atomic Energy Regulatory Board (AERB), Department of Atomic Energy, India, 2004. On the other hand in the NE-Punjab region, none of the observed water sample has uranium content above the national/international recommendations. The observed radiological risk in terms of excess cancer risk ranges from 3.64x10-7 to 2.54x10-3 for SW-Punjab, whereas for NE region it ranges from 0 to 7.89x10-5. The chemical toxic effect in terms of Life-time average Daily Dose (LDD) and Hazard Quotient (HQ) have also been calculated. The LDD for SW-Punjab varies from 0.0098 to 68.46 with an average of 6.18 µg/ kg/day whereas for NE region it varies from 0 to 2.13 with average 0.365 µg/ kg/day, thus indicating presence of chemical toxicity in SW Punjab as 35% of the observed samples in the SW Punjab are above the recommendation limit of 4.53 µg/ kg/day given by AERB for 60 µgl-1 of uranium. Maximum & Minimum values for hazard quotient for SW Punjab is 0.002 & 15.11 with average 1.36 which is considerably high as compared to safe limit i.e. 1. But for NE Punjab HQ varies from 0 to 0.47. The possible sources of high uranium observed in the SW- Punjab will also be discussed.Keywords: uranium, groundwater, radiological and chemical toxicity, Punjab, India
Procedia PDF Downloads 3804544 Approach for Evaluating Wastewater Reuse Options in Agriculture
Authors: Manal Elgallal, Louise Fletcher, Barbara Evans
Abstract:
Water scarcity is a growing concern in many arid and semi-arid countries. The increase of water scarcity threatens economic development and sustainability of human livelihoods as well as environment especially in developing countries. Globally, agriculture is the largest water consumption sector, accounting for approximately 70% of all freshwater extraction. Growing competition between the agricultural and higher economic value in urban and industrial uses of high-quality freshwater supplies, especially in regions where water scarcity major problems, will increase the pressure on this precious resource. In this circumstance, wastewater may provide reliable source of water for agriculture and enable freshwater to be exchanged for more economically valuable purposes. Concern regarding the risks from microbial and toxic components to human health and environment quality is a serious obstacle for wastewater reuse particularly in agriculture. Although powerful approaches and tools for microbial risk assessment and management for safe use of wastewater are now available, few studies have attempted to provide any mechanism to quantitatively assess and manage the environmental risks resulting from reusing wastewater. In seeking pragmatic solutions to sustainable wastewater reuse, there remains a lack of research incorporating both health and environmental risk assessment and management with economic analysis in order to quantitatively combine cost, benefits and risks to rank alternative reuse options. This study seeks to enhance effective reuse of wastewater for irrigation in arid and semi-arid areas, the outcome of the study is an evaluation approach that can be used to assess different reuse strategies and to determine the suitable scale at which treatment alternatives and interventions are possible, feasible and cost effective in order to optimise the trade-offs between risks to protect public health and the environment and preserving the substantial benefits.Keywords: environmental risks, management, life cycle costs, waste water irrigation
Procedia PDF Downloads 2624543 Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan
Authors: Fawad Ali
Abstract:
Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area.Keywords: health risk, vegetables, wastewater, atomic absorption sepctrophotometer
Procedia PDF Downloads 704542 Elderly for Elderly: The Role of Community Volunteer, a Case Study from the Great East Japan Earthquake and Tsunami in Kesennuma, Japan
Authors: Kensuke Otsuyama
Abstract:
The United Nation World Conference on Disaster Risk Reduction was held in Sendai, Japan, in 2015 and priorities for actions until 2030 were adopted for the next 15 years. Although one of these priorities is to ‘build back better’, there is neither a consensus definition of better recovery, nor indicators to measure better recovery. However, the community is considered as a key driver of recovery nowadays, and participation is a key word for effective recovery. In order to understand more about participatory community recovery, the author investigated recovery from the Great East Japan Earthquake and Tsunami (GEJET) in Kesennuma, a severely affected city. The research sought to: 1) Identify the elements that contribute to better recovery at the community level, and 2) analyze the role of community volunteers for disaster risk reduction for better recovery. A Participatory Community Recovery Index (PCRI) was created as a tool to measure community recovery. The index adopts seven primary indicators and 20 tertiary indicators, including: socio-economic aspect, housing, health, environment, self-organization, transformation, and institution. The index was applied to nine districts in Kesennuma city. Secondary and primary data by questionnaire surveys with local residents’ organization leaders and interviews with crisis management department officials in city government were also obtained. The indicator results were transformed into scores among 1 to 5, and the results were shown for each district. Based on the result of PCRI, it was found that the s Local Social Welfare Council played an important role in facilitating better recovery, enhancing community volunteer involvement to allow elderly residents to initiate local volunteer work for more affected single-living elderly people. Volunteers for the elderly by the elderly played a crucial role to strengthen community bonding in Kesennuma. In this research, the potential of community volunteers and inter-linkage with DRR activities are discussed.Keywords: recovery, participation, the great East Japan earthquake and tsunami, community volunteers
Procedia PDF Downloads 2664541 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage
Authors: Andrew Laming, John Hattie, Mark Wilson
Abstract:
Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean
Procedia PDF Downloads 684540 Mechanical Characterization of Brain Tissue in Compression
Authors: Abbas Shafiee, Mohammad Taghi Ahmadian, Maryam Hoviattalab
Abstract:
The biomechanical behavior of brain tissue is needed for predicting the traumatic brain injury (TBI). Each year over 1.5 million people sustain a TBI in the USA. The appropriate coefficients for injury prediction can be evaluated using experimental data. In this study, an experimental setup on brain soft tissue was developed to perform unconfined compression tests at quasistatic strain rates ∈0.0004 s-1 and 0.008 s-1 and 0.4 stress relaxation test under unconfined uniaxial compression with ∈ 0.67 s-1 ramp rate. The fitted visco-hyperelastic parameters were utilized by using obtained stress-strain curves. The experimental data was validated using finite element analysis (FEA) and previous findings. Also, influence of friction coefficient on unconfined compression and relaxation test and effect of ramp rate in relaxation test is investigated. Results of the findings are implemented on the analysis of a human brain under high acceleration due to impact.Keywords: brain soft tissue, visco-hyperelastic, finite element analysis (FEA), friction, quasistatic strain rate
Procedia PDF Downloads 6564539 Understanding the Notion between Resiliency and Recovery through a Spatial-Temporal Analysis of Section 404 Wetland Alteration Permits before and after Hurricane Ike
Authors: Md Y. Reja, Samuel D. Brody, Wesley E. Highfield, Galen D. Newman
Abstract:
Historically, wetlands in the United States have been lost due to agriculture, anthropogenic activities, and rapid urbanization along the coast. Such losses of wetlands have resulted in high flooding risk for coastal communities over the period of time. In addition, alteration of wetlands via the Section 404 Clean Water Act permits can increase the flooding risk to future hurricane events, as the cumulative impact of this program is poorly understood and under-accounted. Further, recovery after hurricane events is acting as an encouragement for new development and reconstruction activities by converting wetlands under the wetland alteration permitting program. This study investigates the degree to which hurricane recovery activities in coastal communities are undermining the ability of these places to absorb the impacts of future storm events. Specifically, this work explores how and to what extent wetlands are being affected by the federal permitting program post-Hurricane Ike in 2008. Wetland alteration patterns are examined across three counties (Harris, Galveston, and Chambers County) along the Texas Gulf Coast over a 10-year time period, from 2004-2013 (five years before and after Hurricane Ike) by conducting descriptive spatial analyses. Results indicate that after Hurricane Ike, the number of permits substantially increased in Harris and Chambers County. The vast majority of individual and nationwide type permits were issued within the 100-year floodplain, storm surge zones, and areas damaged by Ike flooding, suggesting that recovery after the hurricane is compromising the ecological resiliency on which coastal communities depend. The authors expect that the findings of this study can increase awareness to policy makers and hazard mitigation planners regarding how to manage wetlands during a long-term recovery process to maintain their natural functions for future flood mitigation.Keywords: ecological resiliency, Hurricane Ike, recovery, Section 404 Permitting, wetland alteration
Procedia PDF Downloads 2514538 Automated Machine Learning Algorithm Using Recurrent Neural Network to Perform Long-Term Time Series Forecasting
Authors: Ying Su, Morgan C. Wang
Abstract:
Long-term time series forecasting is an important research area for automated machine learning (AutoML). Currently, forecasting based on either machine learning or statistical learning is usually built by experts, and it requires significant manual effort, from model construction, feature engineering, and hyper-parameter tuning to the construction of the time series model. Automation is not possible since there are too many human interventions. To overcome these limitations, this article proposed to use recurrent neural networks (RNN) through the memory state of RNN to perform long-term time series prediction. We have shown that this proposed approach is better than the traditional Autoregressive Integrated Moving Average (ARIMA). In addition, we also found it is better than other network systems, including Fully Connected Neural Networks (FNN), Convolutional Neural Networks (CNN), and Nonpooling Convolutional Neural Networks (NPCNN).Keywords: automated machines learning, autoregressive integrated moving average, neural networks, time series analysis
Procedia PDF Downloads 1054537 Analysis of Standard Tramway Surge Protection Methods Based on Real Cases
Authors: Alain Rousseau, Alfred Aragones, Gilles Rougier
Abstract:
The study is based on lightning and surge standards mainly the EN series 62305 for facility protection, EN series 61643 for Low Voltage Surge Protective Devices, High Voltage surge arrester standard en 60099-4 and the traction arrester standards namely EN 50526-1 and 50526-1 dealing respectively with railway applications fixed installations D.C. surge arresters and voltage limiting devices. The more severe stress for tramways installations is caused by direct lightning on the catenary line. In such case, the surge current propagates towards the various poles and sparkover the insulators leading to a lower stress. If the impact point is near enough, a significant surge current will flow towards the traction surge arrester that is installed on the catenary at the location the substation is connected. Another surge arrester can be installed at the entrance of the substation or even inside the rectifier to avoid insulation damages. In addition, surge arresters can be installed between + and – to avoid damaging sensitive circuits. Based on disturbances encountered in a substation following a lighting event, the engineering department of RATP has decided to investigate the cause of such damage and more generally to question the efficiency of the various possible protection means. Based on the example of a recent tramway line the paper present the result of a lightning study based on direct lightning strikes. As a matter of fact, the induced surges on the catenary are much more frequent but much less damaging. First, a lightning risk assessment is performed for the substations that takes into account direct lightning and induced lightning both on the substation and its connected lines such as the catenary. Then the paper deals with efficiency of the various surge arresters is discussed based on field experience and calculations. The efficiency of the earthing system used at the bottom of the pole is also addressed based on high frequency earthing measurement. As a conclusion, the paper is making recommendations for an enhanced efficiency of existing protection means.Keywords: surge arrester, traction, lightning, risk, surge protective device
Procedia PDF Downloads 2594536 Flood Early Warning and Management System
Authors: Yogesh Kumar Singh, T. S. Murugesh Prabhu, Upasana Dutta, Girishchandra Yendargaye, Rahul Yadav, Rohini Gopinath Kale, Binay Kumar, Manoj Khare
Abstract:
The Indian subcontinent is severely affected by floods that cause intense irreversible devastation to crops and livelihoods. With increased incidences of floods and their related catastrophes, an Early Warning System for Flood Prediction and an efficient Flood Management System for the river basins of India is a must. Accurately modeled hydrological conditions and a web-based early warning system may significantly reduce economic losses incurred due to floods and enable end users to issue advisories with better lead time. This study describes the design and development of an EWS-FP using advanced computational tools/methods, viz. High-Performance Computing (HPC), Remote Sensing, GIS technologies, and open-source tools for the Mahanadi River Basin of India. The flood prediction is based on a robust 2D hydrodynamic model, which solves shallow water equations using the finite volume method. Considering the complexity of the hydrological modeling and the size of the basins in India, it is always a tug of war between better forecast lead time and optimal resolution at which the simulations are to be run. High-performance computing technology provides a good computational means to overcome this issue for the construction of national-level or basin-level flash flood warning systems having a high resolution at local-level warning analysis with a better lead time. High-performance computers with capacities at the order of teraflops and petaflops prove useful while running simulations on such big areas at optimum resolutions. In this study, a free and open-source, HPC-based 2-D hydrodynamic model, with the capability to simulate rainfall run-off, river routing, and tidal forcing, is used. The model was tested for a part of the Mahanadi River Basin (Mahanadi Delta) with actual and predicted discharge, rainfall, and tide data. The simulation time was reduced from 8 hrs to 3 hrs by increasing CPU nodes from 45 to 135, which shows good scalability and performance enhancement. The simulated flood inundation spread and stage were compared with SAR data and CWC Observed Gauge data, respectively. The system shows good accuracy and better lead time suitable for flood forecasting in near-real-time. To disseminate warning to the end user, a network-enabled solution is developed using open-source software. The system has query-based flood damage assessment modules with outputs in the form of spatial maps and statistical databases. System effectively facilitates the management of post-disaster activities caused due to floods, like displaying spatial maps of the area affected, inundated roads, etc., and maintains a steady flow of information at all levels with different access rights depending upon the criticality of the information. It is designed to facilitate users in managing information related to flooding during critical flood seasons and analyzing the extent of the damage.Keywords: flood, modeling, HPC, FOSS
Procedia PDF Downloads 894535 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization
Authors: Ramakrishna Rao Mamidi
Abstract:
It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.Keywords: direct search, flux plot, fourier analysis, permanent magnets
Procedia PDF Downloads 2164534 Dietary Magnesium, Lipids, and Hypertension: New Insights and Unsolved Mysteries
Authors: Elena Pello, Martin Bobak, Yuri Nikitin
Abstract:
In current issue we evaluated integration of magnesium with lipids; the attractive findings were obtained in men and women; the crucial ties of magnesium with total cholesterol in hypertensive men, with total cholesterol in concordance with low-density lipoprotein cholesterol in hypertensive women were disclosed; unanswered questions were trapped, difficulties were surmounted, and magnesium deficiency perseverance in pathogenesis of cardiovascular disease development was expressed; nutrients as well as risk factors may contribute to cardiovascular complications.Keywords: dietary, magnesium, hypertension, lipids
Procedia PDF Downloads 5364533 Internationalization Using Strategic Alliances: A Comparative Study between Family and Non-Family Businesses
Authors: Guadalupe Fuentes-Lombardo, Manuel Carlos Vallejo-Martos, Rubén Fernández-Ortiz, Miriam Cano-Rubio
Abstract:
The different ways in which companies enter foreign markets, exporting their products and direct investment and using strategic alliances or not, are influenced by a series of peculiarities specific to family businesses. In these companies, different systems, such as the family, property, and business overlap; giving them unique and specific characteristics which on occasions can enhance the development of cooperation agreements and in other situations can hinder them. Previous research has shown that these companies are more likely to enter into strategic alliances with certain specific features, and are more reluctant to take part in others in which some of the advantages of the family business are put at risk, such as control of ownership and decision-making over the company by the family, among others. These arguments show that there is a wide range of interesting aspects and peculiarities in the process of internationalization of the family business, although the research objectives of this paper focus on three in particular. Our first objective will be to discover why family businesses decide to establish or not strategic alliances in their internationalization processes in comparison with other companies that are not family owned. Secondly we will be identifying the idiosyncratic aspects of family businesses that favor or hinder the use of strategic alliances as a means of entering foreign markets. Our third and final objective will be to define the types of strategic alliance most commonly used by family businesses and the reasons why they choose these particular forms of alliance rather than others. We chose these research objectives for three main reasons. Firstly because research on this subject shows that alliances are the best way to begin the international expansion process, among other reasons because they provide the partners with different kinds of resources and capacity, so increasing the probability of successful internationalization. Secondly, because family and non-family businesses are often equipped with different types of resources and strategic alliances, offer them the chance to acquire resources less frequently found in family businesses. Thirdly, because the strengths and weaknesses of these companies could affect their decisions whether or not to use strategic alliances in their international expansion process and the success achieved in these alliances. As a result, these companies prefer to enter into cooperation agreements with conditions that do not put their specific status as family companies at risk.Keywords: family business, internationalization, strategic alliances, olive-oil and wine industry
Procedia PDF Downloads 4504532 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence
Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar
Abstract:
This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves
Procedia PDF Downloads 196