Search results for: smart beta
1469 Development of a Low-Cost Smart Insole for Gait Analysis
Authors: S. M. Khairul Halim, Mojtaba Ghodsi, Morteza Mohammadzaheri
Abstract:
Gait analysis is essential for diagnosing musculoskeletal and neurological conditions. However, current methods are often complex and expensive. This paper introduces a methodology for analysing gait parameters using a smart insole with a built-in accelerometer. The system measures stance time, swing time, step count, and cadence and wirelessly transmits data to a user-friendly IoT dashboard for centralized processing. This setup enables remote monitoring and advanced data analytics, making it a versatile tool for medical diagnostics and everyday usage. Integration with IoT enhances the portability and connectivity of the device, allowing for secure, encrypted data access over the Internet. This feature supports telemedicine and enables personalized treatment plans tailored to individual needs. Overall, the approach provides a cost-effective (almost 25 GBP), accurate, and user-friendly solution for gait analysis, facilitating remote tracking and customized therapy.Keywords: gait analysis, IoT, smart insole, accelerometer sensor
Procedia PDF Downloads 171468 A Review on 3D Smart City Platforms Using Remotely Sensed Data to Aid Simulation and Urban Analysis
Authors: Slim Namouchi, Bruno Vallet, Imed Riadh Farah
Abstract:
3D urban models provide powerful tools for decision making, urban planning, and smart city services. The accuracy of this 3D based systems is directly related to the quality of these models. Since manual large-scale modeling, such as cities or countries is highly time intensive and very expensive process, a fully automatic 3D building generation is needed. However, 3D modeling process result depends on the input data, the proprieties of the captured objects, and the required characteristics of the reconstructed 3D model. Nowadays, producing 3D real-world model is no longer a problem. Remotely sensed data had experienced a remarkable increase in the recent years, especially data acquired using unmanned aerial vehicles (UAV). While the scanning techniques are developing, the captured data amount and the resolution are getting bigger and more precise. This paper presents a literature review, which aims to identify different methods of automatic 3D buildings extractions either from LiDAR or the combination of LiDAR and satellite or aerial images. Then, we present open source technologies, and data models (e.g., CityGML, PostGIS, Cesiumjs) used to integrate these models in geospatial base layers for smart city services.Keywords: CityGML, LiDAR, remote sensing, SIG, Smart City, 3D urban modeling
Procedia PDF Downloads 1351467 A Study on the HTML5 Based Multi Media Contents Authority Tool
Authors: Heesuk Seo, Yongtae Kim
Abstract:
Online learning started in the 1990s, the spread of the Internet has been through the era of e-learning paradigm of online education in the era of smart learning change. Reflecting the different nature of the mobile to anywhere anytime, anywhere was also allows the form of learning, it was also available through the learning content and interaction. We are developing a cloud system, 'TLINKS CLOUD' that allows you to configure the environment of the smart learning without the need for additional infrastructure. Using the big-data analysis for e-learning contents, we provide an integrated solution for e-learning tailored to individual study.Keywords: authority tool, big data analysis, e-learning, HTML5
Procedia PDF Downloads 4061466 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 4671465 Relationship between Matrilin-3 (MATN-3) Gene Single Nucleotide Six Polymorphism, Transforming Growth Factor Beta 2 and Radiographic Grading in Primary Osteoarthritis
Authors: Heba Esaily, Rawhia Eledl, Daila Aboelela, Rasha Noreldin
Abstract:
Objective: Assess serum level of Transforming growth factor beta 2 (TGF-β2) and Matrilin-3 (MATN3) SNP6 polymorphism in osteoarthritic patients Background: Osteoarthritis (OA) is a musculoskeletal disease characterized by pain and joint stiffness. TGF-β 2 is involved in chondrogenesis and osteogenesis, It has found that MATN3 gene and protein expression was correlated with the extent of tissue damage in OA. Findings suggest that regulation of MATN3 expression is essential for maintenance of the cartilage extracellular matrix microenvironment Subjects and Methods: 72 cases of primary OA (56 with knee OA and 16 with generalized OA were compared with that of 18 healthy controls. Radiographs were scored with the Kellgren-Lawrence scale. Serum TGF-β2 was measured by using (ELISA), levels of marker were correlated to radiographic grading of disease and MATN3 SNP6 polymorphism was determined by (PCR-RFLP). Results: MATN3 SNP6 polymorphism and serum level of TGF-β2 were higher in OA compared with controls. Genotype, NN and N allele frequency were higher in patients with OA compared with controls. NN genotype and N allele frequency were higher in knee osteoarthritis than generalized OA. Significant positive correlation between level of TGFβ2 and radiographic grading in group with knee OA, but no correlation between serum level of TGFβ2 and radiographic grading in generalized OA. Conclusion: MATN3 SNP6 polymorphism and TGF-β2 implicated in the pathogenesis of osteoarthritis. Association of N/N genotype with primary osteoarthritis emphasizes on the need for prospective study include larger sample size to confirm the results of the present study.Keywords: Matrilin-3, transforming growth factor beta 2, primary osteoarthritis, knee osteoarthritis
Procedia PDF Downloads 2691464 Effects of Dietary Polyunsaturated Fatty Acids and Beta Glucan on Maturity, Immunity and Fry Quality of Pabdah Catfish, Ompok pabda
Authors: Zakir Hossain, Md. Saddam Hossain
Abstract:
A nutritionally balanced diet and selection of appropriate species are important criteria in aquaculture. The present study was conducted to evaluate the effects of polyunsaturated fatty acids (PUFAs) and beta glucan containing diet on growth performance, feed utilization, maturation, immunity, early embryonic and larval development of endangered Pabdah catfish, Ompok pabda. In this study, squid extracted lipids and mushroom powder were used as the source of PUFAs and beta glucan, respectively, and formulated two isonitrogenous diets such as basal or control (CON) diet and treated (PBG) diet with maintaining 30% protein levels. During the study period, similar physicochemical conditions of water such as temperature, pH, and dissolved oxygen (DO) were 26.5±2 °C, 7.4±0.2, and 6.7±0.5 ppm, respectively in each cistern. The results showed that final mean body weight, final mean length gain, food conversion ratio (FCR), specific growth rate (SGR), food conversion efficiency (%), hepatosomatic index (HSI), kidney index (KI), and viscerosomatic index (VSI) were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The length-weight relationship and relative condition factor (K) of O. pabda were significantly (P<0.05) affected by the PBG diet. The gonadosomatic index (GSI), sperm viability, blood serum calcium ion concentrations (Ca²⁺), and vitellogenin level were significantly (P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet; which was used to the indication of fish maturation. During the spawning season, lipid granules and normal morphological structure were observed in the treated fish liver, whereas fewer lipid granules of liver were observed in the control group. Based on the immunity and stress resistance-related parameters such as hematological indices, antioxidant activity, lysozyme level, respiratory burst activity, blood reactive oxygen species (ROS), complement activity (ACH50 assay), specific IgM, brain AChE, plasma PGOT, and PGPT enzyme activity were significantly (P<0.01 and P<0.05) higher in fish fed the PBG diet than that of fish fed the CON diet. The fecundity, fertilization rate (92.23±2.69%), hatching rate (87.43±2.17 %) and survival (76.62±0.82%) of offspring were significantly higher (P˂0.05) in the PBG diet than in the control. Consequently, early embryonic and larval development was better in PBG treated group than in the control. Therefore, the present study showed that the polyunsaturated fatty acids (PUFAs) and beta glucan enriched experimental diet were more effective and achieved better growth, feed utilization, maturation, immunity, and spawning performances of O. pabda.Keywords: polyunsaturated fatty acids, beta glucan, maturity, immunity, catfish
Procedia PDF Downloads 21463 Atomic Clusters: A Unique Building Motif for Future Smart Nanomaterials
Authors: Debesh R. Roy
Abstract:
The fundamental issue in understanding the origin and growth mechanism of nanomaterials, from a fundamental unit is a big challenging problem to the scientists. Recently, an immense attention is generated to the researchers for prediction of exceptionally stable atomic cluster units as the building units for future smart materials. The present study is a systematic investigation on the stability and electronic properties of a series of bimetallic (semiconductor-alkaline earth) clusters, viz., BxMg3 (x=1-5) is performed, in search for exceptional and/ or unusual stable motifs. A very popular hybrid exchange-correlation functional, B3LYP as proposed by A. D. Becke along with a higher basis set, viz., 6-31+G[d,p] is employed for this purpose under the density functional formalism. The magic stability among the concerned clusters is explained using the jellium model. It is evident from the present study that the magic stability of B4Mg3 cluster arises due to the jellium shell closure.Keywords: atomic clusters, density functional theory, jellium model, magic clusters, smart nanomaterials
Procedia PDF Downloads 5281462 Beta-Carotene Attenuates Cognitive and Hepatic Impairment in Thioacetamide-Induced Rat Model of Hepatic Encephalopathy via Mitigation of MAPK/NF-κB Signaling Pathway
Authors: Marawan Abd Elbaset Mohamed, Hanan A. Ogaly, Rehab F. Abdel-Rahman, Ahmed-Farid O.A., Marwa S. Khattab, Reham M. Abd-Elsalam
Abstract:
Liver fibrosis is a severe worldwide health concern due to various chronic liver disorders. Hepatic encephalopathy (HE) is one of its most common complications affecting liver and brain cognitive function. Beta-Carotene (B-Car) is an organic, strongly colored red-orange pigment abundant in fungi, plants, and fruits. The study attempted to know B-Car neuroprotective potential against thioacetamide (TAA)-induced neurotoxicity and cognitive decline in HE in rats. Hepatic encephalopathy was induced by TAA (100 mg/kg, i.p.) three times per week for two weeks. B-Car was given orally (10 or 20 mg/kg) daily for two weeks after TAA injections. Organ body weight ratio, Serum transaminase activities, liver’s antioxidant parameters, ammonia, and liver histopathology were assessed. Also, the brain’s mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NF-κB), antioxidant parameters, adenosine triphosphate (ATP), adenosine monophosphate (AMP), norepinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) cAMP response element-binding protein (CREB) expression and B-cell lymphoma 2 (Bcl-2) expression were measured. The brain’s cognitive functions (Spontaneous locomotor activity, Rotarod performance test, Object recognition test) were assessed. B-Car prevented alteration of the brain’s cognitive function in a dose-dependent manner. The histopathological outcomes supported these biochemical evidences. Based on these results, it could be established that B-Car could be assigned to treat the brain’s neurotoxicity consequences of HE via downregualtion of MAPK/NF-κB signaling pathways.Keywords: beta-carotene, liver injury, MAPK, NF-κB, rat, thioacetamide
Procedia PDF Downloads 1541461 Nebulized Magnesium Sulfate in Acute Moderate to Severe Asthma in Pediatric Patients
Authors: Lubna M. Zakaryia Mahmoud, Mohammed A. Dawood, Doaa A. Heiba
Abstract:
A prospective double-blind placebo controlled trial carried out on 60 children known to be asthmatic who presented to the emergency department at Alexandria University of Children’s Hospital at El-Shatby with acute asthma exacerbations to assess the efficacy of adding inhaled magnesium sulfate to β-agonist, compared with β-agonist in saline, in the management of acute asthma exacerbations in children. The participants in the study were divided in two groups; Group A (study group) received inhaled salbutamol solution (0.15 ml/kg) plus isotonic magnesium sulfate 2 ml in a nebulizer chamber. Group B (control group): received nebulized salbutamol solution (0.15 ml/kg) diluted with placebo (2 ml normal saline). Both groups received inhaled solution every 20 minutes that was repeated for three doses. They were evaluated using the Pediatric Asthma Severity Score (PASS), oxygen saturation using portable pulse oximetry and peak expiratory flow rate using a portable peak expiratory flow meter at initially recorded as zero-minute assessment and every 20 minutes from the end of each nebulization (nebulization lasts 5-10 minutes) recorded as 20, 40 and 60-minute assessments. Regarding PASS, comparison showed non-significant difference with p-value 0.463, 0.472, 0.0766 at 20, 40 and 60 minutes. Regarding oxygen saturation, improvement was more significant towards group A starting from 40 min with significant p-value=0.000. At 60 min p-value=0.000. Although mean PEFR significantly improved from zero-min in both groups; however, improvement was more significant in group A with significant p-value = 0.015, 0.001, 0.001 at 20 min, 40 min and 60 min, respectively. The conclusion this study suggests is that inhaled magnesium sulfate is an efficient add on drug to standard β- agonist inhalation used in the treatment of moderate to severe asthma exacerbations.Keywords: nebulized, magnesium sulfate, acute asthma , pediatric
Procedia PDF Downloads 1831460 Increasing the Resilience of Cyber Physical Systems in Smart Grid Environments using Dynamic Cells
Authors: Andrea Tundis, Carlos García Cordero, Rolf Egert, Alfredo Garro, Max Mühlhäuser
Abstract:
Resilience is an important system property that relies on the ability of a system to automatically recover from a degraded state so as to continue providing its services. Resilient systems have the means of detecting faults and failures with the added capability of automatically restoring their normal operations. Mastering resilience in the domain of Cyber-Physical Systems is challenging due to the interdependence of hybrid hardware and software components, along with physical limitations, laws, regulations and standards, among others. In order to overcome these challenges, this paper presents a modeling approach, based on the concept of Dynamic Cells, tailored to the management of Smart Grids. Additionally, a heuristic algorithm that works on top of the proposed modeling approach, to find resilient configurations, has been defined and implemented. More specifically, the model supports a flexible representation of Smart Grids and the algorithm is able to manage, at different abstraction levels, the resource consumption of individual grid elements on the presence of failures and faults. Finally, the proposal is evaluated in a test scenario where the effectiveness of such approach, when dealing with complex scenarios where adequate solutions are difficult to find, is shown.Keywords: cyber-physical systems, energy management, optimization, smart grids, self-healing, resilience, security
Procedia PDF Downloads 3261459 The Lethal Autonomy and Military Targeting Process
Authors: Serdal Akyüz, Halit Turan, Mehmet Öztürk
Abstract:
The future security environment will have new battlefield and enemies. The boundaries of battlefield and the identity of enemies cannot be noticed easily. The politicians may not want to lose their soldiers in very risky operations. This approach will pave the way for smart machines like war robots and new drones. These machines will have the decision-making ability and act simultaneously. This ability can change the military targeting process. Military targeting process (MTP) benefits from a wide scope of lethal and non-lethal weapons to reach an intended end-state. This process is now managed by people but in the future smart machines can do it by themselves. At first sight, this development seems useful for humanity owing to decrease the casualties in war. Using robots -which can decide, detect, deliver and asses without human support- for homeland security and against terrorist has very crucial risks and threats. Besides, it can decrease the havoc but also increase the collateral damages. This paper examines the current use of smart war machines, military targeting process and presents a new approach to MTP from lethal autonomy concept's point of view.Keywords: the autonomous weapon systems, the lethal autonomy, military targeting process (MTP)
Procedia PDF Downloads 4281458 Conducting Glove Leathers Prepared through in-situ Polymerization of Pyrrole
Authors: Wegene Demisie Jima
Abstract:
Leather is a durable and flexible material used for various purposes including clothing, footwear, upholstery and gloves. However, the use of leather for smart product applications is a challenge since it is electrically insulating material. Here, we report a simple method to produce conducting glove leathers using an in-situ polymerization of pyrrole. The concentrations of pyrrole, ferric chloride and anthraquinone-2-sulfonic acid sodium salt monohydrate were optimized to produce maximum conductivity in the treated leathers. The coating of polypyrrole in the treated leathers was probed using FT-IR, X-ray diffraction and electron microscopic analysis. FTIR confirms that the formation of polypyrrole on the leather surface as well as presence of prominent N-C stretching band. X-ray diffraction analysis suggests para-crystallinity in the PPy-treated leathers.We further demonstrate that the treated leathers, with maximum conductivity of 7.4 S/cm, can be used for making conductive gloves for operating touch-screen devices apart from other smart product applications.Keywords: electrical conductivity, in-situ polymerization, pyrrole, smart product
Procedia PDF Downloads 1921457 Acceptance of Health Information Application in Smart National Identity Card (SNIC) Using a New I-P Framework
Authors: Ismail Bile Hassan, Masrah Azrifah Azmi Murad
Abstract:
This study discovers a novel framework of individual level technology adoption known as I-P (Individual- Privacy) towards Smart National Identity Card health information application. Many countries introduced smart national identity card (SNIC) with various applications such as health information application embedded inside it. However, the degree to which citizens accept and use some of the embedded applications in smart national identity remains unknown to many governments and application providers as well. Moreover, the previous studies revealed that the factors of trust, perceived risk, privacy concern and perceived credibility need to be incorporated into more comprehensive models such as extended Unified Theory of Acceptance and Use of Technology known as UTAUT2. UTAUT2 is a mainly widespread and leading theory existing in the information system literature up to now. This research identifies factors affecting the citizens’ behavioural intention to use health information application embedded in SNIC and extends better understanding on the relevant factors that the government and the application providers would need to consider in predicting citizens’ new technology acceptance in the future. We propose a conceptual framework by combining the UTAUT2 and Privacy Calculus Model constructs and also adding perceived credibility as a new variable. The proposed framework may provide assistance to any government planning, decision, and policy makers involving e-government projects. The empirical study may be conducted in the future to provide proof and empirically validate this I-P framework.Keywords: unified theory of acceptance and use of technology (UTAUT) model, UTAUT2 model, smart national identity card (SNIC), health information application, privacy calculus model (PCM)
Procedia PDF Downloads 4671456 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities
Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun
Abstract:
As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning
Procedia PDF Downloads 561455 A Multi Agent Based Protection Scheme for Smart Distribution Network in Presence of Distributed Energy Resources
Authors: M. R. Ebrahimi, B. Mahdaviani
Abstract:
Conventional electric distribution systems are radial in nature, supplied at one end through a main source. These networks generally have a simple protection system usually implemented using fuses, re-closers, and over-current relays. Recently, great attention has been paid to applying Distributed energy resources (DERs) throughout electric distribution systems. Presence of such generation in a network leads to losing coordination of protection devices. Therefore, it is desired to develop an algorithm which is capable of protecting distribution systems that include DER. On the other hand smart grid brings opportunities to the power system. Fast advancement in communication and measurement techniques accelerates the development of multi agent system (MAS). So in this paper, a new approach for the protection of distribution networks in the presence of DERs is presented base on MAS. The proposed scheme has been implemented on a sample 27-bus distribution network.Keywords: distributed energy resource, distribution network, protection, smart grid, multi agent system
Procedia PDF Downloads 6081454 Safe and Scalable Framework for Participation of Nodes in Smart Grid Networks in a P2P Exchange of Short-Term Products
Authors: Maciej Jedrzejczyk, Karolina Marzantowicz
Abstract:
Traditional utility value chain is being transformed during last few years into unbundled markets. Increased distributed generation of energy is one of considerable challenges faced by Smart Grid networks. New sources of energy introduce volatile demand response which has a considerable impact on traditional middlemen in E&U market. The purpose of this research is to search for ways to allow near-real-time electricity markets to transact with surplus energy based on accurate time synchronous measurements. A proposed framework evaluates the use of secure peer-2-peer (P2P) communication and distributed transaction ledgers to provide flat hierarchy, and allow real-time insights into present and forecasted grid operations, as well as state and health of the network. An objective is to achieve dynamic grid operations with more efficient resource usage, higher security of supply and longer grid infrastructure life cycle. Methods used for this study are based on comparative analysis of different distributed ledger technologies in terms of scalability, transaction performance, pluggability with external data sources, data transparency, privacy, end-to-end security and adaptability to various market topologies. An intended output of this research is a design of a framework for safer, more efficient and scalable Smart Grid network which is bridging a gap between traditional components of the energy network and individual energy producers. Results of this study are ready for detailed measurement testing, a likely follow-up in separate studies. New platforms for Smart Grid achieving measurable efficiencies will allow for development of new types of Grid KPI, multi-smart grid branches, markets, and businesses.Keywords: autonomous agents, Distributed computing, distributed ledger technologies, large scale systems, micro grids, peer-to-peer networks, Self-organization, self-stabilization, smart grids
Procedia PDF Downloads 3001453 A Survey on Important Factors of the Ethereum Network Performance
Authors: Ali Mohammad Mobaser Azad, Alireza Akhlaghinia
Abstract:
Blockchain is changing our world and launching a new generation of decentralized networks. Meanwhile, Blockchain-based networks like Ethereum have been created and they will facilitate these processes using tools like smart contracts. The Ethereum has fundamental structures, each of which affects the activity of the nodes. Our purpose in this paper is to review similar research and examine various components to demonstrate the performance of the Ethereum network and to do this, and we used the data published by the Ethereum Foundation in different time spots to examine the number of changes that determine the status of network performance. This will help other researchers understand better Ethereum in different situations.Keywords: blockchain, ethereum, smart contract, decentralization consensus algorithm
Procedia PDF Downloads 2251452 Effect of Select Surfactants on Activities of Soil Enzymes Involved in Nutrient Cycling
Authors: Frieda Eivazi, Nikita L. Mullings
Abstract:
Soils are recipient for surfactants in herbicide formulations. Surfactants entering the soil environment can possibly disrupt different chemical, physical and biological interactions. Therefore, it is critical that we understand the fate, behavior and transport of surfactants upon entering the soil. A comprehensive study was conducted to examine effect of surfactants on nutrient uptake, microbial community, and enzyme activity. The research was conducted in the greenhouse growing corn (Zea mays) as a test plant in a factorial experiment (three surfactants at two different rates with control, and three herbicides) organized as randomized blocked design. Surfactants evaluated were Activator 90, Agri-Dex, and Thrust; herbicides were glyphosate, atrazine, and bentazon. Treatments examined were surfactant only, herbicide only, and surfactant + herbicide combinations. Corn was planted in fertilized soils (silt loam and silty clay) with moisture content maintained at the field capacity for optimum growth. This paper will report results of above mentioned treatments on acid phosphatase, beta-glucosidase, arylsulfatase, beta-glucosaminidase, and dehydrogenase activities. In general, there were variations in the enzyme activities with some inhibition and some being enhanced by the treatments. Activator 90 appeared to have the highest inhibitory effect on enzymatic activities. Atrazine application significantly decreased the activities of acid phosphatase, beta-glucosidase, and dehydrogenase in both soils; however, combination of Atrazine + Agridex increased the acid phosphatase activity while significantly inhibiting the other enzyme activities in soils. It was concluded that long-term field studies are needed to validate changes in nutrient uptake, microbial community and enzyme activities due to surfactant-herbicide combination effects.Keywords: herbicides, nutrient cycling, soil enzymes, surfactant
Procedia PDF Downloads 2511451 Distributed Key Management With Less Transmitted Messaged In Rekeying Process To Secure Iot Wireless Sensor Networks In Smart-Agro
Authors: Safwan Mawlood Hussien
Abstract:
Internet of Things (IoT) is a promising technology has received considerable attention in different fields such as health, industry, defence, and agro, etc. Due to the limitation capacity of computing, storage, and communication, IoT objects are more vulnerable to attacks. Many solutions have been proposed to solve security issues, such as key management using symmetric-key ciphers. This study provides a scalable group distribution key management based on ECcryptography; with less transmitted messages The method has been validated through simulations in OMNeT++.Keywords: elliptic curves, Diffie–Hellman, discrete logarithm problem, secure key exchange, WSN security, IoT security, smart-agro
Procedia PDF Downloads 1191450 Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner
Authors: Eu Tteum Ha, Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks.Keywords: Bayesian network, IoT, learning, situation -awareness, smart home
Procedia PDF Downloads 5221449 Assessment of the Radiation Absorbed Dose Produced by Lu-177, Ra-223, AC-225 for Metastatic Prostate Cancer in a Bone Model
Authors: Maryam Tajadod
Abstract:
The treatment of cancer is one of the main challenges of nuclear medicine; while cancer begins in an organ, such as the breast or prostate, it spreads to the bone, resulting in metastatic bone. In the treatment of cancer with radiotherapy, the determination of the involved tissues’ dose is one of the important steps in the treatment protocol. Comparing absorbed doses for Lu-177 and Ra-223 and Ac-225 in the bone marrow and soft tissue of bone phantom with evaluating energetic emitted particles of these radionuclides is the important aim of this research. By the use of MCNPX computer code, a model for bone phantom was designed and the values of absorbed dose for Ra-223 and Ac-225, which are Alpha emitters & Lu-177, which is a beta emitter, were calculated. As a result of research, in comparing gamma radiation for three radionuclides, Lu-177 released the highest dose in the bone marrow and Ra-223 achieved the lowest level. On the other hand, the result showed that although the figures of absorbed dose for Ra and Ac in the bone marrow are near to each other, Ra spread more energy in cortical bone. Moreover, The alpha component of the Ra-223 and Ac-225 have very little effect on bone marrow and soft tissue than a beta component of the lu-177 and it leaves the highest absorbed dose in the bone where the source is located.Keywords: bone metastases, lutetium-177, radium-223, actinium-225, absorbed dose
Procedia PDF Downloads 1121448 Cable Transport for a Smart City: Between Challenges and Opportunities, Case of the City of Algiers, Algeria
Authors: Ihaddadene Thanina, Haraoubia Imane, Baouni Tahar
Abstract:
Urban mobility is one of the first challenges of cities; it is becoming more and more problematic because it is perceived as the cause of many dysfunctions; it is not only to facilitate accessibility but also to ensure vast benefits. For this reason, several cities in the world have thought about alternatives to smart mobility and sustainable transport. Today, the sustainable city has many cards at its disposal, and a new mode is entering the urban scene: aerial cable transport; it has imposed itself as an effective mode of public transport and a real solution for the future. This electric mobility brings a new dimension, not only to collective daily travel but also to the urban space. It has an excellent capacity to redevelop the public space; it is a catalyst that allows one to appreciate the view from the sky and to discover different large-scale projects that bring an important attractiveness to the city. With regard to the cities in the world which use these systems of transport: Algeria does not escape this reality; it is the country which has the greatest number of devices of urban transport by cable in the world, with installations in many cities such as Tlemcen, Constantine, Blida, Oran, Tizi-Ouzou, Annaba, Skikda. The following study explores the role of cable transport in the transformation of the city of Algiers into a smart city. The methodology used in this work is based on the development of a set of indicators using a questionnaire survey. The main objective of this work is to shed light on cable transport as a key issue in designing the sustainable city of tomorrow, to evaluate its role in the city of Algiers, and its ability to integrate into the urban transport network.Keywords: Algiers, cable transport, indicators, smart city
Procedia PDF Downloads 1131447 Smart Mobility Planning Applications in Meeting the Needs of the Urbanization Growth
Authors: Caroline Atef Shoukry Tadros
Abstract:
Massive Urbanization growth threatens the sustainability of cities and the quality of city life. This raised the need for an alternate model of sustainability, so we need to plan the future cities in a smarter way with smarter mobility. Smart Mobility planning applications are solutions that use digital technologies and infrastructure advances to improve the efficiency, sustainability, and inclusiveness of urban transportation systems. They can contribute to meeting the needs of Urbanization growth by addressing the challenges of traffic congestion, pollution, accessibility, and safety in cities. Some example of a Smart Mobility planning application are Mobility-as-a-service: This is a service that integrates different transport modes, such as public transport, shared mobility, and active mobility, into a single platform that allows users to plan, book, and pay for their trips. This can reduce the reliance on private cars, optimize the use of existing infrastructure, and provide more choices and convenience for travelers. MaaS Global is a company that offers mobility-as-a-service solutions in several cities around the world. Traffic flow optimization: This is a solution that uses data analytics, artificial intelligence, and sensors to monitor and manage traffic conditions in real-time. This can reduce congestion, emissions, and travel time, as well as improve road safety and user satisfaction. Waycare is a platform that leverages data from various sources, such as connected vehicles, mobile applications, and road cameras, to provide traffic management agencies with insights and recommendations to optimize traffic flow. Logistics optimization: This is a solution that uses smart algorithms, blockchain, and IoT to improve the efficiency and transparency of the delivery of goods and services in urban areas. This can reduce the costs, emissions, and delays associated with logistics, as well as enhance the customer experience and trust. ShipChain is a blockchain-based platform that connects shippers, carriers, and customers and provides end-to-end visibility and traceability of the shipments. Autonomous vehicles: This is a solution that uses advanced sensors, software, and communication systems to enable vehicles to operate without human intervention. This can improve the safety, accessibility, and productivity of transportation, as well as reduce the need for parking space and infrastructure maintenance. Waymo is a company that develops and operates autonomous vehicles for various purposes, such as ride-hailing, delivery, and trucking. These are some of the ways that Smart Mobility planning applications can contribute to meeting the needs of the Urbanization growth. However, there are also various opportunities and challenges related to the implementation and adoption of these solutions, such as the regulatory, ethical, social, and technical aspects. Therefore, it is important to consider the specific context and needs of each city and its stakeholders when designing and deploying Smart Mobility planning applications.Keywords: smart mobility planning, smart mobility applications, smart mobility techniques, smart mobility tools, smart transportation, smart cities, urbanization growth, future smart cities, intelligent cities, ICT information and communications technologies, IoT internet of things, sensors, lidar, digital twin, ai artificial intelligence, AR augmented reality, VR virtual reality, robotics, cps cyber physical systems, citizens design science
Procedia PDF Downloads 731446 Angiomotin Regulates Integrin Beta 1-Mediated Endothelial Cell Migration and Angiogenesis
Authors: Yuanyuan Zhang, Yujuan Zheng, Giuseppina Barutello, Sumako Kameishi, Kungchun Chiu, Katharina Hennig, Martial Balland, Federica Cavallo, Lars Holmgren
Abstract:
Angiogenesis describes that new blood vessels migrate from pre-existing ones to form 3D lumenized structure and remodeling. During directional migration toward the gradient of pro-angiogenic factors, the endothelial cells, especially the tip cells need filopodia to sense the environment and exert the pulling force. Of particular interest are the integrin proteins, which play an essential role in focal adhesion in the connection between migrating cells and extracellular matrix (ECM). Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving angiogenesis. We have previously identified Angiomotin (Amot), a member of Amot scaffold protein family, as a promoter for endothelial cell migration in vitro and zebrafish models. Hence, we established inducible endothelial-specific Amot knock-out mice to study normal retinal angiogenesis as well as tumor angiogenesis. We found that the migration ratio of the blood vessel network to the edge was significantly decreased in Amotec- retinas at postnatal day 6 (P6). While almost all the Amot defect tip cells lost migration advantages at P7. In consistence with the dramatic morphology defect of tip cells, there was a non-autonomous defect in astrocytes, as well as the disorganized fibronectin expression pattern correspondingly in migration front. Furthermore, the growth of transplanted LLC tumor was inhibited in Amot knockout mice due to fewer vasculature involved. By using MMTV-PyMT transgenic mouse model, there was a significantly longer period before tumors arised when Amot was specifically knocked out in blood vessels. In vitro evidence showed that Amot binded to beta-actin, Integrin beta 1 (ITGB1), Fibronectin, FAK, Vinculin, major focal adhesion molecules, and ITGB1 and stress fibers were distinctly induced by Amot transfection. Via traction force microscopy, the total energy (force indicater) was found significantly decreased in Amot knockdown cells. Taken together, we propose that Amot is a novel partner of the ITGB1/Fibronectin protein complex at focal adhesion and required for exerting force transition between endothelial cell and extracellular matrix.Keywords: angiogenesis, angiomotin, endothelial cell migration, focal adhesion, integrin beta 1
Procedia PDF Downloads 2371445 Associations between Mindfulness, Temporal Discounting, Locus of Control, and Reward-Based Eating in a Sample of Overweight and Obese Adults
Authors: Andrea S. Badillo-Perez, Alexis D. Mitchell, Sara M. Levens
Abstract:
Overeating, and obesity have been associated with addictive behavior, primarily due to behaviors like reward-based eating, the tendency to overeat due to factors such as lack of control, preoccupation over food, and lack of satiation. Temporal discounting (TD), the ability to select future rewards over short term gains, and mindfulness, the process of maintaining present moment awareness, have been suggested to have significant, differential impacts on health-related behaviors. An individual’s health locus of control, the degree to which they feel that they have control over their health is also known to have an impact on health outcomes. The goal of this study was to investigate the relationship between health locus of control and reward-based eating, as well as the relation between TD and mindfulness in a sample (N = 126) of overweight or obese participants from larger health-focused study. Through the use of questionnaires (including the Five Facet Mindfulness Questionnaire (FFMQ), Reward-Based Eating Drive (RED), and Multidimensional Health Locus of Control (MHLOC)), anthropometric measurements, and a computerized TD task, a series of regressions tested the association between subscales of these measures. Results revealed differences in how the mindfulness subscales are associated with TD measures. Specifically the ‘Observing’ (beta =-.203) and ‘Describing’ (beta =.26) subscales were associated with lower TD rates and a longer subjective devaluation time-frame respectively. In contrast, the ‘Acting with Awareness’ subscale was associated with a shorter subjective devaluation timeframe (beta =-.23). These findings suggest that the reflective perspective initiated through the observing and describing components of mindfulness may facilitate delay of gratification, whereas the acting with awareness component of mindfulness, which focuses on the present moment, may make delay of gratification more challenging. Results also indicated that a higher degree of reward-based eating was associated with a higher degree of an external health locus of control based on the power of chance (beta =.10). However, an external locus of control based on the power of others had no significant association with reward-based eating. This finding implies that the belief that health is due to chance is associated with greater reward-based eating behavior, suggesting that interventions that focus on locus of control may be helpful. Overall, findings demonstrate that weight loss interventions may benefit from health locus of control and mindfulness exercises, but caution should be taken as the components of mindfulness appear to have different effects on increasing or decreasing delay of gratification.Keywords: health locus of control, mindfulness, obesity, reward-based eating, temporal discounting
Procedia PDF Downloads 1361444 Adoption of Climate-Smart Agriculture Practices Among Farmers and Its Effect on Crop Revenue in Ethiopia
Authors: Fikiru Temesgen Gelata
Abstract:
Food security, adaptation, and climate change mitigation are all problems that can be resolved simultaneously with Climate-Smart Agriculture (CSA). This study examines determinants of climate-smart agriculture (CSA) practices among smallholder farmers, aiming to understand the factors guiding adoption decisions and evaluate the impact of CSA on smallholder farmer income in the study areas. For this study, three-stage sampling techniques were applied to select 230 smallholders randomly. Mann-Kendal test and multinomial endogenous switching regression model were used to analyze trends of decrease or increase within long-term temporal data and the impact of CSA on the smallholder farmer income, respectively. Findings revealed education level, household size, land ownership, off-farm income, climate information, and contact with extension agents found to be highly adopted CSA practices. On the contrary, erosion exerted a detrimental impact on all the agricultural practices examined within the study region. Various factors such as farming methods, the size of farms, proximity to irrigated farmlands, availability of extension services, distance to market hubs, and access to weather forecasts were recognized as key determinants influencing the adoption of CSA practices. The multinomial endogenous switching regression model (MESR) revealed that joint adoption of crop rotation and soil and water conservation practices significantly increased farm income by 1,107,245 ETB. The study recommends that counties and governments should prioritize addressing climate change in their development agendas to increase the adoption of climate-smart farming techniques.Keywords: climate-smart practices, food security, Oincome, MERM, Ethiopia
Procedia PDF Downloads 341443 Creating Smart and Healthy Cities by Exploring the Potentials of Emerging Technologies and Social Innovation for Urban Efficiency: Lessons from the Innovative City of Boston
Authors: Mohammed Agbali, Claudia Trillo, Yusuf Arayici, Terrence Fernando
Abstract:
The wide-spread adoption of the Smart City concept has introduced a new era of computing paradigm with opportunities for city administrators and stakeholders in various sectors to re-think the concept of urbanization and development of healthy cities. With the world population rapidly becoming urban-centric especially amongst the emerging economies, social innovation will assist greatly in deploying emerging technologies to address the development challenges in core sectors of the future cities. In this context, sustainable health-care delivery and improved quality of life of the people is considered at the heart of the healthy city agenda. This paper examines the Boston innovation landscape from the perspective of smart services and innovation ecosystem for sustainable development, especially in transportation and healthcare. It investigates the policy implementation process of the Healthy City agenda and eHealth economy innovation based on the experience of Massachusetts’s City of Boston initiatives. For this purpose, three emerging areas are emphasized, namely the eHealth concept, the innovation hubs, and the emerging technologies that drive innovation. This was carried out through empirical analysis on results of public sector and industry-wide interviews/survey about Boston’s current initiatives and the enabling environment. The paper highlights few potential research directions for service integration and social innovation for deploying emerging technologies in the healthy city agenda. The study therefore suggests the need to prioritize social innovation as an overarching strategy to build sustainable Smart Cities in order to avoid technology lock-in. Finally, it concludes that the Boston example of innovation economy is unique in view of the existing platforms for innovation and proper understanding of its dynamics, which is imperative in building smart and healthy cities where quality of life of the citizenry can be improved.Keywords: computing paradigm, emerging technologies, equitable healthcare, healthy cities, open data, smart city, social innovation
Procedia PDF Downloads 3351442 Impact of Tablet Based Learning on Continuous Assessment (ESPRIT Smart School Framework)
Authors: Mehdi Attia, Sana Ben Fadhel, Lamjed Bettaieb
Abstract:
Mobile technology has become a part of our daily lives and assist learners (despite their level and age) in their leaning process using various apparatus and mobile devices (laptop, tablets, etc.). This paper presents a new learning framework based on tablets. This solution has been developed and tested in ESPRIT “Ecole Supérieure Privée d’Igénieurie et de Technologies”, a Tunisian school of engineering. This application is named ESSF: Esprit Smart School Framework. In this work, the main features of the proposed solution are listed, particularly its impact on the learners’ evaluation process. Learner’s assessment has always been a critical component of the learning process as it measures students’ knowledge. However, traditional evaluation methods in which the learner is evaluated once or twice each year cannot reflect his real level. This is why a continuous assessment (CA) process becomes necessary. In this context we have proved that ESSF offers many important features that enhance and facilitate the implementation of the CA process.Keywords: continuous assessment, mobile learning, tablet based learning, smart school, ESSF
Procedia PDF Downloads 3331441 Utilization of Bio-Glycerol to Synthesize Fuel Additive in Presence of Modified Mesoporous Heterogeneous Catalysts
Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Sandeep K. Saxena
Abstract:
The fast growth rate of energy consumption along with world population expected to demand 50% more energy by 2030 than nowadays. At present, the energy demand is mostly provided by limited fossil fuel sources such as oil, natural gas, and coal that are resulting in dramatic increase in CO2 emissions from combustion of fossil fuels. The growth of the biodiesel industry over the last decade has resulted in a price drop because glycerol is obtained as a by-product during transesterification of vegetable oil or animal fats, which accounts for one tenth of every gallon of biodiesel produced. The production of oxygenates from glycerol gains much importance due to the excellent diesel-blending property of the oxygenates that not only improve the quality of the fuel but also increases the overall yield of the biodiesel in helping to meet the target for energy production from renewable sources for transport in the energy utilization directives. The reaction of bio-glycerol with bio-acetone was carried out in a magnetically stirred two necked round bottom flaskS. Condensation of bio-glycerol with acetone in the presence of various modified forms of beta zeolite has been done for synthesizing solketal (AB-2 modified with nitric acid, AB-3 modified with oxalic acid). Among all modified forms of beta zeolite, AB-2 showed the best performance for maximum glycerol conversion 94.26 % with 94.21 % solketal selectivity and minimum acetal formation 0.05 %. The physiochemical properties of parent beta zeolite and all its modified forms were analyzed by XRD, SEM, TEM, BET, FTIR and TPD. It has been revealed that AB-2 catalysts with high pore volume and surface area gave high glycerol conversion with maximum solketal selectivity. Despite this, the crystallinity of AB-3 was lower than AB-2 which helps to provide the shorter path length for reactants and product but due high pore volume AB-2 was preferred which gave maximum bio-glycerol conversion. Temperature does matter the glycerol conversion and selectivity of solketal, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. AB-2 was found to be highly stable as up to 4 repeated experimental runs there was less than 10% decrease in its activity. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: beta-zeolite, bio-glycerol, catalyst, solketal
Procedia PDF Downloads 2141440 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities
Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan
Abstract:
The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility
Procedia PDF Downloads 76