Search results for: natural features
8969 Unsteady and Steady State in Natural Convection
Authors: Syukri Himran, Erwin Eka Putra, Nanang Roni
Abstract:
This study explains the natural convection of viscous fluid flowing on semi-infinite vertical plate. A set of the governing equations describing the continuity, momentum and energy, have been reduced to dimensionless forms by introducing the references variables. To solve the problems, the equations are formulated by explicit finite-difference in time dependent form and computations are performed by Fortran program. The results describe velocity, temperature profiles both in transient and steady state conditions. An approximate value of heat transfer coefficient and the effects of Pr on convection flow are also presented.Keywords: natural convection, vertical plate, velocity and temperature profiles, steady and unsteady
Procedia PDF Downloads 4898968 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods
Authors: Bin Liu
Abstract:
Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)
Procedia PDF Downloads 1618967 Sustainable Wood Stains Derived From Natural Dyes for Green Applications
Authors: Alexis Dorado, Aralyn Quintos
Abstract:
This study explores the utilization of natural dyes for wood stains as a transformative agent for wood, encompassing color alteration, grain enhancement, and protection against harm. Commonly, wood stains are petroleum-based and synthetically derived. Notably, commercially accessible wood stains exhibit around 4% greater volatility than the formulated wood stain (FWS), potentially indicating a heightened environmental impact. The application of FWS does not significantly affect the performance of polyurethane varnish. The impact of incorporating an FWS when was applied to Gmelina arborea wood sample, the initial lightness value (L*) of 68.5, a* 7.7, b* 29.2 decreased to 44.36, a* 23.49, b* 32.60, where a* denotes the red/ green value, b* denotes the yellow/ blue, indicating a shift towards darker shades. This alteration in lightness suggests that the FWS contains compounds or pigments that effectively absorb or scatter light, resulting in a change in the perceived color and visual appearance of the wood surface. Moreover, the successful formulation of an eco-friendly natural wood stain is detailed, presenting a promising alternative. This method finds applicability in the domains of furniture and handicraft creation, offering a sustainable choice for creative artisans.Keywords: formulated wood stain (FWS), natural dyes, wood stains, eco-friendly natural wood stain,
Procedia PDF Downloads 978966 Economic Neoliberalism: Property Right and Redistribution Policy
Authors: Aleksandar Savanović
Abstract:
In this paper we will analyze the relationship between the neo-liberal concept of property rights and redistribution policy. This issue is back in the focus of interest due to the crisis 2008. The crisis has reaffirmed the influence of the state on the free-market processes. The interference of the state with property relations re-opened a classical question: is it legitimate to redistribute resources of a man in favor of another man with taxes? The dominant view is that the neoliberal philosophy of natural rights is incompatible with redistributive measures. In principle, this view can be accepted. However, when we look into the details of the theory of natural rights proposed by some coryphaei of neoliberal philosophy, such as Hayek, Nozick, Buchanan and Rothbard, we can see that it is not such an unequivocal view.Keywords: economic neoliberalism, natural law, property, redistribution
Procedia PDF Downloads 3768965 Intelligent Grading System of Apple Using Neural Network Arbitration
Authors: Ebenezer Obaloluwa Olaniyi
Abstract:
In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.Keywords: image processing, neural network, apple, intelligent system
Procedia PDF Downloads 3988964 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 3318963 A Multi-Release Software Reliability Growth Models Incorporating Imperfect Debugging and Change-Point under the Simulated Testing Environment and Software Release Time
Authors: Sujit Kumar Pradhan, Anil Kumar, Vijay Kumar
Abstract:
The testing process of the software during the software development time is a crucial step as it makes the software more efficient and dependable. To estimate software’s reliability through the mean value function, many software reliability growth models (SRGMs) were developed under the assumption that operating and testing environments are the same. Practically, it is not true because when the software works in a natural field environment, the reliability of the software differs. This article discussed an SRGM comprising change-point and imperfect debugging in a simulated testing environment. Later on, we extended it in a multi-release direction. Initially, the software was released to the market with few features. According to the market’s demand, the software company upgraded the current version by adding new features as time passed. Therefore, we have proposed a generalized multi-release SRGM where change-point and imperfect debugging concepts have been addressed in a simulated testing environment. The failure-increasing rate concept has been adopted to determine the change point for each software release. Based on nine goodness-of-fit criteria, the proposed model is validated on two real datasets. The results demonstrate that the proposed model fits the datasets better. We have also discussed the optimal release time of the software through a cost model by assuming that the testing and debugging costs are time-dependent.Keywords: software reliability growth models, non-homogeneous Poisson process, multi-release software, mean value function, change-point, environmental factors
Procedia PDF Downloads 748962 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1058961 Change Detection Analysis on Support Vector Machine Classifier of Land Use and Land Cover Changes: Case Study on Yangon
Authors: Khin Mar Yee, Mu Mu Than, Kyi Lint, Aye Aye Oo, Chan Mya Hmway, Khin Zar Chi Winn
Abstract:
The dynamic changes of Land Use and Land Cover (LULC) changes in Yangon have generally resulted the improvement of human welfare and economic development since the last twenty years. Making map of LULC is crucially important for the sustainable development of the environment. However, the exactly data on how environmental factors influence the LULC situation at the various scales because the nature of the natural environment is naturally composed of non-homogeneous surface features, so the features in the satellite data also have the mixed pixels. The main objective of this study is to the calculation of accuracy based on change detection of LULC changes by Support Vector Machines (SVMs). For this research work, the main data was satellite images of 1996, 2006 and 2015. Computing change detection statistics use change detection statistics to compile a detailed tabulation of changes between two classification images and Support Vector Machines (SVMs) process was applied with a soft approach at allocation as well as at a testing stage and to higher accuracy. The results of this paper showed that vegetation and cultivated area were decreased (average total 29 % from 1996 to 2015) because of conversion to the replacing over double of the built up area (average total 30 % from 1996 to 2015). The error matrix and confidence limits led to the validation of the result for LULC mapping.Keywords: land use and land cover change, change detection, image processing, support vector machines
Procedia PDF Downloads 1388960 Offline Signature Verification Using Minutiae and Curvature Orientation
Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee
Abstract:
A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.Keywords: signature, ridge breaks, minutiae, orientation
Procedia PDF Downloads 1468959 Catalytic Study of Natural Gas Based Solid Oxide Fuel Cell
Authors: Nasir Iqbal, Khurram Siraj, Rizwan Raza
Abstract:
Solid oxide fuel cell (SOFC) is the promising technology now days. SOFC can be operated with different types of fuels available. In this work catalytic anode is prepared with metal oxides i.e. Li, Ni, Zn and Sn and tested for catalytic activity with natural gas as a fuel. The operating temperature range is 170-750°C as observed with the help of TGA. Electrical conductivity and fuel cell performance has been observed for four different samples with varying composition of Sn and Zn. It is concluded that the sample having greater concentration of Zn shows better conductivity and power density results. All the results are promising and verified with different characterizations.Keywords: catalytic activity, solid oxide fuel cell, energy material, natural gas
Procedia PDF Downloads 758958 Analyzing Conflict Text; ‘Akunyili Memo: State of the Nation’: an Approach from CDA
Authors: Nengi A. H. Ejiobih
Abstract:
Conflict is one of the defining features of human societies. Often, the use or misuse of language in interaction is the genesis of conflict. As such, it is expected that when people use language they do so in socially determined ways and with almost predictable social effects. The objective of this paper was to examine the interest at work as manifested in language choice and collocations in conflict discourse. It also scrutinized the implications of linguistic features in conflict discourse as it concerns ideology and power relations in political discourse in Nigeria. The methodology used for this paper is an approach from Critical discourse analysis because of its multidisciplinary model of analysis, linguistic features and its implications were analysed. The datum used is a text from the Sunday Sun Newspaper in Nigeria, West Africa titled Akunyili Memo: State of the Nation. Some of the findings include; different ideologies are inherent in conflict discourse, there is the presence of power relations being produced, exercised, maintained and produced throughout the discourse and the use of pronouns in conflict discourse is valuable because it is used to initiate and maintain relationships in social context. This paper has provided evidence that, taking into consideration the nature of the social actions and the way these activities are translated into languages, the meanings people convey by their words are identified by their immediate social, political and historical conditions.Keywords: conflicts, discourse, language, linguistic features, social context
Procedia PDF Downloads 4798957 Sound Absorbing and Thermal Insulating Properties of Natural Fibers (Coir/Jute) Hybrid Composite Materials for Automotive Textiles
Authors: Robel Legese Meko
Abstract:
Natural fibers have been used as end-of-life textiles and made into textile products which have become a well-proven and effective way of processing. Nowadays, resources to make primary synthetic fibers are becoming less and less as the world population is rising. Hence it is necessary to develop processes to fabricate textiles that are easily converted to composite materials. Acoustic comfort is closely related to the concept of sound absorption and includes protection against noise. This research paper presents an experimental study on sound absorption coefficients, for natural fiber composite materials: a natural fiber (Coir/Jute) with different blend proportions of raw materials mixed with rigid polyurethane foam as a binder. The natural fiber composite materials were characterized both acoustically (sound absorption coefficient SAC) and also in terms of heat transfer (thermal conductivity). The acoustic absorption coefficient was determined using the impedance tube method according to the ASTM Standard (ASTM E 1050). The influence of the structure of these materials on the sound-absorbing properties was analyzed. The experimental results signify that the porous natural coir/jute composites possess excellent performance in the absorption of high-frequency sound waves, especially above 2000 Hz, and didn’t induce a significant change in the thermal conductivity of the composites. Thus, the sound absorption performances of natural fiber composites based on coir/jute fiber materials promote environmentally friendly solutions.Keywords: coir/jute fiber, sound absorption coefficients, compression molding, impedance tube, thermal insulating properties, SEM analysis
Procedia PDF Downloads 1098956 Processing and Modeling of High-Resolution Geophysical Data for Archaeological Prospection, Nuri Area, Northern Sudan
Authors: M. Ibrahim Ali, M. El Dawi, M. A. Mohamed Ali
Abstract:
In this study, the use of magnetic gradient survey, and the geoelectrical ground methods used together to explore archaeological features in Nuri’s pyramids area. Research methods used and the procedures and methodologies have taken full right during the study. The magnetic survey method was used to search for archaeological features using (Geoscan Fluxgate Gradiometer (FM36)). The study area was divided into a number of squares (networks) exactly equal (20 * 20 meters). These squares were collected at the end of the study to give a major network for each region. Networks also divided to take the sample using nets typically equal to (0.25 * 0.50 meter), in order to give a more specific archaeological features with some small bipolar anomalies that caused by buildings built from fired bricks. This definition is important to monitor many of the archaeological features such as rooms and others. This main network gives us an integrated map displayed for easy presentation, and it also allows for all the operations required using (Geoscan Geoplot software). The parallel traverse is the main way to take readings of the magnetic survey, to get out the high-quality data. The study area is very rich in old buildings that vary from small to very large. According to the proportion of the sand dunes and the loose soil, most of these buildings are not visible from the surface. Because of the proportion of the sandy dry soil, there is no connection between the ground surface and the electrodes. We tried to get electrical readings by adding salty water to the soil, but, unfortunately, we failed to confirm the magnetic readings with electrical readings as previously planned.Keywords: archaeological features, independent grids, magnetic gradient, Nuri pyramid
Procedia PDF Downloads 4828955 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 1588954 Deciphering Orangutan Drawing Behavior Using Artificial Intelligence
Authors: Benjamin Beltzung, Marie Pelé, Julien P. Renoult, Cédric Sueur
Abstract:
To this day, it is not known if drawing is specifically human behavior or if this behavior finds its origins in ancestor species. An interesting window to enlighten this question is to analyze the drawing behavior in genetically close to human species, such as non-human primate species. A good candidate for this approach is the orangutan, who shares 97% of our genes and exhibits multiple human-like behaviors. Focusing on figurative aspects may not be suitable for orangutans’ drawings, which may appear as scribbles but may have meaning. A manual feature selection would lead to an anthropocentric bias, as the features selected by humans may not match with those relevant for orangutans. In the present study, we used deep learning to analyze the drawings of a female orangutan named Molly († in 2011), who has produced 1,299 drawings in her last five years as part of a behavioral enrichment program at the Tama Zoo in Japan. We investigate multiple ways to decipher Molly’s drawings. First, we demonstrate the existence of differences between seasons by training a deep learning model to classify Molly’s drawings according to the seasons. Then, to understand and interpret these seasonal differences, we analyze how the information spreads within the network, from shallow to deep layers, where early layers encode simple local features and deep layers encode more complex and global information. More precisely, we investigate the impact of feature complexity on classification accuracy through features extraction fed to a Support Vector Machine. Last, we leverage style transfer to dissociate features associated with drawing style from those describing the representational content and analyze the relative importance of these two types of features in explaining seasonal variation. Content features were relevant for the classification, showing the presence of meaning in these non-figurative drawings and the ability of deep learning to decipher these differences. The style of the drawings was also relevant, as style features encoded enough information to have a classification better than random. The accuracy of style features was higher for deeper layers, demonstrating and highlighting the variation of style between seasons in Molly’s drawings. Through this study, we demonstrate how deep learning can help at finding meanings in non-figurative drawings and interpret these differences.Keywords: cognition, deep learning, drawing behavior, interpretability
Procedia PDF Downloads 1658953 Investigating Medical Students’ Perspectives toward University Teachers’ Talking Features in an English as a Foreign Language Context in Urmia, Iran
Authors: Ismail Baniadam, Nafisa Tadayyon, Javid Fereidoni
Abstract:
This study aimed to investigate medical students’ attitudes toward some teachers’ talking features regarding their gender in the Iranian context. To do so, 60 male and 60 female medical students of Urmia University of Medical Sciences (UMSU) participated in the research. A researcher made Likert-type questionnaire which was initially piloted and was used to gather the data. Comparing the four different factors regarding the features of teacher talk, it was revealed that visual and extra-linguistic information factor, Lexical and syntactic familiarity, Speed of speech, and the use of Persian language had the highest to the lowest mean score, respectively. It was also indicated that female students rather than male students were significantly more in favor of speed of speech and lexical and syntactic familiarity.Keywords: attitude, gender, medical student, teacher talk
Procedia PDF Downloads 1788952 A Survey of the Applications of Sentiment Analysis
Authors: Pingping Lin, Xudong Luo
Abstract:
Natural language often conveys emotions of speakers. Therefore, sentiment analysis on what people say is prevalent in the field of natural language process and has great application value in many practical problems. Thus, to help people understand its application value, in this paper, we survey various applications of sentiment analysis, including the ones in online business and offline business as well as other types of its applications. In particular, we give some application examples in intelligent customer service systems in China. Besides, we compare the applications of sentiment analysis on Twitter, Weibo, Taobao and Facebook, and discuss some challenges. Finally, we point out the challenges faced in the applications of sentiment analysis and the work that is worth being studied in the future.Keywords: application, natural language processing, online comments, sentiment analysis
Procedia PDF Downloads 2618951 Biogas as a Renewable Energy Fuel: A Review of Biogas Upgrading, Utilization and Storage
Authors: Imran Ullah Khana, Mohd Hafiz Dzarfan Othmanb, Haslenda Hashima, Takeshi Matsuurad, A. F. Ismailb, M. Rezaei-DashtArzhandib, I. Wan Azelee
Abstract:
Biogas upgrading is a widely studied and discussed topic, and its utilization as a natural gas substitute has gained significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, giving membrane separation a significant market share with traditional biogas upgrading technologies. In addition, the potential utilization of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG-filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilization and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.Keywords: biogas upgrading, cost, utilization, bio-CNG, storage, energy
Procedia PDF Downloads 508950 Biobased Toughening Filler for Polylactic Acid from Ultrafine Fully Vulcanized Powder Natural Rubber Grafted with Polymethylmethacrylate
Authors: Panyawutthi Rimdusit, Krittapas Charoensuk, Sarawut Rimdusit
Abstract:
A biobased toughening filler for polylactic acid (PLA) based on natural rubber is developed in this work. Deproteinized natural rubber (DPNR) was modified by grafting polymerization with methyl methacrylate monomer (MMA) and further crosslinked by e-beam irradiation and spray drying process to achieve ultrafine full vulcanized powdered natural rubber grafted with polymethylmethacrylate (UFPNRg-PMMA) to solves in the challenges of incompatibility between natural rubber and PLA. Intriguingly, UFPNR-g-PMMA revealed outstanding and unique properties with minimal particle aggregation. The average particle size of rubber powder obtained from UFPNR-g-PMMA at PMMA grafting content of 20 phr reduced to 3.3±1.2 µm, compared to that of neat UFPNR of 5.3±2.3 µm which also showed partial particle aggregation. It is also found that the impact strength of the filled PLA was enhanced to 33.4±5.6 kJ/m2 at PLA/UFPNR-gPMMA 20 wt% compared to neat PLA of 9.6±3 kJ/m2. The thermal degradation temperature of the PLA composites was enhanced with increasing UFPNR-g-PMMA content without affecting the glass transition temperature of the composites. The fracture surface of PLA/ UFPNR-g-PMMA suggested internal cavitation and crazes are the main effects of rubber toughening PLA with substantial interfacial interaction between the filler and the matrix.Keywords: natural rubber, ultrafine fully vulcanized powder rubber, polylactic acid, polymer composites
Procedia PDF Downloads 118949 Preparation of Metallic Nanoparticles with the Use of Reagents of Natural Origin
Authors: Anna Drabczyk, Sonia Kudlacik-Kramarczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec
Abstract:
Nowadays, nano-size materials are very popular group of materials among scientists. What is more, these materials find an application in a wide range of various areas. Therefore constantly increasing demand for nanomaterials including metallic nanoparticles such as silver of gold ones is observed. Therefore, new routes of their preparation are sought. Considering potential application of nanoparticles, it is important to select an adequate methodology of their preparation because it determines their size and shape. Among the most commonly applied methods of preparation of nanoparticles chemical and electrochemical techniques are leading. However, currently growing attention is directed into the biological or biochemical aspects of syntheses of metallic nanoparticles. This is associated with a trend of developing of new routes of preparation of given compounds according to the principles of green chemistry. These principles involve e.g. the reduction of the use of toxic compounds in the synthesis as well as the reduction of the energy demand or minimization of the generated waste. As a result, a growing popularity of the use of such components as natural plant extracts, infusions or essential oils is observed. Such natural substances may be used both as a reducing agent of metal ions and as a stabilizing agent of formed nanoparticles therefore they can replace synthetic compounds previously used for the reduction of metal ions or for the stabilization of obtained nanoparticles suspension. Methods that proceed in the presence of previously mentioned natural compounds are environmentally friendly and proceed without the application of any toxic reagents. Methodology: Presented research involves preparation of silver nanoparticles using selected plant extracts, e.g. artichoke extract. Extracts of natural origin were used as reducing and stabilizing agents at the same time. Furthermore, syntheses were carried out in the presence of additional polymeric stabilizing agent. Next, such features of obtained suspensions of nanoparticles as total antioxidant activity as well as content of phenolic compounds have been characterized. First of the mentioned studies involved the reaction with DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical. The content of phenolic compounds was determined using Folin-Ciocalteu technique. Furthermore, an essential issue was also the determining of the stability of formed suspensions of nanoparticles. Conclusions: In the research it was demonstrated that metallic nanoparticles may be obtained using plant extracts or infusions as stabilizing or reducing agent. The methodology applied, i.e. a type of plant extract used during the synthesis, had an impact on the content of phenolic compounds as well as on the size and polydispersity of obtained nanoparticles. What is more, it is possible to prepare nano-size particles that will be characterized by properties desirable from the viewpoint of their potential application and such an effect may be achieved with the use of non-toxic reagents of natural origin. Furthermore, proposed methodology stays in line with the principles of green chemistry.Keywords: green chemistry principles, metallic nanoparticles, plant extracts, stabilization of nanoparticles
Procedia PDF Downloads 1258948 Critical Evaluation of Key Performance Indicators in Procurement Management Information System: In Case of Bangladesh
Authors: Qazi Mahdia Ghyas
Abstract:
Electronic Government Procurement (e-GP) has implemented in Bangladesh to ensure the good Governance. e-GP has transformed Bangladesh's procurement process electronically. But, to our best knowledge, there is no study to understand the key features of e-GP in Bangladesh. So, this study tries to identify the features of performance improvement after implementing an e-GP system that will help for further improvements. Data was collected from the PROMIS Overall Report (Central Procurement Technical Unit website) for the financial year from Q1 _July- Sep 2015-16 to Q4 _Apr- Jun 2021-22. This study did component factor analysis on KPIs and found nineteen KPIs that are statistically significant and represent time savings, efficiency, accountability, anti-corruption and compliance key features in procurement activities of e-GP. Based on the analysis, some practical measures have been recommended for better improvement of e-GP. This study has some limitations. Because of having multicollinearity issues, all the 42 KPIs (except 19) did not show a good fit for component factor analysis.Keywords: public procurement, electronic government procurement, KPI, performance evaluation
Procedia PDF Downloads 958947 Natural Dyes in Schools. Development of Techniques From Early Childhood as a Tool for Art, Design and Sustainability
Authors: Luciana Marrone
Abstract:
Natural dyes are a great resource for today's artists and designers providing endless possibilities for design and sustainability. This research and development project focuses on the idea of making these dyeing or painting methodologies reach the widest possible range of students. The main objective is to inform and train, free of charge, teachers and students from different academic institutions, at different levels, kindergarten, primary, secondary, tertiary and university. In this research and dissemination project, in the first instance, institutions from Argentina, Chile, Uruguay, Mexico, Spain, Italy, Colombia, Paraguay, Venezuela, Brazil and Australia joined the project, reaching the grassroots of education from the very beginning. Natural dyes will become part of everyday life for more people, achieving their own colors for art, textiles or any other application. The knowledge of the techniques and resources of the student a fundamental tool, sustainable and opens endless possibilities even in places or homes with few economic resources, thus achieving that natural dyes are not only part of the world of designers but also that they are incorporated from the basics and can thus become a resource applicable in different areas even in places with few economic or development possibilities.Keywords: art, education, natural dyes, sustainability, textile design.
Procedia PDF Downloads 858946 Contributions of Search and Rescue to the World Peace
Authors: Dursun Kalebaşi
Abstract:
When we examine the history of mankind (from the past up to the present), we see that millions of people died because of the wars. Especially, since the beginning of 19th century, the increase of the human death rate is caused mostly by the regional conflicts and natural disasters rather than the wars. From that point of view, the biggest threat humanity face today is temperature increase and climate change that started to emerge in recent years. When we take into account the natural disasters on one hand and refuges that flee from regional conflicts on the other, it stands out as a dramatic situation because of the huge human losses. In this context, most of the countries started to give more importance to Search and Rescue (SAR) operations to stop the loss of lives or decrease the death rate. This article will tell about the SAR activities in Turkey since 2000 and discuss the Turkey’s contributions to Rescue Missions after the natural disasters in different parts of the world. Moreover, there will be some new highlights to a more habitable and more peaceful world through the SAR missions.Keywords: search and rescue, natural disasters, migration and world peace, Turkish army forces
Procedia PDF Downloads 3778945 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography
Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw
Abstract:
Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.Keywords: cardiotocography, foetus, intrapartum, hypoxia
Procedia PDF Downloads 2168944 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1388943 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process
Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai
Abstract:
An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.Keywords: stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling
Procedia PDF Downloads 4488942 Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry
Authors: Abhishek Khupsare, Ajay Parmar, Ajay Agarwal, Swapnil Wanjari
Abstract:
The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash.Keywords: polymer sand, fly ash, bottom ash, HSPCE plasticizer, river sand mining
Procedia PDF Downloads 778941 The Performance of Natural Light by Roof Systems in Cultural Buildings
Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo
Abstract:
This paper presents an approach to the performance of the natural lighting, when the use of appropriated solar lighting systems on the roof is applied in cultural buildings such as museums and foundations. The roofs, as a part of contact between the building and the external environment, require special attention in projects that aim at energy efficiency, being an important element for the capture of natural light in greater quantity, but also for being the most important point of generation of photovoltaic solar energy, even semitransparent, allowing the partial passage of light. Transparent elements in roofs, as well as superior protection of the building, can also play other roles, such as: meeting the needs of natural light for the accomplishment of the internal tasks, attending to the visual comfort; to bring benefits to the human perception and about the interior experience in a building. When these resources are well dimensioned, they also contribute to the energy efficiency and consequent character of sustainability of the building. Therefore, when properly designed and executed, a roof light system can bring higher quality natural light to the interior of the building, which is related to the human health and well-being dimension. Furthermore, it can meet the technologic, economic and environmental yearnings, making possible the more efficient use of that primordial resource, which is the light of the Sun. The article presents the analysis of buildings that used zenith light systems in search of better lighting performance in museums and foundations: the Solomon R. Guggenheim Museum in the United States, the Iberê Camargo Foundation in Brazil, the Museum of Fine Arts in Castellón in Spain and the Pinacoteca of São Paulo.Keywords: natural lighting, roof lighting systems, natural lighting in museums, comfort lighting
Procedia PDF Downloads 2108940 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction
Procedia PDF Downloads 380