Search results for: sensitivity matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3952

Search results for: sensitivity matrix

352 Ultra-Tightly Coupled GNSS/INS Based on High Degree Cubature Kalman Filtering

Authors: Hamza Benzerrouk, Alexander Nebylov

Abstract:

In classical GNSS/INS integration designs, the loosely coupled approach uses the GNSS derived position and the velocity as the measurements vector. This design is suboptimal from the standpoint of preventing GNSSoutliers/outages. The tightly coupled GPS/INS navigation filter mixes the GNSS pseudo range and inertial measurements and obtains the vehicle navigation state as the final navigation solution. The ultra‐tightly coupled GNSS/INS design combines the I (inphase) and Q(quadrature) accumulator outputs in the GNSS receiver signal tracking loops and the INS navigation filter function intoa single Kalman filter variant (EKF, UKF, SPKF, CKF and HCKF). As mentioned, EKF and UKF are the most used nonlinear filters in the literature and are well adapted to inertial navigation state estimation when integrated with GNSS signal outputs. In this paper, it is proposed to move a step forward with more accurate filters and modern approaches called Cubature and High Degree cubature Kalman Filtering methods, on the basis of previous results solving the state estimation based on INS/GNSS integration, Cubature Kalman Filter (CKF) and High Degree Cubature Kalman Filter with (HCKF) are the references for the recent developed generalized Cubature rule based Kalman Filter (GCKF). High degree cubature rules are the kernel of the new solution for more accurate estimation with less computational complexity compared with the Gauss-Hermite Quadrature (GHQKF). Gauss-Hermite Kalman Filter GHKF which is not selected in this work because of its limited real-time implementation in high-dimensional state-spaces. In ultra tightly or a deeply coupled GNSS/INS system is dynamics EKF is used with transition matrix factorization together with GNSS block processing which is well described in the paper and assumes available the intermediary frequency IF by using a correlator samples with a rate of 500 Hz in the presented approach. GNSS (GPS+GLONASS) measurements are assumed available and modern SPKF with Cubature Kalman Filter (CKF) are compared with new versions of CKF called high order CKF based on Spherical-radial cubature rules developed at the fifth order in this work. Estimation accuracy of the high degree CKF is supposed to be comparative to GHKF, results of state estimation are then observed and discussed for different initialization parameters. Results show more accurate navigation state estimation and more robust GNSS receiver when Ultra Tightly Coupled approach applied based on High Degree Cubature Kalman Filter.

Keywords: GNSS, INS, Kalman filtering, ultra tight integration

Procedia PDF Downloads 266
351 Estimation of Rock Strength from Diamond Drilling

Authors: Hing Hao Chan, Thomas Richard, Masood Mostofi

Abstract:

The mining industry relies on an estimate of rock strength at several stages of a mine life cycle: mining (excavating, blasting, tunnelling) and processing (crushing and grinding), both very energy-intensive activities. An effective comminution design that can yield significant dividends often requires a reliable estimate of the material rock strength. Common laboratory tests such as rod, ball mill, and uniaxial compressive strength share common shortcomings such as time, sample preparation, bias in plug selection cost, repeatability, and sample amount to ensure reliable estimates. In this paper, the authors present a methodology to derive an estimate of the rock strength from drilling data recorded while coring with a diamond core head. The work presented in this paper builds on a phenomenological model of the bit-rock interface proposed by Franca et al. (2015) and is inspired by the now well-established use of the scratch test with PDC (Polycrystalline Diamond Compact) cutter to derive the rock uniaxial compressive strength. The first part of the paper introduces the phenomenological model of the bit-rock interface for a diamond core head that relates the forces acting on the drill bit (torque, axial thrust) to the bit kinematic variables (rate of penetration and angular velocity) and introduces the intrinsic specific energy or the energy required to drill a unit volume of rock for an ideally sharp drilling tool (meaning ideally sharp diamonds and no contact between the bit matrix and rock debris) that is found well correlated to the rock uniaxial compressive strength for PDC and roller cone bits. The second part describes the laboratory drill rig, the experimental procedure that is tailored to minimize the effect of diamond polishing over the duration of the experiments, and the step-by-step methodology to derive the intrinsic specific energy from the recorded data. The third section presents the results and shows that the intrinsic specific energy correlates well to the uniaxial compressive strength for the 11 tested rock materials (7 sedimentary and 4 igneous rocks). The last section discusses best drilling practices and a method to estimate the rock strength from field drilling data considering the compliance of the drill string and frictional losses along the borehole. The approach is illustrated with a case study from drilling data recorded while drilling an exploration well in Australia.

Keywords: bit-rock interaction, drilling experiment, impregnated diamond drilling, uniaxial compressive strength

Procedia PDF Downloads 120
350 Modelling of Groundwater Resources for Al-Najaf City, Iraq

Authors: Hayder H. Kareem, Shunqi Pan

Abstract:

Groundwater is a vital water resource in many areas in the world, particularly in the Middle-East region where the water resources become scarce and depleting. Sustainable management and planning of the groundwater resources become essential and urgent given the impact of the global climate change. In the recent years, numerical models have been widely used to predict the flow pattern and assess the water resources security, as well as the groundwater quality affected by the contaminants transported. In this study, MODFLOW is used to study the current status of groundwater resources and the risk of water resource security in the region centred at Al-Najaf City, which is located in the mid-west of Iraq and adjacent to the Euphrates River. In this study, a conceptual model is built using the geologic and hydrogeologic collected for the region, together with the Digital Elevation Model (DEM) data obtained from the "Global Land Cover Facility" (GLCF) and "United State Geological Survey" (USGS) for the study area. The computer model is also implemented with the distributions of 69 wells in the area with the steady pro-defined hydraulic head along its boundaries. The model is then applied with the recharge rate (from precipitation) of 7.55 mm/year, given from the analysis of the field data in the study area for the period of 1980-2014. The hydraulic conductivity from the measurements at the locations of wells is interpolated for model use. The model is calibrated with the measured hydraulic heads at the locations of 50 of 69 wells in the domain and results show a good agreement. The standard-error-of-estimate (SEE), root-mean-square errors (RMSE), Normalized RMSE and correlation coefficient are 0.297 m, 2.087 m, 6.899% and 0.971 respectively. Sensitivity analysis is also carried out, and it is found that the model is sensitive to recharge, particularly when the rate is greater than (15mm/year). Hydraulic conductivity is found to be another parameter which can affect the results significantly, therefore it requires high quality field data. The results show that there is a general flow pattern from the west to east of the study area, which agrees well with the observations and the gradient of the ground surface. It is found that with the current operational pumping rates of the wells in the area, a dry area is resulted in Al-Najaf City due to the large quantity of groundwater withdrawn. The computed water balance with the current operational pumping quantity shows that the Euphrates River supplies water into the groundwater of approximately 11759 m3/day, instead of gaining water of 11178 m3/day from the groundwater if no pumping from the wells. It is expected that the results obtained from the study can provide important information for the sustainable and effective planning and management of the regional groundwater resources for Al-Najaf City.

Keywords: Al-Najaf city, conceptual modelling, groundwater, unconfined aquifer, visual MODFLOW

Procedia PDF Downloads 196
349 Mechanical and Material Characterization on the High Nitrogen Supersaturated Tool Steels for Die-Technology

Authors: Tatsuhiko Aizawa, Hiroshi Morita

Abstract:

The tool steels such as SKD11 and SKH51 have been utilized as punch and die substrates for cold stamping, forging, and fine blanking processes. The heat-treated SKD11 punches with the hardness of 700 HV wrought well in the stamping of SPCC, normal steel plates, and non-ferrous alloy such as a brass sheet. However, they suffered from severe damage in the fine blanking process of smaller holes than 1.5 mm in diameter. Under the high aspect ratio of punch length to diameter, an elastoplastic bucking of slender punches occurred on the production line. The heat-treated punches had a risk of chipping at their edges. To be free from those damages, the blanking punch must have sufficient rigidity and strength at the same time. In the present paper, the small-hole blanking punch with a dual toughness structure was proposed to provide a solution to this engineering issue in production. The low-temperature plasma nitriding process was utilized to form the nitrogen supersaturated thick layer into the original SKD11 punch. Through the plasma nitriding at 673 K for 14.4 ks, the nitrogen supersaturated layer, with the thickness of 50 μm and without nitride precipitates, was formed as a high nitrogen steel (HNS) layer surrounding the original SKD11 punch. In this two-zone structured SKD11 punch, the surface hardness increased from 700 HV for the heat-treated SKD11 to 1400 HV. This outer high nitrogen SKD11 (HN-SKD11) layer had a homogeneous nitrogen solute depth profile with a nitrogen solute content plateau of 4 mass% till the border between the outer HN-SKD11 layer and the original SKD11 matrix. When stamping the brass sheet with the thickness of 1 mm by using this dually toughened SKD11 punch, the punch life was extended from 500 K shots to 10000 K shots to attain a much more stable production line to yield the brass American snaps. Furthermore, with the aid of the masking technique, the punch side surface layer with the thickness of 50 μm was modified by this high nitrogen super-saturation process to have a stripe structure where the un-nitrided SKD11 and the HN-SKD11 layers were alternatively aligned from the punch head to the punch bottom. This flexible structuring promoted the mechanical integrity of total rigidity and toughness as a punch with an extremely small diameter.

Keywords: high nitrogen supersaturation, semi-dry cold stamping, solid solution hardening, tool steel dies, low temperature nitriding, dual toughness structure, extremely small diameter punch

Procedia PDF Downloads 78
348 Impact of Autoclave Sterilization of Gelatin on Endotoxin Level and Physical Properties Compared to Surfactant Purified Gelatins

Authors: Jos Olijve

Abstract:

Introduction and Purpose: Endotoxins are found in the outer membrane of gram-negative bacteria and have profound in vitro and in vivo responses. They can trigger strong immune responses and negatively affect various cellar activities particular cells expressing toll-like receptors. They are therefore unwanted contaminants of biomaterials sourced from natural raw materials, and their activity must be as low as possible. Collagen and gelatin are natural extracellular matrix components and have, due to their low allergenic potential, suitable biological properties, and tunable physical characteristics, high potential in biomedical applications. The purpose of this study was to determine the influence of autoclave sterilization of gelatin on physical properties and endotoxin level compared to surfactant purified gelatin. Methods: Type A gelatin from Sigma-Aldrich (G1890) with endotoxin level of 35000 endotoxin units (EU) per gram gelatin and type A gelatins from Rousselot Gent with endotoxin activity of 30000 EU per gram were used. A 10 w/w% G1890 gelatin solution was autoclave sterilized during 30 minutes at 121°C and 1 bar over pressure. The physical properties and the endotoxin level of the sterilized G1890 gelatin were compared to a type A gelatin from Rousselot purified with Triton X100 surfactant. The Triton X100 was added to a concentration of 0.5 w/w% which is above the critical micellar concentration. The gelatin surfactant mixtures were kept for 30-45 minutes under constant stirring at 55-60°C. The Triton X100 was removed by active carbon filtration. The endotoxin levels of the gelatins were measured using the Endozyme recombinant factor C method from Hyglos GmbH (Germany). Results and Discussion: Autoclave sterilization significantly affect the physical properties of gelatin. Molecular weight of G1890 decreased from 140 to 50kDa, and gel strength decreased from 300 to 40g. The endotoxin level of the gelatin reduced after sterilization from 35000 EU/g to levels of 400-500 EU/g. These endotoxin levels are however still far above the upper endotoxin level of 0.05 EU/ml, which resembles 5 EU/g gelatin based on a 1% gelatin solution, to avoid cell proliferation alteration. Molecular weight and gel strength of Rousselot gelatin was not altered after Triton X100 purification and remained 150kDa and 300g respectively. The endotoxin levels of Triton X100 purified Rousselot gelatin was < 5EU/g gelatin. Conclusion: Autoclave sterilization of gelatin is, in comparison to Triton X100 purification, not efficient to inactivate endotoxin levels in gelatin to levels below the upper limit to avoid cell proliferation alteration. Autoclave sterilization gave a significant decrease in molecular weight and gel strength which makes autoclave sterilized gelatin, in comparison to Triton X100 purified gelatin, not suitable for 3D printing.

Keywords: endotoxin, gelatin, molecular weight, sterilization, Triton X100

Procedia PDF Downloads 215
347 Influence of Controlled Retting on the Quality of the Hemp Fibres Harvested at the Seed Maturity by Using a Designed Lab-Scale Pilot Unit

Authors: Brahim Mazian, Anne Bergeret, Jean-Charles Benezet, Sandrine Bayle, Luc Malhautier

Abstract:

Hemp fibers are increasingly used as reinforcements in polymer matrix composites due to their competitive performance (low density, mechanical properties and biodegradability) compared to conventional fibres such as glass fibers. However, the huge variation of their biochemical, physical and mechanical properties limits the use of these natural fibres in structural applications when high consistency and homogeneity are required. In the hemp industry, traditional processes termed field retting are commonly used to facilitate the extraction and separation of stem fibers. This retting treatment consists to spread out the stems on the ground for a duration ranging from a few days to several weeks. Microorganisms (fungi and bacteria) grow on the stem surface and produce enzymes that degrade pectinolytic substances in the middle lamellae surrounding the fibers. This operation depends on the weather conditions and is currently carried out very empirically in the fields so that a large variability in the hemp fibers quality (mechanical properties, color, morphology, chemical composition…) is resulting. Nonetheless, if controlled, retting might be favorable for good properties of hemp fibers and then of hemp fibers reinforced composites. Therefore, the present study aims to investigate the influence of controlled retting within a designed environmental chamber (lab-scale pilot unit) on the quality of the hemp fibres harvested at the seed maturity growth stage. Various assessments were applied directly on fibers: color observations, morphological (optical microscope), surface (ESEM), biochemical (gravimetry) analysis, spectrocolorimetric measurements (pectins content), thermogravimetric analysis (TGA) and tensile testing. The results reveal that controlled retting leads to a rapid change of color from yellow to dark grey due to development of microbial communities (fungi and bacteria) at the stem surface. An increase of thermal stability of fibres due to the removal of non-cellulosic components along retting is also observed. A separation of bast fibers to elementary fibers occurred with an evolution of chemical composition (degradation of pectins) and a rapid decrease in tensile properties (380MPa to 170MPa after 3 weeks) due to accelerated retting process. The influence of controlled retting on the biocomposite material (PP / hemp fibers) properties is under investigation.

Keywords: controlled retting, hemp fibre, mechanical properties, thermal stability

Procedia PDF Downloads 139
346 A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor

Authors: Ke-Jing Lee, Cheng-Jung Lee, Yu-Chi Chang, Li-Wen Wang, Yeong-Her Wang

Abstract:

To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays.

Keywords: one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), resistive random access memory (RRAM), sol-gel

Procedia PDF Downloads 339
345 Computational Analysis of Thermal Degradation in Wind Turbine Spars' Equipotential Bonding Subjected to Lightning Strikes

Authors: Antonio A. M. Laudani, Igor O. Golosnoy, Ole T. Thomsen

Abstract:

Rotor blades of large, modern wind turbines are highly susceptible to downward lightning strikes, as well as to triggering upward lightning; consequently, it is necessary to equip them with an effective lightning protection system (LPS) in order to avoid any damage. The performance of existing LPSs is affected by carbon fibre reinforced polymer (CFRP) structures, which lead to lightning-induced damage in the blades, e.g. via electrical sparks. A solution to prevent internal arcing would be to electrically bond the LPS and the composite structures such that to obtain the same electric potential. Nevertheless, elevated temperatures are achieved at the joint interfaces because of high contact resistance, which melts and vaporises some of the epoxy resin matrix around the bonding. The produced high-pressure gasses open up the bonding and can ignite thermal sparks. The objective of this paper is to predict the current density distribution and the temperature field in the adhesive joint cross-section, in order to check whether the resin pyrolysis temperature is achieved and any damage is expected. The finite element method has been employed to solve both the current and heat transfer problems, which are considered weakly coupled. The mathematical model for electric current includes Maxwell-Ampere equation for induced electric field solved together with current conservation, while the thermal field is found from heat diffusion equation. In this way, the current sub-model calculates Joule heat release for a chosen bonding configuration, whereas the thermal analysis allows to determining threshold values of voltage and current density not to be exceeded in order to maintain the temperature across the joint below the pyrolysis temperature, therefore preventing the occurrence of outgassing. In addition, it provides an indication of the minimal number of bonding points. It is worth to mention that the numerical procedures presented in this study can be tailored and applied to any type of joints other than adhesive ones for wind turbine blades. For instance, they can be applied for lightning protection of aerospace bolted joints. Furthermore, they can even be customized to predict the electromagnetic response under lightning strikes of other wind turbine systems, such as nacelle and hub components.

Keywords: carbon fibre reinforced polymer, equipotential bonding, finite element method, FEM, lightning protection system, LPS, wind turbine blades

Procedia PDF Downloads 146
344 Climate Change and Landslide Risk Assessment in Thailand

Authors: Shotiros Protong

Abstract:

The incidents of sudden landslides in Thailand during the past decade have occurred frequently and more severely. It is necessary to focus on the principal parameters used for analysis such as land cover land use, rainfall values, characteristic of soil and digital elevation model (DEM). The combination of intense rainfall and severe monsoons is increasing due to global climate change. Landslide occurrences rapidly increase during intense rainfall especially in the rainy season in Thailand which usually starts around mid-May and ends in the middle of October. The rain-triggered landslide hazard analysis is the focus of this research. The combination of geotechnical and hydrological data are used to determine permeability, conductivity, bedding orientation, overburden and presence of loose blocks. The regional landslide hazard mapping is developed using the Slope Stability Index SINMAP model supported on Arc GIS software version 10.1. Geological and land use data are used to define the probability of landslide occurrences in terms of geotechnical data. The geological data can indicate the shear strength and the angle of friction values for soils above given rock types, which leads to the general applicability of the approach for landslide hazard analysis. To address the research objectives, the methods are described in this study: setup and calibration of the SINMAP model, sensitivity of the SINMAP model, geotechnical laboratory, landslide assessment at present calibration and landslide assessment under future climate simulation scenario A2 and B2. In terms of hydrological data, the millimetres/twenty-four hours of average rainfall data are used to assess the rain triggered landslide hazard analysis in slope stability mapping. During 1954-2012 period, is used for the baseline of rainfall data at the present calibration. The climate change in Thailand, the future of climate scenarios are simulated by spatial and temporal scales. The precipitation impact is need to predict for the climate future, Statistical Downscaling Model (SDSM) version 4.2, is used to assess the simulation scenario of future change between latitude 16o 26’ and 18o 37’ north and between longitude 98o 52’ and 103o 05’ east by SDSM software. The research allows the mapping of risk parameters for landslide dynamics, and indicates the spatial and time trends of landslide occurrences. Thus, regional landslide hazard mapping under present-day climatic conditions from 1954 to 2012 and simulations of climate change based on GCM scenarios A2 and B2 from 2013 to 2099 related to the threshold rainfall values for the selected the study area in Uttaradit province in the northern part of Thailand. Finally, the landslide hazard mapping will be compared and shown by areas (km2 ) in both the present and the future under climate simulation scenarios A2 and B2 in Uttaradit province.

Keywords: landslide hazard, GIS, slope stability index (SINMAP), landslides, Thailand

Procedia PDF Downloads 541
343 Slope Stability Assessment in Metasedimentary Deposit of an Opencast Mine: The Case of the Dikuluwe-Mashamba (DIMA) Mine in the DR Congo

Authors: Dina Kon Mushid, Sage Ngoie, Tshimbalanga Madiba, Kabutakapua Kakanda

Abstract:

Slope stability assessment is still the biggest challenge in mining activities and civil engineering structures. The slope in an opencast mine frequently reaches multiple weak layers that lead to the instability of the pit. Faults and soft layers throughout the rock would increase weathering and erosion rates. Therefore, it is essential to investigate the stability of the complex strata to figure out how stable they are. In the Dikuluwe-Mashamba (DIMA) area, the lithology of the stratum is a set of metamorphic rocks whose parent rocks are sedimentary rocks with a low degree of metamorphism. Thus, due to the composition and metamorphism of the parent rock, the rock formation is different in hardness and softness, which means that when the content of dolomitic and siliceous is high, the rock is hard. It is softer when the content of argillaceous and sandy is high. Therefore, from the vertical direction, it appears as a weak and hard layer, and from the horizontal direction, it seems like a smooth and hard layer in the same rock layer. From the structural point of view, the main structures in the mining area are the Dikuluwe dipping syncline and the Mashamba dipping anticline, and the occurrence of rock formations varies greatly. During the folding process of the rock formation, the stress will concentrate on the soft layer, causing the weak layer to be broken. At the same time, the phenomenon of interlayer dislocation occurs. This article aimed to evaluate the stability of metasedimentary rocks of the Dikuluwe-Mashamba (DIMA) open-pit mine using limit equilibrium and stereographic methods Based on the presence of statistical structural planes, the stereographic projection was used to study the slope's stability and examine the discontinuity orientation data to identify failure zones along the mine. The results revealed that the slope angle is too steep, and it is easy to induce landslides. The numerical method's sensitivity analysis showed that the slope angle and groundwater significantly impact the slope safety factor. The increase in the groundwater level substantially reduces the stability of the slope. Among the factors affecting the variation in the rate of the safety factor, the bulk density of soil is greater than that of rock mass, the cohesion of soil mass is smaller than that of rock mass, and the friction angle in the rock mass is much larger than that in the soil mass. The analysis showed that the rock mass structure types are mostly scattered and fragmented; the stratum changes considerably, and the variation of rock and soil mechanics parameters is significant.

Keywords: slope stability, weak layer, safety factor, limit equilibrium method, stereography method

Procedia PDF Downloads 250
342 The Environmental Impact Assessment of Land Use Planning (Case Study: Tannery Industry in Al-Garma District)

Authors: Husam Abdulmuttaleb Hashim

Abstract:

The environmental pollution problems represent a great challenge to the world, threatening to destroy all the evolution that mankind has reached, the organizations and associations that cares about environment are trying to warn the world from the forthcoming danger resulted from excessive use of nature resources and consuming it without looking to the damage happened as a result of unfair use of it. Most of the urban centers suffers from the environmental pollution problems and health, economic, and social dangers resulted from this pollution, and while the land use planning is responsible for distributing different uses in urban centers and controlling the interactions between these uses to reach a homogeneous and perfect state for the different activities in cities, the occurrence of environmental problems in the shade of existing land use planning operation refers to the disorder or insufficiency in this operation which leads to presence of such problems, and this disorder lays in lack of sufficient importance to the environmental considerations during the land use planning operations and setting up the master plan, so the research start to study this problem and finding solutions for it, the research assumes that using accurate and scientific methods in early stages of land use planning operation will prevent occurring of environmental pollution problems in the future, the research aims to study and show the importance of the environmental impact assessment method (EIA) as an important planning tool to investigate and predict the pollution ranges of the land use that has a polluting pattern in land use planning operation. This research encompasses the concept of environmental assessment and its kinds and clarifies environmental impact assessment and its contents, the research also dealt with urban planning concept and land use planning, it also dealt with the current situation of the case study (Al-Garma district) and the land use planning in it and explain the most polluting use on the environment which is the industrial land use represented in the tannery industries and then there was a stating of current situation of this land use and explaining its contents and environmental impacts resulted from it, and then we analyzed the tests applied by the researcher for water and soil, and perform environmental evaluation through applying environmental impact assessment matrix using the direct method to reveal the pollution ranges on the ambient environment of industrial land use, and we also applied the environmental and site limits and standards by using (GIS) and (AUTOCAD) to select the site of the best alternative of the industrial region in Al-Garma district after the research approved the unsuitability of its current site location for the environmental and site limitations, the research conducted some conclusions and recommendations regard clarifying the concluded facts and to set the proper solutions.

Keywords: EIA, pollution, tannery industry, land use planning

Procedia PDF Downloads 440
341 Thermo-Economic Evaluation of Sustainable Biogas Upgrading via Solid-Oxide Electrolysis

Authors: Ligang Wang, Theodoros Damartzis, Stefan Diethelm, Jan Van Herle, François Marechal

Abstract:

Biogas production from anaerobic digestion of organic sludge from wastewater treatment as well as various urban and agricultural organic wastes is of great significance to achieve a sustainable society. Two upgrading approaches for cleaned biogas can be considered: (1) direct H₂ injection for catalytic CO₂ methanation and (2) CO₂ separation from biogas. The first approach usually employs electrolysis technologies to generate hydrogen and increases the biogas production rate; while the second one usually applies commercially-available highly-selective membrane technologies to efficiently extract CO₂ from the biogas with the latter being then sent afterward for compression and storage for further use. A straightforward way of utilizing the captured CO₂ is on-site catalytic CO₂ methanation. From the perspective of system complexity, the second approach may be questioned, since it introduces an additional expensive membrane component for producing the same amount of methane. However, given the circumstance that the sustainability of the produced biogas should be retained after biogas upgrading, renewable electricity should be supplied to drive the electrolyzer. Therefore, considering the intermittent nature and seasonal variation of renewable electricity supply, the second approach offers high operational flexibility. This indicates that these two approaches should be compared based on the availability and scale of the local renewable power supply and not only the technical systems themselves. Solid-oxide electrolysis generally offers high overall system efficiency, and more importantly, it can achieve simultaneous electrolysis of CO₂ and H₂O (namely, co-electrolysis), which may bring significant benefits for the case of CO₂ separation from the produced biogas. When taking co-electrolysis into account, two additional upgrading approaches can be proposed: (1) direct steam injection into the biogas with the mixture going through the SOE, and (2) CO₂ separation from biogas which can be used later for co-electrolysis. The case study of integrating SOE to a wastewater treatment plant is investigated with wind power as the renewable power. The dynamic production of biogas is provided on an hourly basis with the corresponding oxygen and heating requirements. All four approaches mentioned above are investigated and compared thermo-economically: (a) steam-electrolysis with grid power, as the base case for steam electrolysis, (b) CO₂ separation and co-electrolysis with grid power, as the base case for co-electrolysis, (c) steam-electrolysis and CO₂ separation (and storage) with wind power, and (d) co-electrolysis and CO₂ separation (and storage) with wind power. The influence of the scale of wind power supply is investigated by a sensitivity analysis. The results derived provide general understanding on the economic competitiveness of SOE for sustainable biogas upgrading, thus assisting the decision making for biogas production sites. The research leading to the presented work is funded by European Union’s Horizon 2020 under grant agreements n° 699892 (ECo, topic H2020-JTI-FCH-2015-1) and SCCER BIOSWEET.

Keywords: biogas upgrading, solid-oxide electrolyzer, co-electrolysis, CO₂ utilization, energy storage

Procedia PDF Downloads 140
340 Antimicrobial Value of Olax subscorpioidea and Bridelia ferruginea on Micro-Organism Isolates of Dental Infection

Authors: I. C. Orabueze, A. A. Amudalat, S. A. Adesegun, A. A. Usman

Abstract:

Dental and associated oral diseases are increasingly affecting a considerable portion of the population and are considered some of the major causes of tooth loss, discomfort, mouth odor and loss of confidence. This study focused on the ethnobotanical survey of medicinal plants used in oral therapy and evaluation of the antimicrobial activities of methanolic extracts of two selected plants from the survey for their efficacy against dental microorganisms. The ethnobotanical survey was carried out in six herbal markets in Lagos State, Nigeria by oral interviewing and information obtained from an old family manually complied herbal medication book. Methanolic extracts of Olax subscorpioidea (stem bark) and Bridelia ferruginea (stem bark) were assayed for their antimicrobial activities against clinical oral isolates (Aspergillus fumigatus, Candida albicans, Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa). In vitro microbial technique (agar well diffusion method and minimum inhibitory concentration (MIC) assay) were employed for the assay. Chlorhexidine gluconate was used as the reference drug for comparison with the extract results. And the preliminary phytochemical screening of the constituents of the plants were done. The ethnobotanical survey produced plants (28) of diverse family. Different parts of plants (seed, fruit, leaf, root, bark) were mentioned but 60% mentioned were either the stem or the bark. O. subscorpioidea showed considerable antifungal activity with zone of inhibition ranging from 2.650 – 2.000 cm against Aspergillus fumigatus but no such encouraging inhibitory activity was observed in the other assayed organisms. B. ferruginea showed antibacterial sensitivity against Streptococcus spp, Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa with zone of inhibitions ranging from 3.400 - 2.500, 2.250 - 1.600, 2.700 - 1.950, 2.225 – 1.525 cm respectively. The minimum inhibitory concentration of O. subscorpioidea against Aspergillus fumigatus was 51.2 mg ml-1 while that of B. ferruginea against Streptococcus spp was 0.1mg ml-1 and for Staphylococcus aureus, Lactobacillus acidophilus and Pseudomonas aeruginosa were 25.6 mg ml-1. A phytochemical analysis reveals the presence of alkaloids, saponins, cardiac glycoside, tannins, phenols and terpenoids in both plants, with steroids only in B. ferruginea. No toxicity was observed among mice given the two methanolic extracts (1000 mg Kg-1) after 21 days. The barks of both plants exhibited antimicrobial properties against periodontal diseases causing organisms assayed, thus up-holding their folkloric use in oral disorder management. Further research could be done viewing these extracts as combination therapy, checking for possible synergistic value in toothpaste and oral rinse formulations for reducing oral bacterial flora and fungi load.

Keywords: antimicrobial activities, Bridelia ferruginea, dental disinfection, methanolic extract, Olax subscorpioidea, ethnobotanical survey

Procedia PDF Downloads 228
339 Antimicrobial and Antibiofilm Properties of Fatty Acids Against Streptococcus Mutans

Authors: A. Mulry, C. Kealey, D. B. Brady

Abstract:

Planktonic bacteria can form biofilms which are microbial aggregates embedded within a matrix of extracellular polymeric substances (EPS). They can be found attached to abiotic or biotic surfaces. Biofilms are responsible for oral diseases such as dental caries, gingivitis and the progression of periodontal disease. Biofilms can resist 500 to 1000 times the concentration of biocides and antibiotics used to kill planktonic bacteria. Biofilm development on oral surfaces involves four stages, initial attachment, early development, maturation and dispersal of planktonic cells. The Minimum Inhibitory Concentration (MIC) was determined using a range of saturated and unsaturated fatty acids using the resazurin assay, followed by serial dilution and spot plating on BHI agar plates to establish the Minimum Bactericidal Concentration (MBC). Log reduction of bacteria was also evaluated for each fatty acid. The Minimum Biofilm Inhibition Concentration (MBIC) was determined using crystal violet assay in 96 well plates on forming and pre-formed S. mutans biofilms using BHI supplemented with 1% sucrose. Saturated medium-chain fatty acids Octanoic (C8.0), Decanoic (C10.0) and Undecanoic acid (C11.0) do not display strong antibiofilm properties; however, Lauric (C12.0) and Myristic (C14.0) display moderate antibiofilm properties with 97.83% and 97.5% biofilm inhibition with 1000 µM respectively. Monounsaturated, Oleic acid (C18.1) and polyunsaturated large chain fatty acids, Linoleic acid (C18.2) display potent antibiofilm properties with biofilm inhibition of 99.73% at 125 µM and 100% at 65.5 µM, respectively. Long-chain polyunsaturated Omega-3 fatty acids α-Linoleic (C18.3), Eicosapentaenoic Acid (EPA) (C20.5), Docosahexaenoic Acid (DHA) (C22.6) have displayed strong antibiofilm efficacy from concentrations ranging from 31.25-250µg/ml. DHA is the most promising antibiofilm agent with an MBIC of 99.73% with 15.625µg/ml. This may be due to the presence of six double bonds and the structural orientation of the fatty acid. To conclude, fatty acids displaying the most antimicrobial activity appear to be medium or long-chain unsaturated fatty acids containing one or more double bonds. Most promising agents include Omega-3-fatty acids Linoleic, α-Linoleic, EPA and DHA, as well as Omega-9 fatty acid Oleic acid. These results indicate that fatty acids have the potential to be used as antimicrobials and antibiofilm agents against S. mutans. Future work involves further screening of the most potent fatty acids against a range of bacteria, including Gram-positive and Gram-negative oral pathogens. Future work will involve incorporating the most effective fatty acids onto dental implant devices to prevent biofilm formation.

Keywords: antibiofilm, biofilm, fatty acids, S. mutans

Procedia PDF Downloads 138
338 Sintering of YNbO3:Eu3+ Compound: Correlation between Luminescence and Spark Plasma Sintering Effect

Authors: Veronique Jubera, Ka-Young Kim, U-Chan Chung, Amelie Veillere, Jean-Marc Heintz

Abstract:

Emitting materials and all solid state lasers are widely used in the field of optical applications and materials science as a source of excitement, instrumental measurements, medical applications, metal shaping etc. Recently promising optical efficiencies were recorded on ceramics which result from a cheaper and faster ways to obtain crystallized materials. The choice and optimization of the sintering process is the key point to fabricate transparent ceramics. It includes a high control on the preparation of the powder with the choice of an adequate synthesis, a pre-heat-treatment, the reproducibility of the sintering cycle, the polishing and post-annealing of the ceramic. The densification is the main factor needed to reach a satisfying transparency, and many technologies are now available. The symmetry of the unit cell plays a crucial role in the diffusion rate of the material. Therefore, the cubic symmetry compounds having an isotropic refractive index is preferred. The cubic Y3NbO7 matrix is an interesting host which can accept a high concentration of rare earth doping element and it has been demonstrated that SPS is an efficient way to sinter this material. The optimization of diffusion losses requires a microstructure of fine ceramics, generally less than one hundred nanometers. In this case, grain growth is not an obstacle to transparency. The ceramics properties are then isotropic thereby to free-shaping step by orienting the ceramics as this is the case for the compounds of lower symmetry. After optimization of the synthesis route, several SPS parameters as heating rate, holding, dwell time and pressure were adjusted in order to increase the densification of the Eu3+ doped Y3NbO7 pellets. The luminescence data coupled with X-Ray diffraction analysis and electronic diffraction microscopy highlight the existence of several distorted environments of the doping element in the studied defective fluorite-type host lattice. Indeed, the fast and high crystallization rate obtained to put in evidence a lack of miscibility in the phase diagram, being the final composition of the pellet driven by the ratio between niobium and yttrium elements. By following the luminescence properties, we demonstrate a direct impact on the SPS process on this material.

Keywords: emission, niobate of rare earth, Spark plasma sintering, lack of miscibility

Procedia PDF Downloads 247
337 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria

Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan

Abstract:

Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.

Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM

Procedia PDF Downloads 130
336 Magnetic Navigation of Nanoparticles inside a 3D Carotid Model

Authors: E. G. Karvelas, C. Liosis, A. Theodorakakos, T. E. Karakasidis

Abstract:

Magnetic navigation of the drug inside the human vessels is a very important concept since the drug is delivered to the desired area. Consequently, the quantity of the drug required to reach therapeutic levels is being reduced while the drug concentration at targeted sites is increased. Magnetic navigation of drug agents can be achieved with the use of magnetic nanoparticles where anti-tumor agents are loaded on the surface of the nanoparticles. The magnetic field that is required to navigate the particles inside the human arteries is produced by a magnetic resonance imaging (MRI) device. The main factors which influence the efficiency of the usage of magnetic nanoparticles for biomedical applications in magnetic driving are the size and the magnetization of the biocompatible nanoparticles. In this study, a computational platform for the simulation of the optimal gradient magnetic fields for the navigation of magnetic nanoparticles inside a carotid artery is presented. For the propulsion model of the particles, seven major forces are considered, i.e., the magnetic force from MRIs main magnet static field as well as the magnetic field gradient force from the special propulsion gradient coils. The static field is responsible for the aggregation of nanoparticles, while the magnetic gradient contributes to the navigation of the agglomerates that are formed. Moreover, the contact forces among the aggregated nanoparticles and the wall and the Stokes drag force for each particle are considered, while only spherical particles are used in this study. In addition, gravitational forces due to gravity and the force due to buoyancy are included. Finally, Van der Walls force and Brownian motion are taken into account in the simulation. The OpenFoam platform is used for the calculation of the flow field and the uncoupled equations of particles' motion. To verify the optimal gradient magnetic fields, a covariance matrix adaptation evolution strategy (CMAES) is used in order to navigate the particles into the desired area. A desired trajectory is inserted into the computational geometry, which the particles are going to be navigated in. Initially, the CMAES optimization strategy provides the OpenFOAM program with random values of the gradient magnetic field. At the end of each simulation, the computational platform evaluates the distance between the particles and the desired trajectory. The present model can simulate the motion of particles when they are navigated by the magnetic field that is produced by the MRI device. Under the influence of fluid flow, the model investigates the effect of different gradient magnetic fields in order to minimize the distance of particles from the desired trajectory. In addition, the platform can navigate the particles into the desired trajectory with an efficiency between 80-90%. On the other hand, a small number of particles are stuck to the walls and remains there for the rest of the simulation.

Keywords: artery, drug, nanoparticles, navigation

Procedia PDF Downloads 98
335 Experience of Two Major Research Centers in the Diagnosis of Cardiac Amyloidosis from Transthyretin

Authors: Ioannis Panagiotopoulos, Aristidis Anastasakis, Konstantinos Toutouzas, Ioannis Iakovou, Charalampos Vlachopoulos, Vasilis Voudris, Georgios Tziomalos, Konstantinos Tsioufis, Efstathios Kastritis, Alexandros Briassoulis, Kimon Stamatelopoulos, Alexios Antonopoulos, Paraskevi Exadaktylou, Evanthia Giannoula, Anastasia Katinioti, Maria Kalantzi, Evangelos Leontiadis, Eftychia Smparouni, Ioannis Malakos, Nikolaos Aravanis, Argyrios Doumas, Maria Koutelou

Abstract:

Introduction: Cardiac amyloidosis from Transthyretin (ATTR-CA) is an infiltrative disease characterized by the deposition of pathological transthyretin complexes in the myocardium. This study describes the characteristics of patients diagnosed with ATTR-CA from 2019 until present at the Nuclear Medicine Department of Onassis Cardiac Surgery Center and AHEPA Hospital. These centers have extensive experience in amyloidosis and modern technological equipment for its diagnosis. Materials and Methods: Records of consecutive patients (N=73) diagnosed with any type of amyloidosis were collected, analyzed, and prospectively followed. The diagnosis of amyloidosis was made using specific myocardial scintigraphy with Tc-99m DPD. Demographic characteristics, including age, gender, marital status, height, and weight, were collected in a database. Clinical characteristics, such as amyloidosis type (ATTR and AL), serum biomarkers (BNP, troponin), electrocardiographic findings, ultrasound findings, NYHA class, aortic valve replacement, device implants, and medication history, were also collected. Some of the most significant results are presented. Results: A total of 73 cases (86% male) were diagnosed with amyloidosis over four years. The mean age at diagnosis was 82 years, and the main symptom was dyspnea. Most patients suffered from ATTR-CA (65 vs. 8 with AL). Out of all the ATTR-CA patients, 61 were diagnosed with wild-type and 2 with two rare mutations. Twenty-eight patients had systemic amyloidosis with extracardiac involvement, and 32 patients had a history of bilateral carpal tunnel syndrome. Four patients had already developed polyneuropathy, and the diagnosis was confirmed by DPD scintigraphy, which is known for its high sensitivity. Among patients with isolated cardiac involvement, only 6 had left ventricular ejection fraction below 40%. The majority of ATTR patients underwent tafamidis treatment immediately after diagnosis. Conclusion: In conclusion, the experiences shared by the two centers and the continuous exchange of information provide valuable insights into the diagnosis and management of cardiac amyloidosis. Clinical suspicion of amyloidosis and early diagnostic approach are crucial, given the availability of non-invasive techniques. Cardiac scintigraphy with DPD can confirm the presence of the disease without the need for a biopsy. The ultimate goal still remains continuous education and awareness of clinical cardiologists so that this systemic and treatable disease can be diagnosed and certified promptly and treatment can begin as soon as possible.

Keywords: amyloidosis, diagnosis, myocardial scintigraphy, Tc-99m DPD, transthyretin

Procedia PDF Downloads 64
334 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 116
333 Teaching Academic Writing for Publication: A Liminal Threshold Experience Towards Development of Scholarly Identity

Authors: Belinda du Plooy, Ruth Albertyn, Christel Troskie-De Bruin, Ella Belcher

Abstract:

In the academy, scholarliness or intellectual craftsmanship is considered the highest level of achievement, culminating in being consistently successfully published in impactful, peer-reviewed journals and books. Scholarliness implies rigorous methods, systematic exposition, in-depth analysis and evaluation, and the highest level of critical engagement and reflexivity. However, being a scholar does not happen automatically when one becomes an academic or completes graduate studies. A graduate qualification is an indication of one’s level of research competence but does not necessarily prepare one for the type of scholarly writing for publication required after a postgraduate qualification has been conferred. Scholarly writing for publication requires a high-level skillset and a specific mindset, which must be intentionally developed. The rite of passage to become a scholar is an iterative process with liminal spaces, thresholds, transitions, and transformations. The journey from researcher to published author is often fraught with rejection, insecurity, and disappointment and requires resilience and tenacity from those who eventually triumph. It cannot be achieved without support, guidance, and mentorship. In this article, the authors use collective auto-ethnography (CAE) to describe the phases and types of liminality encountered during the liminal journey toward scholarship. The authors speak as long-time facilitators of Writing for Academic Publication (WfAP) capacity development events (training workshops and writing retreats) presented at South African universities. Their WfAP facilitation practice is structured around experiential learning principles that allow them to act as critical reading partners and reflective witnesses for the writer-participants of their WfAP events. They identify three essential facilitation features for the effective holding of a generative, liminal, and transformational writing space for novice academic writers in order to enable their safe passage through the various liminal spaces they encounter during their scholarly development journey. These features are that facilitators should be agents of disruption and liminality while also guiding writers through these liminal spaces; that there should be a sense of mutual trust and respect, shared responsibility and accountability in order for writers to produce publication-worthy scholarly work; and that this can only be accomplished with the continued application of high levels of sensitivity and discernment by WfAP facilitators. These are key features for successful WfAP scholarship training events, where focused, individual input triggers personal and professional transformational experiences, which in turn translate into high-quality scholarly outputs.

Keywords: academic writing, liminality, scholarship, scholarliness, threshold experience, writing for publication

Procedia PDF Downloads 35
332 The Molecular Mechanism of Vacuolar Function in Yeast Cell Homeostasis

Authors: Chang-Hui Shen, Paulina Konarzewska

Abstract:

Cell homeostasis is regulated by vacuolar activity and it has been shown that lipid composition of the vacuole plays an important role in vacuolar function. The major phosphoinositide species present in the vacuolar membrane include phosphatidylinositol 3,5-biphosphate (PI(3,5)P₂) which is generated from PI(3)P controlled by Fab1p. Deletion of FAB1 gene reduce the synthesis of PI(3,5)P₂ and thus result in enlarged or fragmented vacuoles, with neutral vacuolar pH due to reduced vacuolar H⁺-ATPase activity. These mutants also exhibited poor growth at high extracellular pH and in the presence of CaCl₂. Conversely, VPS34 regulates the synthesis of PI(3)P from phosphatidylinositol (PI), and the lack of Vps34p results in the reduction of vacuolar activity. Although the cellular observations are clear, it is still unknown about the molecular mechanism between the phospholipid biosynthesis pathway and vacuolar activity. Since both VPS34 and FAB1 are important in vacuolar activity, we hypothesize that the molecular mechanism of vacuolar function might be regulated by the transcriptional regulators of phospholipid biosynthesis. In this study, we study the role of the major phospholipid biosynthesis transcription factor, INO2, in the regulation of vacuolar activity. We first performed qRT-PCR to examine the effect of Ino2p on the expression of VPS34 and FAB1. Our results showed that VPS34 was upregulated in the presence of inositol for both WT and ino2Δ cells. However, FAB1 was only upregulated significantly in ino2Δ cells. This indicated that Ino2p might be the negative regulator for FAB1 expression. Next, growth sensitivity experiment showed that WT, vma3Δ, and ino2Δ grew well in growth medium buffered to pH 5.5 containing 10 mM CaCl₂. As cells were switched to growth medium buffered to pH 7 containing CaCl₂ WT, ino2Δ and opi1Δ showed growth reduction, whereas vma3Δ was completely nonviable. As the concentration of CaCl₂ was increased to 60 mM, ino2Δ cells showed moderate growth reduction compared to WT. This result suggests that ino2Δ cells have better vacuolar activity. Microscopic analysis and vacuolar acidification were employed to further elucidate the importance of INO2 in vacuolar homeostasis. Analysis of vacuolar morphology indicated that WT and vma3Δ cells displayed vacuoles that occupied a small area of the cell when grown in media buffered to pH 5.5. Whereas, ino2Δ displayed fragmented vacuoles. On the other hand, all strains grown in media buffered to pH 7, exhibited enlarged vacuoles that occupied most of the cell’s surface. This indicated that the presence of INO2 may play negative effect in vacuolar morphology when cells are grown in media buffered to pH 5.5. Furthermore, vacuolar acidification assay showed that only vma3Δ cells displayed notably less acidic vacuoles as cells were grown in media buffered to pH 5.5 and pH 7. Whereas, ino2Δ cells displayed more acidic pH compared to WT at pH7. Taken together, our results demonstrated the molecular mechanism of the vacuolar activity regulated by the phospholipid biosynthesis transcription factors Ino2p. Ino2p negatively regulates vacuolar activity through the expression of FAB1.

Keywords: vacuole, phospholipid, homeostasis, Ino2p, FAB1

Procedia PDF Downloads 116
331 Perception of Tactile Stimuli in Children with Autism Spectrum Disorder

Authors: Kseniya Gladun

Abstract:

Tactile stimulation of a dorsal side of the wrist can have a strong impact on our attitude toward physical objects such as pleasant and unpleasant impact. This study explored different aspects of tactile perception to investigate atypical touch sensitivity in children with autism spectrum disorder (ASD). This study included 40 children with ASD and 40 healthy children aged 5 to 9 years. We recorded rsEEG (sampling rate of 250 Hz) during 20 min using EEG amplifier “Encephalan” (Medicom MTD, Taganrog, Russian Federation) with 19 AgCl electrodes placed according to the International 10–20 System. The electrodes placed on the left, and right mastoids served as joint references under unipolar montage. The registration of EEG v19 assignments was carried out: frontal (Fp1-Fp2; F3-F4), temporal anterior (T3-T4), temporal posterior (T5-T6), parietal (P3-P4), occipital (O1-O2). Subjects were passively touched by 4 types of tactile stimuli on the left wrist. Our stimuli were presented with a velocity of about 3–5 cm per sec. The stimuli materials and procedure were chosen for being the most "pleasant," "rough," "prickly" and "recognizable". Type of tactile stimulation: Soft cosmetic brush - "pleasant" , Rough shoe brush - "rough", Wartenberg pin wheel roller - "prickly", and the cognitive tactile stimulation included letters by finger (most of the patient’s name ) "recognizable". To designate the moments of the stimuli onset-offset, we marked the moment when the moment of the touch began and ended; the stimulation was manual, and synchronization was not precise enough for event-related measures. EEG epochs were cleaned from eye movements by ICA-based algorithm in EEGLAB plugin for MatLab 7.11.0 (Mathwork Inc.). Muscle artifacts were cut out by manual data inspection. The response to tactile stimuli was significantly different in the group of children with ASD and healthy children, which was also depended on type of tactile stimuli and the severity of ASD. Amplitude of Alpha rhythm increased in parietal region to response for only pleasant stimulus, for another type of stimulus ("rough," "thorny", "recognizable") distinction of amplitude was not observed. Correlation dimension D2 was higher in healthy children compared to children with ASD (main effect ANOVA). In ASD group D2 was lower for pleasant and unpleasant compared to the background in the right parietal area. Hilbert transform changes in the frequency of the theta rhythm found only for a rough tactile stimulation compared with healthy participants only in the right parietal area. Children with autism spectrum disorders and healthy children were responded to tactile stimulation differently with specific frequency distribution alpha and theta band in the right parietal area. Thus, our data supports the hypothesis that rsEEG may serve as a sensitive index of altered neural activity caused by ASD. Children with autism have difficulty in distinguishing the emotional stimuli ("pleasant," "rough," "prickly" and "recognizable").

Keywords: autism, tactile stimulation, Hilbert transform, pediatric electroencephalography

Procedia PDF Downloads 235
330 Evaluation of Invasive Tree Species for Production of Phosphate Bonded Composites

Authors: Stephen Osakue Amiandamhen, Schwaller Andreas, Martina Meincken, Luvuyo Tyhoda

Abstract:

Invasive alien tree species are currently being cleared in South Africa as a result of the forest and water imbalances. These species grow wildly constituting about 40% of total forest area. They compete with the ecosystem for natural resources and are considered as ecosystem engineers by rapidly changing disturbance regimes. As such, they are harvested for commercial uses but much of it is wasted because of their form and structure. The waste is being sold to local communities as fuel wood. These species can be considered as potential feedstock for the production of phosphate bonded composites. The presence of bark in wood-based composites leads to undesirable properties, and debarking as an option can be cost implicative. This study investigates the potentials of these invasive species processed without debarking on some fundamental properties of wood-based panels. Some invasive alien tree species were collected from EC Biomass, Port Elizabeth, South Africa. They include Acacia mearnsii (Black wattle), A. longifolia (Long-leaved wattle), A. cyclops (Red-eyed wattle), A. saligna (Golden-wreath wattle) and Eucalyptus globulus (Blue gum). The logs were chipped as received. The chips were hammer-milled and screened through a 1 mm sieve. The wood particles were conditioned and the quantity of bark in the wood was determined. The binding matrix was prepared using a reactive magnesia, phosphoric acid and class S fly ash. The materials were mixed and poured into a metallic mould. The composite within the mould was compressed at room temperature at a pressure of 200 KPa. After initial setting which took about 5 minutes, the composite board was demoulded and air-cured for 72 h. The cured product was thereafter conditioned at 20°C and 70% relative humidity for 48 h. Test of physical and strength properties were conducted on the composite boards. The effect of binder formulation and fly ash content on the properties of the boards was studied using fitted response surface technology, according to a central composite experimental design (CCD) at a fixed wood loading of 75% (w/w) of total inorganic contents. The results showed that phosphate/magnesia ratio of 3:1 and fly ash content of 10% was required to obtain a product of good properties and sufficient strength for intended applications. The proposed products can be used for ceilings, partitioning and insulating wall panels.

Keywords: invasive alien tree species, phosphate bonded composites, physical properties, strength

Procedia PDF Downloads 277
329 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy

Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr

Abstract:

Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.

Keywords: ageing, casting, mechanical strength, precipitates

Procedia PDF Downloads 482
328 Trophic Variations in Uptake and Assimilation of Cadmium, Manganese and Zinc: An Estuarine Food-Chain Radiotracer Experiment

Authors: K. O’Mara, T. Cresswell

Abstract:

Nearly half of the world’s population live near the coast, and as a result, estuaries and coastal bays in populated or industrialized areas often receive metal pollution. Heavy metals have a chemical affinity for sediment particles and can be stored in estuarine sediments and become biologically available under changing conditions. Organisms inhabiting estuaries can be exposed to metals from a variety of sources including metals dissolved in water, bound to sediment or within contaminated prey. Metal uptake and assimilation responses can vary even between species that are biologically similar, making pollution effects difficult to predict. A multi-trophic level experiment representing a common Eastern Australian estuarine food chain was used to study the sources for Cd, Mn and Zn uptake and assimilation in organisms occupying several trophic levels. Sand cockles (Katelysia scalarina), school prawns (Metapenaeus macleayi) and sand whiting (Sillago ciliata) were exposed to radiolabelled seawater, suspended sediment and food. Three pulse-chase trials on filter-feeding sand cockles were performed using radiolabelled phytoplankton (Tetraselmis sp.), benthic microalgae (Entomoneis sp.) and suspended sediment. Benthic microalgae had lower metal uptake than phytoplankton during labelling but higher cockle assimilation efficiencies (Cd = 51%, Mn = 42%, Zn = 63 %) than both phytoplankton (Cd = 21%, Mn = 32%, Zn = 33%) and suspended sediment (except Mn; (Cd = 38%, Mn = 42%, Zn = 53%)). Sand cockles were also sensitive to uptake of Cd, Mn and Zn dissolved in seawater. Uptake of these metals from the dissolved phase was negligible in prawns and fish, with prawns only accumulating metals during moulting, which were then lost with subsequent moulting in the depuration phase. Diet appears to be the main source of metal assimilation in school prawns, with 65%, 54% and 58% assimilation efficiencies from Cd, Mn and Zn respectively. Whiting fed contaminated prawns were able to exclude the majority of the metal activity through egestion, with only 10%, 23% and 11% assimilation efficiencies from Cd, Mn and Zn respectively. The findings of this study support previous studies that find diet to be the dominant accumulation source for higher level trophic organisms. These results show that assimilation efficiencies can vary depending on the source of exposure; sand cockles assimilated more Cd, Mn, and Zn from the benthic diatom than phytoplankton and assimilation was higher in sand whiting fed prawns compared to artificial pellets. The sensitivity of sand cockles to metal uptake and assimilation from a variety of sources poses concerns for metal availability to predators ingesting the clam tissue, including humans. The high tolerance of sand whiting to these metals is reflected in their widespread presence in Eastern Australian estuaries, including contaminated estuaries such as Botany Bay and Port Jackson.

Keywords: cadmium, food chain, metal, manganese, trophic, zinc

Procedia PDF Downloads 185
327 Fibrin Glue Reinforcement of Choledochotomy Closure Suture Line for Prevention of Bile Leak in Patients Undergoing Laparoscopic Common Bile Duct Exploration with Primary Closure: A Pilot Study

Authors: Rahul Jain, Jagdish Chander, Anish Gupta

Abstract:

Introduction: Laparoscopic common bile duct exploration (LCBDE) allows cholecystectomy and the removal of common bile duct (CBD) stones to be performed during the same sitting, thereby decreasing hospital stay. CBD exploration through choledochotomy can be closed primarily with an absorbable suture material, but can lead to biliary leakage postoperatively. In this study we tried to find a solution to further lower the incidence of bile leakage by using fibrin glue to reinforce the sutures put on choledochotomy suture line. It has haemostatic and sealing action, through strengthening the last step of the physiological coagulation and biostimulation, which favours the formation of new tissue matrix. Methodology: This study was conducted at a tertiary care teaching hospital in New Delhi, India, from 2011 to 2013. 20 patients with CBD stones documented on MRCP with CBD diameter of 9 mm or more were included in this study. Patients were randomized into two groups namely Group A in which choledochotomy was closed with polyglactin 4-0 suture and suture line reinforced with fibrin glue, and Group ‘B’ in which choledochotomy was closed with polyglactin 4-0 suture alone. Both the groups were evaluated and compared on clinical parameters such as operative time, drain content, drain output, no. of days drain was required, blood loss & transfusion requirements, length of postoperative hospital stay and conversion to open surgery. Results: The operative time for Group A ranged from 60 to 210 min (mean 131.50 min) and Group B 65 to 300 min (mean 140 minutes). The blood loss in group A ranged from 10 to 120 ml (mean 51.50 ml), in group B it ranged from 10 to 200 ml (mean 53.50 ml). In Group A, there was no case of bile leak but there was bile leak in 2 cases in Group B, minimum 0 and maximum 900 ml with a mean of 97 ml and p value of 0.147 with no statistically significant difference in bile leak in test and control groups. The minimum and maximum serous drainage in Group A was nil & 80 ml (mean 11 ml) and in Group B was nil & 270 ml (mean 72.50 ml). The p value came as 0.028 which is statistically significant. Thus serous leakage in Group A was significantly less than in Group B. The drains in Group A were removed from 2 to 4 days (mean: 3 days) while in Group B from 2 to 9 days (mean: 3.9 days). The patients in Group A stayed in hospital post operatively from 3 to 8 days (mean: 5.30) while in Group B it ranged from 3 to 10 days with a mean of 5 days. Conclusion: Fibrin glue application on CBD decreases bile leakage but in statistically insignificant manner. Fibrin glue application on CBD can significantly decrease post operative serous drainage after LCBDE. Fibrin glue application on CBD is safe and easy technique without any significant adverse effects and can help less experienced surgeons performing LCBDE.

Keywords: bile leak, fibrin glue, LCBDE, serous leak

Procedia PDF Downloads 199
326 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data

Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour

Abstract:

Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.

Keywords: physical activity, machine learning, under 5s, disability, accelerometer

Procedia PDF Downloads 192
325 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend

Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang

Abstract:

Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical, and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and non-toxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75, and 0:100), and fiber content (i.e. in the range of 1-25 % wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using the native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness, and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.

Keywords: polylactic acid, thermoplastic starch, Jute fiber, composite, blend

Procedia PDF Downloads 409
324 The Lonely Entrepreneur: Antecedents and Effects of Social Isolation on Entrepreneurial Intention and Output

Authors: Susie Pryor, Palak Sadhwani

Abstract:

The purpose of this research is to provide the foundations for a broad research agenda examining the role loneliness plays in entrepreneurship. While qualitative research in entrepreneurship incidentally captures the existence of loneliness as a part of the lived reality of entrepreneurs, to the authors’ knowledge, no academic work has to date explored this construct in this context. Moreover, many individuals reporting high levels of loneliness (women, ethnic minorities, immigrants, low income, low education) reflect those who are currently driving small business growth in the United States. Loneliness is a persistent state of emotional distress which results from feelings of estrangement and rejection or develops in the absence of social relationships and interactions. Empirical work finds links between loneliness and depression, suicide and suicide ideation, anxiety, hostility and passiveness, lack of communication and adaptability, shyness, poor social skills and unrealistic social perceptions, self-doubts, fear of rejection, and negative self-evaluation. Lonely individuals have been found to exhibit lower levels of self-esteem, higher levels of introversion, lower affiliative tendencies, less assertiveness, higher sensitivity to rejection, a heightened external locus of control, intensified feelings of regret and guilt over past events and rigid and overly idealistic goals concerning the future. These characteristics are likely to impact entrepreneurs and their work. Research identifies some key dangers of loneliness. Loneliness damages human love and intimacy, can disturb and distract individuals from channeling creative and effective energies in a meaningful way, may result in the formation of premature, poorly thought out and at times even irresponsible decisions, and produce hard and desensitized individuals, with compromised health and quality of life concerns. The current study utilizes meta-analysis and text analytics to distinguish loneliness from other related constructs (e.g., social isolation) and categorize antecedents and effects of loneliness across subpopulations. This work has the potential to materially contribute to the field of entrepreneurship by cleanly defining constructs and providing foundational background for future research. It offers a richer understanding of the evolution of loneliness and related constructs over the life cycle of entrepreneurial start-up and development. Further, it suggests preliminary avenues for exploration and methods of discovery that will result in knowledge useful to the field of entrepreneurship. It is useful to both entrepreneurs and those work with them as well as academics interested in the topics of loneliness and entrepreneurship. It adopts a grounded theory approach.

Keywords: entrepreneurship, grounded theory, loneliness, meta-analysis

Procedia PDF Downloads 101
323 Archaic Ontologies Nowadays: Music of Rituals

Authors: Luminiţa Duţică, Gheorghe Duţică

Abstract:

Many of the interrogations or dilemmas of the contemporary world found the answer in what was generically called the appeal to matrix. This genuine spiritual exercise of re-connection of the present to origins, to the primary source, revealed the ontological condition of timelessness, ahistorical, immutable (epi)phenomena, of those pure essences concentrated in the archetypal-referential layer of the human existence. The musical creation was no exception to this trend, the impasse generated by the deterministic excesses of the whole serialism or, conversely, by some questionable results of the extreme indeterminism proper to the avant-garde movements, stimulating the orientation of many composers to rediscover a universal grammar, as an emanation of a new ‘collective’ order (reverse of the utopian individualism). In this context, the music of oral tradition and therefore the world of the ancient modes represented a true revelation for the composers of the twentieth century, who were suddenly in front of some unsuspected (re)sources, with a major impact on all levels of edification of the musical work: morphology, syntax, timbrality, semantics etc. For the contemporary Romanian creators, the music of rituals, existing in the local archaic culture, opened unsuspected perspectives for which it meant to be a synthetic, inclusive and recoverer vision, where the primary (archetypal) genuine elements merge with the latest achievements of language of the European composers. Thus, anchored in a strong and genuine modal source, the compositions analysed in this paper evoke, in a manner as modern as possible, the atmosphere of some ancestral rituals such as: the invocation of rain during the drought (Paparudele, Scaloianul), funeral ceremony (Bocetul), traditions specific to the winter holidays and new year (Colinda, Cântecul de stea, Sorcova, Folklore traditional dances) etc. The reactivity of those rituals in the sound context of the twentieth century meant potentiating or resizing the archaic spirit of the primordial symbolic entities, in terms of some complexity levels generated by the technique of harmonies of chordal layers, of complex aggregates (gravitational or non-gravitational, geometric), of the mixture polyphonies and with global effect (group, mass), by the technique of heterophony, of texture and cluster, leading to the implementation of some processes of collective improvisation and instrumental theatre.

Keywords: archetype, improvisation, polyphony, ritual, instrumental theatre

Procedia PDF Downloads 287