Search results for: high protein
21322 Preferred Left-Handed Conformation of Glycyls at Pathogenic Sites
Authors: Purva Mishra, Rajesh Potlia, Kuljeet Singh Sandhu
Abstract:
The role of glycyl residues in the protein structure has lingered within the research community for the last several decades. Glycyl residue is the only amino acid that is achiral due to the lack of a side chain and can, therefore, exhibit Ramachandran conformations that are disallowed for L-amino acids. The structural and functional significance of glycyl residues with L-disallowed conformation, however, remains obscure. Through statistical analysis of various datasets, we found that the glycyls with L-disallowed conformations are over-represented at disease-associated sites and tend to be evolutionarily conserved. The mutations of L-disallowed glycyls tend to destabilize the native conformation, reduce protein solubility, and promote inter-molecular aggregations. We uncovered a structural motif referred to as “β-crescent” formed around the L-disallowed glycyl, which prevents β-sheet aggregation by disrupting the alternating pattern of β-pleats. The L-disallowed conformation of glycyls also holds predictive power to infer the pathogenic missense variants. Altogether, our observations highlight that the L-disallowed conformation of glycyls is selected to facilitate native folding and prevent inter-molecular aggregations. The findings may also have implications for designing more stable proteins and prioritizing the genetic lesions implicated in diseases.Keywords: Ramachandran plot, β-sheet, protein stability, protein aggregation
Procedia PDF Downloads 7221321 The Combined Influences of Salinity, Light and Nitrogen Limitation on the Growth and Biochemical Composition of Nannochloropsis sp. and Tetraselmis sp., Isolated from Penang National Park Coastal Waters, Malaysia
Authors: Mohamed M. Alsull
Abstract:
In the present study, two microalgae species “Nannochloropsis sp. and Tetraselmis sp.” isolated from Penang National Park coastal waters, Malaysia; were cultivated under combined various laboratory conditions “salinity, light, nitrogen limitation and starvation”. Growth rate, dry weight, chlorophyll a content, total lipid and protein contents, were estimated at mid exponential growth phase. Both Nannochloropsis sp. and Tetraselmis sp. showed remarkable decrease in growth rate, chlorophyll a content and protein content companied with increase in lipid content under nitrogen limitation and starvation conditions. Maintaining Nannochloropsis sp. under salinity 15‰ caused only significant decrease in total protein content; while Tetraselmis sp. grown at the same salinity caused decrease in the growth rate, chlorophyll a, dry weight and total protein content only when nitrogen was available.Keywords: biochemical composition, light, microalgae, nitrogen limitation, salinity
Procedia PDF Downloads 42721320 Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers
Authors: Sena Su, Burak Ozbek, Yesim M. Sahin, Sevil Yucel, Dilek Kazan, Faik N. Oktar, Nazmi Ekren, Oguzhan Gunduz
Abstract:
In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc.Keywords: edible film, electrospinning, fish sarcoplasmic protein, nanofiber
Procedia PDF Downloads 29721319 Effect of Whey Based Film Coatings on Various Properties of Kashar Cheese
Authors: Hawbash Jalil
Abstract:
In this study, the effects of whey protein based films on various properties of kashar cheese were examined. In the study, edible film solutions based on whey protein isolate, whey protein isolate + transglutaminase enzyme and whey protein isolate + chitosan were produced and Kashar cheese samples were coated with these films by dipping method and stored at +4 ºC for 60 days. Chemical, microbiological and textural analyzes were carried out on samples at 0, 30 and 60 days of storage. As a result of the study, the highest dry matter and total nitrogen values were obtained from uncoated control samples This is an indication that the coatings limit water vapor permeability. The highest acidity and pH values obtained from the samples as storage results were 3.33% and 5.86%, respectively, in the control group samples. Both acidity and pH rise in these groups, is a consequence of the buffering of pH changes of hydrolsis products which are as a result of proteolysis occurring in the sample. Nitrogen changes and lipolysis values, which are indicative of the degree of hydrolysis of proteins and triglycerides in kashar cheese, were generally higher in the control group This result is due to limiting the micro organism reproduction by limiting the gas passage of the coatings. Hardness and chewiness values of the textural properties of the samples were significantly reduced in uncoated control samples compared to the coated samples due to maturation. The chitosan film coatings used in the study limited the development of mold yeast until the 30th day but after that did not yield successful results in this respect.Keywords: chitosan, edible film, transglutaminase, whey protein
Procedia PDF Downloads 18721318 In vitro Protein Folding and Stability Using Thermostable Exoshells
Authors: Siddharth Deshpande, Nihar Masurkar, Vallerinteavide Mavelli Girish, Malan Desai, Chester Drum
Abstract:
Folding and stabilization of recombinant proteins remain a consistent challenge for industrial and therapeutic applications. Proteins derived from thermophilic bacteria often have superior expression and stability qualities. To develop a generalizable approach to protein folding and stabilization, we tested the hypothesis that wrapping a thermostable exoshell around a protein substrate would aid folding and impart thermostable qualities to the internalized substrate. To test the effect of internalizing a protein within a thermostable exoshell (tES), we tested in vitro folding and stability using green fluorescent protein (GFPuv), horseradish peroxidase (HRP) and renilla luciferase (rLuc). The 8nm interior volume of a thermostable ferritin assembly was engineered to accommodate foreign proteins and either present a positive, neutral or negative interior charge environment. We further engineered the tES complex to reversibly assemble and disassemble with pH titration. Template proteins were expressed as inclusion bodies and an in vitro folding protocol was developed that forced proteins to fold inside a single tES. Functional yield was improved 100-fold, 100-fold and 150-fold with use of tES for GFPuv, HRP and rLuc respectively and was highly dependent on the internal charge environment of the tES. After folding, functional proteins could be released from the tES folding cavity using size exclusion chromatography at pH 5.8. Internalized proteins were tested for improved stability against thermal, organic, urea and guanidine denaturation. Our results demonstrated that thermostable exoshells can efficiently refold and stabilize inactive aggregates into functional proteins.Keywords: thermostable shell, in vitro folding, stability, functional yield
Procedia PDF Downloads 24821317 Effect of Resveratrol and Ascorbic Acid on the Stability of Alfa-Tocopherol in Whey Protein Isolate Stabilized O/W Emulsions
Authors: Lei Wang, Yingzhou Ni, Amr M. Bakry, Hao Cheng, Li Liang
Abstract:
Food proteins have been widely used as carrier materials because of their multiple functional properties. In this study, alfa-tocopherol was encapsulated in the oil phase of an oil-in-water emulsion stabilized with whey protein isolate (WPI). The influence of WPI concentration and resveratrol or ascorbic acid on the decomposition of alfa-tocopherol in the emulsion during storage is discussed. Decomposition decreased as WPI concentrations increased. Decomposition was delayed at ascorbic acid/WPI molar ratios lower than 5 but was promoted at higher ratios. Resveratrol partitioned into the oil-water interface by binding to WPI and its cis-isomer is believed to have contributed most of the protective effect of this polyphenol. These results suggest the possibility of using the emulsifying and ligand-binging properties of WPI to produce carriers for simultaneous encapsulation of alfa-tocopherol and resveratrol in a single emulsion system.Keywords: stability, alfa-tocopherol, resveratrol, whey protein isolate
Procedia PDF Downloads 52821316 SIPTOX: Spider Toxin Database Information Repository System of Protein Toxins from Spiders by Using MySQL Method
Authors: Iftikhar Tayubi, Tabrej Khan, Rayan Alsulmi, Abdulrahman Labban
Abstract:
Spider produces a special kind of substance. This special kind of substance is called a toxin. The toxin is composed of many types of protein, which differs from species to species. Spider toxin consists of several proteins and non-proteins that include various categories of toxins like myotoxin, neurotoxin, cardiotoxin, dendrotoxin, haemorrhagins, and fibrinolytic enzyme. Protein Sequence information with references of toxins was derived from literature and public databases. From the previous findings, the Spider toxin would be the best choice to treat different types of tumors and cancer. There are many therapeutic regimes, which causes more side effects than treatment hence a different approach must be adopted for the treatment of cancer. The combinations of drugs are being encouraged, and dramatic outcomes are reported. Spider toxin is one of the natural cytotoxic compounds. Hence, it is being used to treat different types of tumors; especially its positive effect on breast cancer is being reported during the last few decades. The efficacy of this database is that it can provide a user-friendly interface for users to retrieve the information about Spiders, toxin and toxin protein of different Spiders species. SPIDTOXD provides a single source information about spider toxins, which will be useful for pharmacologists, neuroscientists, toxicologists, medicinal chemists. The well-ordered and accessible web interface allows users to explore the detail information of Spider and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Spider, toxin and toxin protein of different Spider species. The database interfaces will satisfy the demands of the scientific community by providing in-depth knowledge about Spider and its toxin. We have adopted the methodology by using A MySQL and PHP and for designing, we used the Smart Draw. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, and clinical data, etc. This database will be useful for the scientific community, basic researchers and those interested in potential pharmaceutical Industry.Keywords: siptoxd, php, mysql, toxin
Procedia PDF Downloads 18221315 In Silico Analysis of Deleterious nsSNPs (Missense) of Dihydrolipoamide Branched-Chain Transacylase E2 Gene Associated with Maple Syrup Urine Disease Type II
Authors: Zainab S. Ahmed, Mohammed S. Ali, Nadia A. Elshiekh, Sami Adam Ibrahim, Ghada M. El-Tayeb, Ahmed H. Elsadig, Rihab A. Omer, Sofia B. Mohamed
Abstract:
Maple syrup urine (MSUD) is an autosomal recessive disease that causes a deficiency in the enzyme branched-chain alpha-keto acid (BCKA) dehydrogenase. The development of disease has been associated with SNPs in the DBT gene. Despite that, the computational analysis of SNPs in coding and noncoding and their functional impacts on protein level still remains unknown. Hence, in this study, we carried out a comprehensive in silico analysis of missense that was predicted to have a harmful influence on DBT structure and function. In this study, eight different in silico prediction algorithms; SIFT, PROVEAN, MutPred, SNP&GO, PhD-SNP, PANTHER, I-Mutant 2.0 and MUpo were used for screening nsSNPs in DBT including. Additionally, to understand the effect of mutations in the strength of the interactions that bind protein together the ELASPIC servers were used. Finally, the 3D structure of DBT was formed using Mutation3D and Chimera servers respectively. Our result showed that a total of 15 nsSNPs confirmed by 4 software (R301C, R376H, W84R, S268F, W84C, F276C, H452R, R178H, I355T, V191G, M444T, T174A, I200T, R113H, and R178C) were found damaging and can lead to a shift in DBT gene structure. Moreover, we found 7 nsSNPs located on the 2-oxoacid_dh catalytic domain, 5 nsSNPs on the E_3 binding domain and 3 nsSNPs on the Biotin Domain. So these nsSNPs may alter the putative structure of DBT’s domain. Furthermore, we detected all these nsSNPs are on the core residues of the protein and have the ability to change the stability of the protein. Additionally, we found W84R, S268F, and M444T have high significance, and they affected Leucine, Isoleucine, and Valine, which reduces or disrupt the function of BCKD complex, E2-subunit which the DBT gene encodes. In conclusion, based on our extensive in-silico analysis, we report 15 nsSNPs that have possible association with protein deteriorating and disease-causing abilities. These candidate SNPs can aid in future studies on Maple Syrup Urine Disease type II base in the genetic level.Keywords: DBT gene, ELASPIC, in silico analysis, UCSF chimer
Procedia PDF Downloads 20121314 Proteomic Analysis of Cytoplasmic Antigen from Brucella canis to Characterize Immunogenic Proteins Responded with Naturally Infected Dogs
Authors: J. J. Lee, S. R. Sung, E. J. Yum, S. C. Kim, B. H. Hyun, M. Her, H. S. Lee
Abstract:
Canine brucellosis is a critical problem in dogs leading to reproductive diseases which are mainly caused by Brucella canis. There are, nonetheless, not clear symptoms so that it may go unnoticed in most of the cases. Serodiagnosis for canine brucellosis has not been confirmed. Moreover, it has substantial difficulties due to broad cross-reactivity between the rough cell wall antigens of B. canis and heterospecific antibodies present in normal, uninfected dogs. Thus, this study was conducted to characterize the immunogenic proteins in cytoplasmic antigen (CPAg) of B. canis, which defined the antigenic sensitivity of the humoral antibody responses to B. canis-infected dogs. In analysis of B. canis CPAg, first, we extracted and purified the cytoplasmic proteins from cultured B. canis by hot-saline inactivation, ultrafiltration, sonication, and ultracentrifugation step by step according to the sonicated antigen extract method. For characterization of this antigen, we checked the sort and range of each protein on SDS-PAGE and verified the immunogenic proteins leading to reaction with antisera of B. canis-infected dogs. Selected immunodominant proteins were identified using MALDI-MS/MS. As a result, in an immunoproteomic assay, several polypeptides in CPAg on one or two-dimensional electrophoresis (DE) were specifically reacted to antisera from B. canis-infected dogs but not from non-infected dogs. The polypeptides with approximate 150, 80, 60, 52, 33, 26, 17, 15, 13, 11 kDa on 1-DE were dominantly recognized by antisera from B. canis-infected dogs. In the immunoblot profiles on 2-DE, ten immunodominant proteins in CPAg were detected with antisera of infected dogs between pI 3.5-6.5 at approximate 35 to 10 KDa, without any nonspecific reaction with sera in non-infected dogs. Ten immunodominant proteins identified by MALDI-MS/MS were identified as superoxide dismutase, bacteroferritin, amino acid ABC transporter substrate-binding protein, extracellular solute-binding protein family3, transaldolase, 26kDa periplasmic immunogenic protein, Rhizopine-binding protein, enoyl-CoA hydratase, arginase and type1 glyceraldehyde-3-phosphate dehydrogenase. Most of these proteins were determined by their cytoplasmic or periplasmic localization with metabolism and transporter functions. Consequently, this study discovered and identified the prominent immunogenic proteins in B. canis CPAg, highlighting that those antigenic proteins may accomplish a specific serodiagnosis for canine brucellosis. Furthermore, we will evaluate those immunodominant proteins for applying to the advanced diagnostic methods with high specificity and accuracy.Keywords: Brucella canis, Canine brucellosis, cytoplasmic antigen, immunogenic proteins
Procedia PDF Downloads 14721313 Docking Studie of Biologically Active Molecules: Exploring Medical Applications
Authors: Sihame Amakrane, Zineb Ouahdi, Mohammed Salah, Said Belaaouad
Abstract:
\This research explores the efficacy of novel pyrimidine derivatives on bacterial strains such as Escherichia coli, Staphylococcus aureus, and Myccobacterium tuberculosis, utilizing bending energy calculations. Of the 25 compounds examined, 13 displayed potent activity against all the bacterial strains under study, exhibiting bending energy measurements between -7.4 and -10.7 kcal/mol. The -7.4 kcal/mol value corresponds to the bending energy of the SA12 and SA13 compounds with the 2xct protein (Staphylococcus aureus), whereas the -10.7 kcal/molis linked with the bending energy of SA6 and SA11 compounds with the 6GAV protein (Myccobacterium tuberculosis). Further research will involve a QSAR (Quantitative Structure-Activity Relationship) study aimed at constructing a reliable model to combat the aforementioned bacterial strains and a molecular dynamics study to evaluate the stability of ligand-protein complexes.Keywords: docking, QSAR, bending energy, e. coli
Procedia PDF Downloads 8721312 Modified Acetamidobenzoxazolone Based Biomarker for Translocator Protein Mapping during Neuroinflammation
Authors: Anjani Kumar Tiwari, Neelam Kumari, Anil Mishra
Abstract:
The 18-kDa translocator protein (TSPO) previously called as peripheral benzodiazepine receptor, is proven biomarker for variety of neuroinflammation. TSPO is tryptophane rich five transmembranal protein found on outer mitochondrial membrane of steroid synthesising and immunomodulatory cells. In case of neuronal damage or inflammation the expression level of TSPO get upregulated as an immunomodulatory response. By utilizing Benzoxazolone as a basic scaffold, series of TSPO ligands have been designed followed by their screening through in silico studies. Synthesis has been planned by employing convergent methodology in six high yielding steps. For the synthesized ligands the ‘in vitro’ assay was performed to determine the binding affinity in term of Ki. On ischemic rat brain, autoradiography studies were also carried to check the specificity and affinity of the designed radiolabelled ligand for TSPO.Screening was performed on the basis of GScore of CADD based schrodinger software. All the modified and better prospective compound were successfully carried out and characterized by spectroscopic techniques (FTIR, NMR and HRMS). In vitro binding assay showed best binding affinity Ki = 6.1+ 0.3 for TSPO over central benzodiazepine receptor (CBR) Ki > 200. ARG studies indicated higher uptake of two analogues on the lesion side compared with that on the non-lesion side of ischemic rat brains. Displacement experiments with unlabelled ligand had minimized the difference in uptake between the two sides which indicates the specificity of the ligand towards TSPO receptor.Keywords: TSPO, PET, imaging, Acetamidobenzoxazolone
Procedia PDF Downloads 14321311 Structural and Functional Comparison of Untagged and Tagged EmrE Protein
Authors: S. Junaid S. Qazi, Denice C. Bay, Raymond Chew, Raymond J. Turner
Abstract:
EmrE, a member of the small multidrug resistance protein family in bacteria is considered to be the archetypical member of its family. It confers host resistance to a wide variety of quaternary cation compounds (QCCs) driven by proton motive force. Generally, purification yield is a challenge in all membrane proteins because of the difficulties in their expression, isolation and solubilization. EmrE is extremely hydrophobic which make the purification yield challenging. We have purified EmrE protein using two different approaches: organic solvent membrane extraction and hexahistidine (his6) tagged Ni-affinity chromatographic methods. We have characterized changes present between ligand affinity of untagged and his6-tagged EmrE proteins in similar membrane mimetic environments using biophysical experimental techniques. Purified proteins were solubilized in a buffer containing n-dodecyl-β-D-maltopyranoside (DDM) and the conformations in the proteins were explored in the presence of four QCCs, methyl viologen (MV), ethidium bromide (EB), cetylpyridinium chloride (CTP) and tetraphenyl phosphonium (TPP). SDS-Tricine PAGE and dynamic light scattering (DLS) analysis revealed that the addition of QCCs did not induce higher multimeric forms of either proteins at all QCC:EmrE molar ratios examined under the solubilization conditions applied. QCC binding curves obtained from the Trp fluorescence quenching spectra, gave the values of dissociation constant (Kd) and maximum specific one-site binding (Bmax). Lower Bmax values to QCCs for his6-tagged EmrE shows that the binding sites remained unoccupied. This lower saturation suggests that the his6-tagged versions provide a conformation that prevents saturated binding. Our data demonstrate that tagging an integral membrane protein can significantly influence the protein.Keywords: small multidrug resistance (SMR) protein, EmrE, integral membrane protein folding, quaternary ammonium compounds (QAC), quaternary cation compounds (QCC), nickel affinity chromatography, hexahistidine (His6) tag
Procedia PDF Downloads 37821310 Detection of Viral-Plant Interaction Using Some Pathogenesis Related Protein Genes to Identify Resistant Genes against Potato LeafRoll Virus and Potato Virus Y in Egyptian Isolates
Authors: Dalia. G. Aseel, E. E. Hafez, S. M. Hammad
Abstract:
Viral RNAs of both potato leaf roll virus (PLRV) and potato virus Y (PVY) were extracted from infected potato leaves collected from different Egyptian regions. Differential Display Polymerase Chain Reaction (DD-PCR) using (Endogluconase, β-1,3-glucanases, Chitinase, Peroxidase and Polyphenol oxidase) primers (forward strand) for was performed. The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, a 58 up regulated and 19 down regulated genes were detected, while, 31 up regulated and 14 down regulated genes were observed in case of PVY. Based on the nucleotide sequencing, variable phylogenetic relationships were reported for the three sequenced genes coding for: Induced stolen tip protein, Disease resistance RPP-like protein and non-specific lipid-transfer protein. In a complementary approach, using the quantitative Real-time PCR, the expressions of PRs genes understudy were estimated in the infected leaves by PLRV and PVY of three potato cultivars (Spunta, Diamont and Cara). The infection with both viruses inhibited the expressions of the five PRs genes. On the contrary, infected leaves by PLRV or PVY elevated the expression of some defense genes. This interaction also may be enhanced and/or inhibited the expression of some genes responsible for the plant defense mechanisms.Keywords: PLRV, PVY, PR genes, DD-PCR, qRT-PCR, sequencing
Procedia PDF Downloads 33821309 Computational Investigation of V599 Mutations of BRAF Protein and Its Control over the Therapeutic Outcome under the Malignant Condition
Authors: Mayank, Navneet Kaur, Narinder Singh
Abstract:
The V599 mutations in the BRAF protein are extremely oncogenic, responsible for countless of malignant conditions. Along with wild type, V599E, V599D, and V599R are the important mutated variants of the BRAF proteins. The BRAF inhibitory anticancer agents are continuously developing, and sorafenib is a BRAF inhibitor that is under clinical use. The crystal structure of sorafenib bounded to wild type, and V599 is known, showing a similar interaction pattern in both the case. The mutated 599th residue, in both the case, is also found not interacting directly with the co-crystallized sorafenib molecule. However, the IC50 value of sorafenib was found extremely different in both the case, i.e., 22 nmol/L for wild and 38 nmol/L for V599E protein. Molecular docking study and MMGBSA binding energy results also revealed a significant difference in the binding pattern of sorafenib in both the case. Therefore, to explore the role of distinctively situated 599th residue, we have further conducted comprehensive computational studies. The molecular dynamics simulation, residue interaction network (RIN) analysis, and residue correlation study results revealed the importance of the 599th residue on the therapeutic outcome and overall dynamic of the BRAF protein. Therefore, although the position of 599th residue is very much distinctive from the ligand-binding cavity of BRAF, still it has exceptional control over the overall functional outcome of the protein. The insight obtained here may seem extremely important and guide us while designing ideal BRAF inhibitory anticancer molecules.Keywords: BRAF, oncogenic, sorafenib, computational studies
Procedia PDF Downloads 11521308 QSAR Study on Diverse Compounds for Effects on Thermal Stability of a Monoclonal Antibody
Authors: Olubukayo-Opeyemi Oyetayo, Oscar Mendez-Lucio, Andreas Bender, Hans Kiefer
Abstract:
The thermal melting curve of a protein provides information on its conformational stability and could provide cues on its aggregation behavior. Naturally-occurring osmolytes have been shown to improve the thermal stability of most proteins in a concentration-dependent manner. They are therefore commonly employed as additives in therapeutic protein purification and formulation. A number of intertwined and seemingly conflicting mechanisms have been put forward to explain the observed stabilizing effects, the most prominent being the preferential exclusion mechanism. We attempted to probe and summarize molecular mechanisms for thermal stabilization of a monoclonal antibody (mAb) by developing quantitative structure-activity relationships using a rationally-selected library of 120 osmolyte-like compounds in the polyhydric alcohols, amino acids and methylamines classes. Thermal stabilization potencies were experimentally determined by thermal shift assays based on differential scanning fluorimetry. The cross-validated QSAR model was developed by partial least squares regression using descriptors generated from Molecular Operating Environment software. Careful evaluation of the results with the use of variable importance in projection parameter (VIP) and regression coefficients guided the selection of the most relevant descriptors influencing mAb thermal stability. For the mAb studied and at pH 7, the thermal stabilization effects of tested compounds correlated positively with their fractional polar surface area and inversely with their fractional hydrophobic surface area. We cannot claim that the observed trends are universal for osmolyte-protein interactions because of protein-specific effects, however this approach should guide the quick selection of (de)stabilizing compounds for a protein from a chemical library. Further work with a large variety of proteins and at different pH values would help the derivation of a solid explanation as to the nature of favorable osmolyte-protein interactions for improved thermal stability. This approach may be beneficial in the design of novel protein stabilizers with optimal property values, especially when the influence of solution conditions like the pH and buffer species and the protein properties are factored in.Keywords: thermal stability, monoclonal antibodies, quantitative structure-activity relationships, osmolytes
Procedia PDF Downloads 33121307 COVID-19 Genomic Analysis and Complete Evaluation
Authors: Narin Salehiyan, Ramin Ghasemi Shayan
Abstract:
In order to investigate coronavirus RNA replication, transcription, recombination, protein processing and transport, virion assembly, the identification of coronavirus-specific cell receptors, and polymerase processing, the manipulation of coronavirus clones and complementary DNAs (cDNAs) of defective-interfering (DI) RNAs is the subject of this chapter. The idea of the Covid genome is nonsegmented, single-abandoned, and positive-sense RNA. When compared to other RNA viruses, its size is significantly greater, ranging from 27 to 32 kb. The quality encoding the enormous surface glycoprotein depends on 4.4 kb, encoding a forcing trimeric, profoundly glycosylated protein. This takes off exactly 20 nm over the virion envelope, giving the infection the appearance-with a little creative mind of a crown or coronet. Covid research has added to the comprehension of numerous parts of atomic science as a general rule, like the component of RNA union, translational control, and protein transport and handling. It stays a fortune equipped for creating startling experiences.Keywords: covid-19, corona, virus, genome, genetic
Procedia PDF Downloads 7221306 Cannabidiol (CBD) Resistant Salmonella Strains Are Susceptible to Epsilon 34 Phage Tailspike Protein
Authors: Ibrahim Iddrisu, Joseph Ayariga, Junhuan Xu, Ayomide Adebanjo, Boakai K. Robertson, Michelle Samuel-Foo, Olufemi Ajayi
Abstract:
The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pan drug-resistant bacteria, most antibiotics have lost their efficacy. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages, being the natural predators of pathogenic bacteria, are inevitably categorized as ‘human friends’, thus fulfilling the adage that ‘the enemy of my enemy is my friend’. Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. In this study, we expressed and purified epsilon 34 phage tail spike protein (E34 TSP) from the E34 TSP gene, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We also assessed the ability of the tail spike protein to cause bacteria membrane disruption and dehydrogenase depletion. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability, whereas the mono treatment with E34 TSP showed considerably higher killing efficiency. This study demonstrates that the inhibition of the bacteria by E34 TSP was due in part to membrane disruption and dehydrogenase inactivation by the protein. The results of this work provide an interesting background to highlight the crucial role phage proteins such as E34 TSP could play in pathogenic bacterial control.Keywords: cannabidiol, resistance, Salmonella, antimicrobials, phages
Procedia PDF Downloads 6921305 Mesoporous Titania Thin Films for Gentamicin Delivery and Bone Morphogenetic Protein-2 Immobilization
Authors: Ane Escobar, Paula Angelomé, Mihaela Delcea, Marek Grzelczak, Sergio Enrique Moya
Abstract:
The antibacterial capacity of bone-anchoring implants can be improved by the use of antibiotics that can be delivered to the media after the surgery. Mesoporous films have shown great potential in drug delivery for orthopedic applications, since pore size and thickness can be tuned to produce different surface area and free volume inside the material. This work shows the synthesis of mesoporous titania films (MTF) by sol-gel chemistry and evaporation-induced self-assembly (EISA) on top of glass substrates. Pores with a diameter of 12nm were observed by Transmission Electron Microscopy (TEM). A film thickness of 100 nm was measured by Scanning Electron Microscopy (SEM). Gentamicin was used to study the antibiotic delivery from the film by means of High-performance liquid chromatography (HPLC). The Staphilococcus aureus strand was used to evaluate the effectiveness of the penicillin loaded films toward inhibiting bacterial colonization. MC3T3-E1 pre-osteoblast cell proliferation experiments proved that MTFs have a good biocompatibility and are a suitable surface for MC3T3-E1 cell proliferation. Moreover, images taken by Confocal Fluorescence Microscopy using labeled vinculin, showed good adhesion of the MC3T3-E1 cells to the MTFs, as well as complex actin filaments arrangement. In order to improve cell proliferation Bone Morphogenetic Protein-2 (BMP-2) was adsorbed on top of the mesoporous film. The deposition of the protein was proved by measurements in the contact angle, showing an increment in the hydrophobicity while the protein concentration is higher. By measuring the dehydrogenase activity in MC3T3-E1 cells cultured in dually functionalized mesoporous titatina films with gentamicin and BMP-2 is possible to find an improvement in cell proliferation. For this purpose, the absorption of a yellow-color formazan dye, product of a water-soluble salt (WST-8) reduction by the dehydrogenases, is measured. In summary, this study proves that by means of the surface modification of MTFs with proteins and loading of gentamicin is possible to achieve an antibacterial effect and a cell growth improvement.Keywords: antibacterial, biocompatibility, bone morphogenetic protein-2, cell proliferation, gentamicin, implants, mesoporous titania films, osteoblasts
Procedia PDF Downloads 16321304 The Performance of Six Exotic Perennial Grass Species in the Central Region of Saudi Arabia
Authors: A. Alsoqeer
Abstract:
The establishment, dry matter production and feeding value of six perennial grasses were measured over two growing seasons in a field experiments. The experiments were conducted at the Agricultural and Veterinary Medicine Research Station, Faculty of Agriculture and Veterinary Medicine, Qassim University, Kingdom of Saudi Arabia in 2009 and 2010 seasons. The six perennial grasses were: creeping bluegrass (Bothriochloa insculpta cv. Bisset), digit grass (Digitaria smutsi), Jarra digit grass (Digitaria milanjiana), panic (Panicum coloratum cv. Bambatsii), Sabi grass (Urochloa mosambicensis) and setaria (Setaria sphacelata cv. Kazungula). The experimental design used was a completely randomized block design with four replications. The results revealed significant differences among plant species of all agronomic characters and quality traits in the first year, while in the second year, plant species differed significantly for quality traits only. D. smutsi had a superior performance for all agronomic characters, however, it had the lowest values in protein content in the two years comparing with other genotypes. D. milanjiana and U. mosambicensis showed high values in dry matter yield and protein content in the first year, but showed a very poor performance in the second year because most of plants were die due to the low temperatures in the winter. These two species appear to be suitable for annual cultivation. The other species tolerate the cold winter and were a highly productive in the second year.Keywords: dry mater yield, grass species, cuts, quality traits, crude protein content
Procedia PDF Downloads 31921303 Fasted and Postprandial Response of Serum Physiological Response, Hepatic Antioxidant Abilities and Hsp70 Expression in M. amblycephala Fed Different Dietary Carbohydrate
Authors: Chuanpeng Zhou
Abstract:
The effect of dietary carbohydrate (CHO) level on serum physiological response, hepatic antioxidant abilities and heat shock protein 70 (HSP70) expression of Wuchang bream (Megalobrama amblycephala) was studied. Two isonitrogenous (28.56% crude protein) and isolipidic (5.28% crude lipid) diets were formulated to contain 30% or 53% wheat starch. Diets were fed for 90 days to fish in triplicate tanks (28 fish per tank). At the end of feeding trial, significantly higher serum triglyceride level, insulin level, cortisol level, malondialdehyde (MDA) content were observed in fish fed the 53% CHO diet, while significantly lower serum total protein content, alkaline phosphatase (AKP) activity, superoxide dismutase (SOD) activity and total antioxidative capacity (T-AOC) were found in fish fed the 53% CHO diet compared with those fed the 30% diet. The relative level of hepatic heat shock protein 70 mRNA was significantly higher in the 53% CHO group than that in the 30% CHO at 6, 12, and 48 h after feeding. The results of this study indicated that ingestion of 53% dietary CHO impacted the nonspecific immune ability and caused metabolic stress of Megalobrama amblycephala.Keywords: Megalobrama amblycephala, carbohydrate, fasted and postprandial response, immunity, Hsp70
Procedia PDF Downloads 45721302 Enhancing the Quality of Silage Bales Produced by a Commercial Scale Silage Producer in Northern province, Sri Lanka: A Step Toward Supporting Smallholder Dairy Farmers in the Northern Province Sri Lanka
Authors: Harithas Aruchchunan
Abstract:
Silage production is an essential aspect of dairy farming, used to provide high-quality feed to ruminants. However, dairy farmers in Northern Province Sri Lanka are facing multiple challenges that compromise the quality and quantity of silage produced. To tackle these challenges, promoting silage feeding has become an essential component of sustainable dairy farming practices. In this study, silage bale samples were collected from a newly started silage baling factory in Jaffna, Northern province and their quality was analysed at the Veterinary Research Institute laboratory in Kandy in March 2023. The results show the nutritional composition of three Napier grass cultivars: Super Napier, CO6, and Indian Red Napier (BH18). The main parameters analysed were dry matter, pH, lactic acid, soluble carbohydrate, ammonia nitrogen, ash, crude protein, NDF, and ADF. The results indicate that Super Napier and CO6 have higher crude protein content and lower ADF levels, making them suitable for producing high-quality silage. The pH levels of all three cultivars were safe, and the ammonia nitrogen levels were considered appropriate. However, laboratory results indicate that the quality of silage bales produced can be further enhanced. Dairy farmers should be encouraged to adopt these cultivars to achieve better yields as they are high in protein and are better suited to Northern Province's soil and climate. Therefore, it is vital to educate small-scale fodder producers, who supply the raw material to silage factories, on the best practices of cultivating these new cultivars. To improve silage bale production and quality in Northern Province Sri Lanka, we recommend increasing public awareness about silage feeding, providing education and training to dairy farmers and small-scale fodder producers on modern silage production techniques and improving the availability of raw materials for silage production. Additionally, Napier grass cultivars need to be promoted among dairy farmers for better production and quality of silage bales. Failing to improve the quality and quantity of silage bale production could not only lead to the decline of dairy farming in Northern Province Sri Lanka but also the negative impact on the economyKeywords: silage bales, dairy farming, economic crisis, Sri Lanka
Procedia PDF Downloads 9221301 Preliminary Study on Milk Composition and Milk Protein Polymorphism in the Algerian Local Sheep's Breeds
Authors: A. Ameur Ameur, F. Chougrani, M. Halbouche
Abstract:
In order to characterize the sheep's milk, we analyzed and compared, in a first stage of our work, the physical and chemical characteristics in two Algerian sheep breeds: Hamra race and race Ouled Djellal breeding at the station the experimental ITELV Ain Hadjar (Saïda Province). Analyses are performed by Ekomilk Ultra-analyzer (EON TRADING LLC, USA), they focused on the pH, density, freezing, fat, total protein, solids-the total dry extract. The results obtained for these parameters showed no significant differences between the two breeds studied. The second stage of this work was the isolation and characterization of milk proteins. For this, we used the precipitation of caseins phi [pH 4.6]. For this, we used the precipitation of caseins Phi (pH 4.6). After extraction, purification and assay, both casein and serum protein fractions were then assayed by the Bradford method and controlled by polyacrylamide gel electrophoresis (PAGE) in the different conditions (native, in the presence of urea and in the presence of SDS). The electrophoretic pattern of milk samples showed the presence similarities of four major caseins variants (αs1-, αs2-β-and k-casein) and two whey proteins (β-lactoglobulin, α-lactalbumin) of two races Hamra and Ouled Djellal. But compared to bovine milk, they have helped to highlight some peculiarities as related to serum proteins (α La β Lg) as caseins, including αs1-Cn.Keywords: Hamra, Ouled Djellal, protein polymorphism, sheep breeds
Procedia PDF Downloads 55721300 Gene Prediction in DNA Sequences Using an Ensemble Algorithm Based on Goertzel Algorithm and Anti-Notch Filter
Authors: Hamidreza Saberkari, Mousa Shamsi, Hossein Ahmadi, Saeed Vaali, , MohammadHossein Sedaaghi
Abstract:
In the recent years, using signal processing tools for accurate identification of the protein coding regions has become a challenge in bioinformatics. Most of the genomic signal processing methods is based on the period-3 characteristics of the nucleoids in DNA strands and consequently, spectral analysis is applied to the numerical sequences of DNA to find the location of periodical components. In this paper, a novel ensemble algorithm for gene selection in DNA sequences has been presented which is based on the combination of Goertzel algorithm and anti-notch filter (ANF). The proposed algorithm has many advantages when compared to other conventional methods. Firstly, it leads to identify the coding protein regions more accurate due to using the Goertzel algorithm which is tuned at the desired frequency. Secondly, faster detection time is achieved. The proposed algorithm is applied on several genes, including genes available in databases BG570 and HMR195 and their results are compared to other methods based on the nucleotide level evaluation criteria. Implementation results show the excellent performance of the proposed algorithm in identifying protein coding regions, specifically in identification of small-scale gene areas.Keywords: protein coding regions, period-3, anti-notch filter, Goertzel algorithm
Procedia PDF Downloads 38721299 Anti-Obesity Activity of Garcinia xanthochymus: Biochemical Characterization and In vivo Studies in High Fat Diet-Rat Model
Authors: Mahesh M. Patil, K. A. Anu-Appaiah
Abstract:
Overweight and obesity is a serious medical problem, increasing in prevalence, and affecting millions worldwide. Investigators have been trying from decades to articulate the burden of obesity and related risk factors. To answer this problem, we suggest a new therapeutic anti-obesity compounds from Garcinia xanthochymus fruit. However, there is little published scientific information on non-hydroxycitric acid Garcinia species. Our findings include biochemical characterization of the fruit; in vivo toxicity and bio-efficacy study of G. xanthochymus in high fat diet wistar rat model. We observed that Garcinia pericarp is a rich source of organic acids, polyphenols, mono- (40.63%) and poly-unsaturated fatty acids (16.45%; omega-3: 10.02%). Toxicological studies have showed that Garcinia is safe and had no observed adverse effect level up to 400 mg/kg/day. Body weight and food intake was significantly (P<0.05) reduced in oral gavage treated rats (sonicated Garcinia powder) in 13 weeks. Subcutaneous fat was significantly (P<0.05) reduced in Garcinia treated rats. Hepatocytes significantly (p<0.05) overexpressed sterol regulatory element binding protein 2, liver X receptor- α, liver X receptor- β, lipoprotein lipase and monoacylglycerol lipase. Fatty acid binding protein 1 and peroxisome proliferator activated receptor- α were down regulated as assessed by real time qPCR. Currently our research is focused on the adipocyte obesity related gene expressions, effect of Garcinia on 3T3-adipocyte cell lines and high fat diet induced mice model. This in vivo pre-clinical data suggests that G. xanthochymus may have clinical utility for the treatment of obesity. However, further studies are required to establish its potency.Keywords: Garcinia xanthochymus, anti-obesity, high fat diet, real time qPCR
Procedia PDF Downloads 25121298 PPRA Regulates DNA Replication Initiation and Cell Morphology in Escherichia coli
Authors: Ganesh K. Maurya, Reema Chaudhary, Neha Pandey, Hari S. Misra
Abstract:
PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provides better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli.Keywords: DNA replication, radioresistance, protein-protein interaction, cell morphology, ATPase activity
Procedia PDF Downloads 6821297 Establishment of Farmed Fish Welfare Biomarkers Using an Omics Approach
Authors: Pedro M. Rodrigues, Claudia Raposo, Denise Schrama, Marco Cerqueira
Abstract:
Farmed fish welfare is a very recent concept, widely discussed among the scientific community. Consumers’ interest regarding farmed animal welfare standards has significantly increased in the last years posing a huge challenge to producers in order to maintain an equilibrium between good welfare principles and productivity, while simultaneously achieve public acceptance. The major bottleneck of standard aquaculture is to impair considerably fish welfare throughout the production cycle and with this, the quality of fish protein. Welfare assessment in farmed fish is undertaken through the evaluation of fish stress responses. Primary and secondary stress responses include release of cortisol and glucose and lactate to the blood stream, respectively, which are currently the most commonly used indicators of stress exposure. However, the reliability of these indicators is highly dubious, due to a high variability of fish responses to an acute stress and the adaptation of the animal to a repetitive chronic stress. Our objective is to use comparative proteomics to identify and validate a fingerprint of proteins that can present an more reliable alternative to the already established welfare indicators. In this way, the culture conditions will improve and there will be a higher perception of mechanisms and metabolic pathway involved in the produced organism’s welfare. Due to its high economical importance in Portuguese aquaculture Gilthead seabream will be the elected species for this study. Protein extracts from Gilthead Seabream fish muscle, liver and plasma, reared for a 3 month period under optimized culture conditions (control) and induced stress conditions (Handling, high densities, and Hipoxia) are collected and used to identify a putative fish welfare protein markers fingerprint using a proteomics approach. Three tanks per condition and 3 biological replicates per tank are used for each analisys. Briefly, proteins from target tissue/fluid are extracted using standard established protocols. Protein extracts are then separated using 2D-DIGE (Difference gel electrophoresis). Proteins differentially expressed between control and induced stress conditions will be identified by mass spectrometry (LC-Ms/Ms) using NCBInr (taxonomic level - Actinopterygii) databank and Mascot search engine. The statistical analysis is performed using the R software environment, having used a one-tailed Mann-Whitney U-test (p < 0.05) to assess which proteins were differentially expressed in a statistically significant way. Validation of these proteins will be done by comparison of the RT-qPCR (Quantitative reverse transcription polymerase chain reaction) expressed genes pattern with the proteomic profile. Cortisol, glucose, and lactate are also measured in order to confirm or refute the reliability of these indicators. The identified liver proteins under handling and high densities induced stress conditions are responsible and involved in several metabolic pathways like primary metabolism (i.e. glycolysis, gluconeogenesis), ammonia metabolism, cytoskeleton proteins, signalizing proteins, lipid transport. Validition of these proteins as well as identical analysis in muscle and plasma are underway. Proteomics is a promising high-throughput technique that can be successfully applied to identify putative welfare protein biomarkers in farmed fish.Keywords: aquaculture, fish welfare, proteomics, welfare biomarkers
Procedia PDF Downloads 15621296 Effect of Different Levels of Distillery Yeast Sludge on Immune Level, Egg Quality and Performance of Layers as a Substitute for Soybean Meal
Authors: Rana Bilal, Faiz-Ul-Hassan, Moazzam Jameel
Abstract:
There is a dire need to replace high-cost protein with more economical protein to overcome animal protein shortage in developing nations especially countries like Pakistan. In conjunction with these efforts, the current study was planned to evaluate the effects of various dried distillery yeast sludge (DYS) levels on the immune level, egg quality, and performance of layers by replacing soybean meal. The study was designed with two hundred layers of Hy-Line variety. Distillery yeast sludge was dried and ground for 2 mm mesh size and after this proximate and mineral analysis was determined. Five isocaloric and isonitrogeneous feeds were given containing C (control), 5, 10, 15, 20% distillery yeast sludge by replacing soybean meal. The trial was performed in the completely randomized design with five treatments, 4 replicates and 10 hen per replicate. Results demonstrated that feed intake, egg production, feed conversion ratio decreased (P < 0.05) with the increased dietary DYS. However, statistically significant decrease (P < 0.05) was found in hens having DYS20 diet than control. Layers on Diets C, DYS5 and DYS10 exerted a higher immune level than DYS15 and DYS20 diets. Egg weight, eggshell weight, eggshell thickness, egg albumen height as well as haugh unit score were affected significantly by the increased level of DYS. In general, results of this study demonstrated that inclusion of DYS up to 10% showed no adverse effects on health and performance of layers.Keywords: egg quality, immunity, layers, performance
Procedia PDF Downloads 23321295 Responses of Trifolium pratense to Lead Accumulation Under In-Vitro Culture Conditions
Authors: Arash Khorasani Esmaeili, Rosna Mat Taha, Sadegh Mohajer
Abstract:
Seeds of Trifolium pratense (Red clover) were exposed in vitro for 6 weeks to six levels of lead (Pb) concentrations (0, 50, 100, 150, 200, 250 µM) to analyze the effects on growth, total chlorophyll and total protein contents of grown plants against the lead accumulation. The growth of plants was negatively affected by various levels of lead treatment. The fresh and dry weights, as well as lengths of shoots and roots of grown plants under various lead treatments, were found significantly lower in comparison with the control plants. Total chlorophyll and total soluble protein contents of grown plants under lower concentrations of lead treatment did not show significant differences when compared with the control plants, although they were affected significantly in higher levels of lead accumulation (150-250 µM).Keywords: trifolium pratense, lead accumulation, chlorophyll content, protein content
Procedia PDF Downloads 43721294 Heterologous Expression of a Clostridium thermocellum Proteins and Assembly of Cellulosomes 'in vitro' for Biotechnology Applications
Authors: Jessica Pinheiro Silva, Brenda Rabello De Camargo, Daniel Gusmao De Morais, Eliane Ferreira Noronha
Abstract:
The utilization of lignocellulosic biomass as source of polysaccharides for industrial applications requires an arsenal of enzymes with different mode of action able to hydrolyze its complex and recalcitrant structure. Clostridium thermocellum is gram-positive, thermophilic bacterium producing lignocellulosic hydrolyzing enzymes in the form of multi-enzyme complex, termed celulossomes. This complex has several hydrolytic enzymes attached to a large and enzymically inactive protein known as Cellulosome-integrating protein (CipA), which serves as a scaffolding protein for the complex produced. This attachment occurs through specific interactions between cohesin modules of CipA and dockerin modules in enzymes. The present work aims to construct celulosomes in vitro with the structural protein CipA, a xylanase called Xyn10D and a cellulose called CelJ from C.thermocellum. A mini-scafoldin was constructed from modules derived from CipA containing two cohesion modules. This was cloned and expressed in Escherichia coli. The other two genes were cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9 and integrated into the genome of the methylotrophic yeast Pichia pastoris GS115. Purification of each protein is being carried out. Further studies regarding enzymatic activity of the cellulosome is going to be evaluated. The cellulosome built in vitro and composed of mini-CipA, CelJ and Xyn10D, can be very interesting for application in industrial processes involving the degradation of plant biomass.Keywords: cellulosome, CipA, Clostridium thermocellum, cohesin, dockerin, yeast
Procedia PDF Downloads 23321293 Involvement of Multi-Drug Resistance Protein (Mrp) 3 in Resveratrol Protection against Methotrexate-Induced Testicular Damage
Authors: Mohamed A. Morsy, Azza A. K. El-Sheikh, Abdulla Y. Al-Taher
Abstract:
The aim of the present study is to investigate the effect of resveratrol (RES) on methotrexate (MTX)-induced testicular damage. RES (10 mg/kg/day) was given for 8 days orally and MTX (20 mg/kg i.p.) was given at day 4 of experiment, with or without RES in rats. MTX decreased serum testosterone, induced histopathological testicular damage, increased testicular tumor necrosis factor-α level and expression of nuclear factor-κB and cyclooxygenase-2. In MTX/RES group, significant reversal of these parameters was noticed, compared to MTX group. Testicular expression of multidrug resistance protein (Mrp) 3 was three- and five-folds higher in RES- and MTX/RES-treated groups, respectively. In vitro, using prostate cancer cells, each of MTX and RES alone induced cytotoxicity with IC50 0.18 ± 0.08 and 20.5 ± 3.6 µM, respectively. RES also significantly enhanced cytotoxicity of MTX. In conclusion, RES appears to have dual beneficial effect, as it promotes MTX tumor cytotoxicity, while protecting the testes, probably via up-regulation of testicular Mrp3 as a novel mechanism.Keywords: resveratrol, methotrexate, multidrug resistance protein 3, tumor necrosis factor-α, nuclear factor-κB, cyclooxygenase-2
Procedia PDF Downloads 454