Search results for: healthcare networks
4005 The Analysis of Split Graphs in Social Networks Based on the k-Cardinality Assignment Problem
Authors: Ivan Belik
Abstract:
In terms of social networks split graphs correspond to the variety of interpersonal and intergroup relations. In this paper we analyse the interaction between the cliques (socially strong and trusty groups) and the independent sets (fragmented and non-connected groups of people) as the basic components of any split graph. Based on the Semi-Lagrangean relaxation for the k-cardinality assignment problem we show the way of how to minimize the socially risky interactions between the cliques and the independent sets within the social network.Keywords: cliques, independent sets, k-cardinality assignment, social networks, split graphs
Procedia PDF Downloads 3204004 The Moderating Impacts of Government Support on the Relationship Between Patient Acceptance and Telemedicine Adoption in Malaysia
Authors: Anyia Nduka, Aslan Bin Amad Senin, Ayu Azrin Binti Abdul Aziz
Abstract:
Telemedicine is a rapidly developing discipline with enormous promise for better healthcare results for patients. To meet the demands of patients and the healthcare sector, medical providers must be proficient in telemedicine and also need government funding for infrastructure and core competencies. In this study, we surveyed general hospitals in Kuala Lumpur and Selangor to investigate patient’s impressions of both the positive and negative aspects of government funding for telemedicine and its level of acceptance. This survey was conducted in accordance with the Diffusion of Innovations (DOI) hypothesis; the survey instruments were designed through a Google Form and distributed to patients and every member of the medical team. The findings suggested a framework for categorizing patients' levels of technology use and acceptability, which provided practical consequences for healthcare. We therefore recommend the increase in technical assistance and government-backed funding of telemedicine by bolstering the entire system.Keywords: technology acceptance, quality assurance, digital transformation, cost management.
Procedia PDF Downloads 754003 Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks
Authors: Cesar Hernández, Diego Giral, Ingrid Páez
Abstract:
This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics is used. These metrics are the accumulative average of failed handoffs, the accumulative average of handoffs performed, the accumulative average of transmission bandwidth, and the accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm.Keywords: cognitive radio, decision making, hybrid algorithm, spectrum handoff, wireless networks
Procedia PDF Downloads 5414002 Pre-Shared Key Distribution Algorithms' Attacks for Body Area Networks: A Survey
Authors: Priti Kumari, Tricha Anjali
Abstract:
Body Area Networks (BANs) have emerged as the most promising technology for pervasive health care applications. Since they facilitate communication of very sensitive health data, information leakage in such networks can put human life at risk, and hence security inside BANs is a critical issue. Safe distribution and periodic refreshment of cryptographic keys are needed to ensure the highest level of security. In this paper, we focus on the key distribution techniques and how they are categorized for BAN. The state-of-art pre-shared key distribution algorithms are surveyed. Possible attacks on algorithms are demonstrated with examples.Keywords: attacks, body area network, key distribution, key refreshment, pre-shared keys
Procedia PDF Downloads 3624001 Social Media Marketing in Russia
Authors: J. A. Ageeva, Z. S. Zavyalova
Abstract:
The article considers social media as a tool for business promotion. We analyze and compare the SMM experience in the western countries and Russia. A short review of Russian social networks are given including their peculiar features, and the main problems and perspectives of Russian SMM are described.Keywords: social media, social networks, marketing, SMM
Procedia PDF Downloads 5564000 The Load Balancing Algorithm for the Star Interconnection Network
Authors: Ahmad M. Awwad, Jehad Al-Sadi
Abstract:
The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.Keywords: load balancing, star network, interconnection networks, algorithm
Procedia PDF Downloads 3193999 Healthcare Professionals' Perspectives on Warfarin Therapy at Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR
Authors: Vanlounni Sibounheuang, Wanarat Anusornsangiam, Pattarin Kittiboonyakun, Chanthanom Manithip
Abstract:
In worldwide, one of the most common use of oral anticoagulant is warfarin. Its margin between therapeutic inhibition of clot formation and bleeding complications is narrow. Mahosot Hospital, warfarin clinic had not been established yet. The descriptive study was conducted by investigating drug-related problems of outpatients using warfarin, the value of the international normalized ratio (INR) higher than normal ranges (25.40 % of the total 272 outpatients) were mostly identified at Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR. This result led to the present study conducting qualitative interviews in order to help establish a warfarin clinic at Mahosot Hospital for the better outcomes of patients using warfarin. The purpose of this study was to explore perspectives of healthcare professional providing services for outpatients using warfarin. The face to face, in-depth interviews were undertaken among nine healthcare professionals (doctor=3, nurse=3, pharmacist=3) working at out-patient clinic, Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR. The interview guides were developed, and they were validated by the experts in the fields of qualitative research. Each interview lasted approximately 20 minutes. Three major themes emerged; healthcare professional’s experiences of current practice problems with warfarin therapy, healthcare professionals’ views of medical problems related to patients using warfarin, and healthcare professionals’ perspectives on ways of service improvement. All healthcare professionals had the same views that it’s difficult to achieve INR goal for individual patients because of some important patient barriers especially lack of knowledge about to use warfarin properly and safety, patients not regularly follow-up due to problems with transportations and financial support. Doctors and nurses agreed to have a pharmacist running a routine warfarin clinic and provided counselling to individual patients on the following points: how to take drug properly and safety, drug-drug and food-drug interactions, common side effects and how to manage them, lifestyle modifications. From the interviews, some important components of the establishment of a warfarin clinic included financial support, increased human resources, improved the system of keeping patients’ medical records, short course training for pharmacists. This study indicated the acceptance of healthcare professionals on the important roles of pharmacists and the feasibility of setting up warfarin clinic by working together with the multidisciplinary health care team in order to help improve health outcomes of patients using warfarin at Mahosot Hospital, Lao PDR.Keywords: perspectives, healthcare professional, warfarin therapy, Mahosot Hospital
Procedia PDF Downloads 1003998 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering
Procedia PDF Downloads 3543997 Toward an Understanding of the Neurofunctional Dissociation between Animal and Tool Concepts: A Graph Theoretical Analysis
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from Mc Rae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-world, resilience to damage
Procedia PDF Downloads 5473996 Anti-Phase Synchronization of Complex Delayed Networks with Output Coupling via Pinning Control
Authors: Chanyuan Gu, Shouming Zhong
Abstract:
Synchronization is a fundamental phenomenon that enables coherent behavior in networks as a result of interactions. The purpose of this research had been to investigate the problem of anti-phase synchronization for complex delayed dynamical networks with output coupling. The coupling configuration is general, with the coupling matrix not assumed to be symmetric or irreducible. The amount of the coupling variables between two connected nodes is flexible, the nodes in the drive and response systems need not to be identical and there is not any extra constraint on the coupling matrix. Some pinning controllers are designed to make the drive-response system achieve the anti-phase synchronization. For the convenience of description, we applied the matrix Kronecker product. Some new criteria are proposed based on the Lyapunov stability theory, linear matrix inequalities (LMI) and Schur complement. Lastly, some simulation examples are provided to illustrate the effectiveness of our proposed conditions.Keywords: anti-phase synchronization, complex networks, output coupling, pinning control
Procedia PDF Downloads 3943995 Knowledge Sharing Practices in the Healthcare Sector: Evidences from Primary Health Care Organizations in Indonesia
Authors: Galih Imaduddin
Abstract:
Knowledge has been viewed as one of the most important resources in organizations, including those that operate in the healthcare sector. On that basis, Knowledge Management (KM) is crucial for healthcare organizations to improve their productivity and ensure effective utilization of their resources. Despite the growing interests to understand how KM might work for healthcare organizations, there is only a modest amount of empirical inquiries which have specifically focused on the tools and initiatives to share knowledge. Hence, the main purpose of this paper is to investigate the way healthcare organizations, particularly public sector ones, utilize knowledge sharing tools and initiatives for the benefit of patient-care. Employing a qualitative method, 13 (thirteen) Community Health Centers (CHCs) from a high-performing district health setting in Indonesia were observed. Data collection and analysis involved a repetition of document retrievals and interviews (n=41) with multidisciplinary health professionals who work in these CHCs. A single case study was cultivated reflecting on the means that were used to share knowledge, along with the factors that inhibited the exchange of knowledge among those health professionals. The study discovers that all of the thirteen CHCs exhibited and applied knowledge sharing means which included knowledge documents, virtual communication channels (i.e. emails and chatting applications), and social learning forums such as staff meetings, morning briefings, and communities of practices. However, the intensity of utilization was different among these CHCs, in which organizational culture, leadership, professional boundaries, and employees’ technological aptitude were presumed to be the factors that inhibit knowledge sharing processes. Making a distance with the KM literature of other sectors, this study denounces the primacy of technology-based tools, suggesting that socially-based initiatives could be more reliable for sharing knowledge. This suggestion is largely due to the nature of healthcare work which is still predominantly based on the tacit form of knowledge.Keywords: knowledge management, knowledge sharing, knowledge sharing tools and initiatives, knowledge sharing inhibitors, primary health care organizations
Procedia PDF Downloads 2433994 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shiva Kumar, G. S. Vijay, Srinivas Pai P., Shrinivasa Rao B. R.
Abstract:
In the present study RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tech and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: radial basis function networks, emissions, performance parameters, fuzzy c means
Procedia PDF Downloads 5583993 Challenges to Tuberculosis Control in Angola: The Narrative of Medical Professionals
Authors: Domingos Vita, Patrick Brady
Abstract:
Background: There is a tuberculosis (TB) epidemic in Angola that has been getting worse for more than a decade despite the active implementation of the DOTS strategy. The aim of this study was to directly interrogate healthcare workers involved in TB control on what they consider to be the drivers of the TB epidemic in Angola. Methods: Twenty four in-depth qualitative interviews were conducted with medical staff working in this field in the provinces of Luanda and Benguela. Results: The healthcare professionals see the migrant working poor as a particular problem for the control of TB. These migrants are constructed as ‘Rural People’ and are seen as non-compliant and late-presenting. This is a stigmatized and marginal group contending with the additional stigma associated with TB infection. The healthcare professionals interviewed also see the interruption of treatment and self medication generally as a better explanation for the TB epidemic than urbanization or lack of medication. Conclusions: The local narrative is in contrast to previous explanations used elsewhere in the developing world. To be effective policy must recognize the local issues of the migrant workforce, interruption of treatment and the stigma associated with TB in Angola.Keywords: Africa, Angola, migrants, qualitative, research, tuberculosis
Procedia PDF Downloads 1613992 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity
Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon
Abstract:
Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.Keywords: heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry
Procedia PDF Downloads 3313991 A Strategic Perspective on a Qualitative Model of Type II Workplace Aggression in Healthcare Sector
Authors: Francesco Ceresia
Abstract:
Workplace aggression is broadly recognized as a main work-related risk for healthcare organizations the world over. Scholars underlined that nonfatal workplace aggressions can be also produced by Type II workplace aggression, that occur when the aggressor has a legitimate relationship with the organization and commits an act of hostility while being served or cared for by members of the organization. Several reviews and meta-analysis highlighted the main antecedents and consequences of Type II verbal and physical workplace aggression in the healthcare sector, also focusing on its economic and psychosocial costs. However, some scholars emphasized the need for a systemic and multi-factorial approach to deeply understand and effectively respond to such kind of aggression. The main aim of the study is to propose a qualitative model of Type II workplace aggression in a health care organization in accordance with the system thinking and multi-factorial perspective. A case study research approach, conducted in an Italian non-hospital healthcare organization, is presented. Two main data collection methods have been adopted: individual and group interviews with a sample (N = 24) of physicians, nurses and clericals. A causal loop diagram (CLD) that describes the main causal relationships among the key-variables of the proposed model has been outlined. The main feedback loops and the causal link polarities have been also defined to fully describe the structure underlining the Type II workplace aggression phenomenon. The proposed qualitative model shows how the Type II workplace aggression is related with burnout, work performance, job satisfaction, turnover intentions, work motivation and emotional dissonance. Finally, strategies and policies to reduce the strength of workplace aggression’s drivers are suggested.Keywords: healthcare, system thinking, work motivation, workplace aggression
Procedia PDF Downloads 3043990 Barriers to Access among Indigenous Women Seeking Prenatal Care: A Literature Review
Authors: Zarish Jawad, Nikita Chugh, Karina Dadar
Abstract:
Introduction: This paper aims to identify barriers indigenous women face in accessing prenatal care in Canada. It explores the differences in prenatal care received between indigenous and non-indigenous women. The objective is to look at changes or programs in Canada's healthcare system to reduce barriers to accessing safe prenatal care for indigenous women. Methods: A literature search of 12 papers was conducted using the following databases: PubMed, Medline, OVID, Google Scholar, and ScienceDirect. The studies included were written in English only, including indigenous females between the age of 19-35, and review articles were excluded. Participants in the studies examined did not have any severe underlying medical conditions for the duration of the study, and study designs included in the review are prospective cohort, cross-sectional, case report, and case-control studies. Results: Among all the barriers Indigenous women face in accessing prenatal care, the three most significant barriers Indigenous women face include a lack of culturally safe prenatal care, lack of services in the Indigenous community, proximity of prenatal facilities to Indigenous communities and costs of transportation. Discussion: The study found three significant barriers indigenous women face in accessing prenatal care in Canada; the geographical distribution of healthcare facilities, distrust between patients and healthcare professionals, and cultural sensitivity. Some of the suggested solutions include building more birthing and prenatal care facilities in rural areas for indigenous women, educating healthcare professionals on culturally sensitive healthcare, and involving indigenous people in the decision-making process to reduce distrust and power imbalances. Conclusion: The involvement of indigenous women and community leaders is important in making decisions regarding the implementation of effective healthcare and prenatal programs for indigenous women. However, further research is required to understand the effectiveness of the solutions and the barriers that make prenatal care less accessible for indigenous women in Canada.Keywords: indigenous, maternal health, prenatal care, barriers
Procedia PDF Downloads 1523989 Phone Number Spoofing Attack in VoLTE 4G
Authors: Joo-Hyung Oh
Abstract:
The number of service users of 4G VoLTE (voice over LTE) using LTE data networks is rapidly growing. VoLTE based on all-IP network enables clearer and higher-quality voice calls than 3G. It does, however, pose new challenges; a voice call through IP networks makes it vulnerable to security threats such as wiretapping and forged or falsified information. And in particular, stealing other users’ phone numbers and forging or falsifying call request messages from outgoing voice calls within VoLTE result in considerable losses that include user billing and voice phishing to acquaintances. This paper focuses on the threats of caller phone number spoofing in the VoLTE and countermeasure technology as safety measures for mobile communication networks.Keywords: LTE, 4G, VoLTE, phone number spoofing
Procedia PDF Downloads 4323988 Long Short-Time Memory Neural Networks for Human Driving Behavior Modelling
Authors: Lu Zhao, Nadir Farhi, Yeltsin Valero, Zoi Christoforou, Nadia Haddadou
Abstract:
In this paper, a long short-term memory (LSTM) neural network model is proposed to replicate simultaneously car-following and lane-changing behaviors in road networks. By combining two kinds of LSTM layers and three input designs of the neural network, six variants of the LSTM model have been created. These models were trained and tested on the NGSIM 101 dataset, and the results were evaluated in terms of longitudinal speed and lateral position, respectively. Then, we compared the LSTM model with a classical car-following model (the intelligent driving model (IDM)) in the part of speed decision. In addition, the LSTM model is compared with a model using classical neural networks. After the comparison, the LSTM model demonstrates higher accuracy than the physical model IDM in terms of car-following behavior and displays better performance with regard to both car-following and lane-changing behavior compared to the classical neural network model.Keywords: traffic modeling, neural networks, LSTM, car-following, lane-change
Procedia PDF Downloads 2613987 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: metaphor detection, deep learning, representation learning, embeddings
Procedia PDF Downloads 1533986 “It’s All in Your Head”: Epistemic Injustice, Prejudice, and Power in the Modern Healthcare System
Authors: David Tennison
Abstract:
Epistemic injustice, an injustice done to a person specifically in their capacity as a “knower”, is a subtle form of discrimination, yet its effects can be as dehumanizing and damaging as more overt forms of discrimination. The lens of epistemic injustice has, in recent years, been fruitfully applied to the field of healthcare, examining questions of agency, power, credibility and belief in doctor-patient interactions. Contested illness patients (e.g., those with illnesses lacking scientific consensuses such as fibromyalgia (FM), Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS) and Long Covid) face higher levels of scrutiny than other patient groups and are often disbelieved or dismissed when their ailments cannot be easily imaged or tested for- often encapsulated by the expression “it’s all in your head”. Using the case study of FM, the trials of contested illness patients in healthcare can be conceptualized in terms of epistemic injustice, and what is going wrong in these doctor-patient relationships can be effectively diagnosed. This case study also helps reveal epistemic dysfunction (structural epistemic issues embedded in the healthcare system), how this relates to stigma identity-based prejudice, and how the healthcare system upholds existing societal hierarchies and disenfranchises the most vulnerable. In the modern landscape, where cases of these chronic illnesses are not only on the rise but future pandemics threaten to add to their number, this conversation is crucial for the well-being of patients and providers. This presentation will cover what epistemic injustice is and how it can be applied to the politics of the doctor-patient interaction on a micro level and the politics of the healthcare system more broadly. Contested illnesses will be explored in terms of how the “contested” label causes the patient to experience disease stigma and lowers their credibility in healthcare and across other aspects of life. This will be explored in tandem with a discussion of existing identity-based prejudice in the healthcare system and how social identities (such as those of gender, race, and socioeconomic status) intersect with the contested illness label. The effects of epistemic injustice, which include worsening patients’ symptoms of mental health and potentially disenfranchising them from the healthcare system altogether, will be presented alongside the potential ethical quandaries this poses for providers. Finally, issues with the way healthcare appointments and the modern NHS function will be explored in terms of epistemic injustice and solutions to improve doctor-patient communication and patient care will be discussed. The relationship between contested illness patients and healthcare providers is notoriously poor, and while this can mean frustration or feelings of unfulfillment in providers, the negative effects for patients are much more severe. The purpose of this research, then, is to highlight these issues and suggest ways in which to improve the healthcare experience for these patients, along with improving doctor-patient communication and mending the doctor-patient relationship in a tangible and realistic way. This research also aims to provoke important conversations about belief and hierarchy in medical settings and how these aspects intersect with identity prejudices.Keywords: epistemic injustice, fibromyalgia, contested illnesses, chronic illnesses, doctor-patient relationships, philosophy of medicine
Procedia PDF Downloads 603985 Traffic Congestions Modeling and Predictions by Social Networks
Authors: Bojan Najdenov, Danco Davcev
Abstract:
Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android
Procedia PDF Downloads 4813984 Natural Emergence of a Core Structure in Networks via Clique Percolation
Authors: A. Melka, N. Slater, A. Mualem, Y. Louzoun
Abstract:
Networks are often presented as containing a “core” and a “periphery.” The existence of a core suggests that some vertices are central and form the skeleton of the network, to which all other vertices are connected. An alternative view of graphs is through communities. Multiple measures have been proposed for dense communities in graphs, the most classical being k-cliques, k-cores, and k-plexes, all presenting groups of tightly connected vertices. We here show that the edge number thresholds for such communities to emerge and for their percolation into a single dense connectivity component are very close, in all networks studied. These percolating cliques produce a natural core and periphery structure. This result is generic and is tested in configuration models and in real-world networks. This is also true for k-cores and k-plexes. Thus, the emergence of this connectedness among communities leading to a core is not dependent on some specific mechanism but a direct result of the natural percolation of dense communities.Keywords: cliques, core structure, percolation, phase transition
Procedia PDF Downloads 1713983 Gender Effects in EEG-Based Functional Brain Networks
Authors: Mahdi Jalili
Abstract:
Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.Keywords: EEG, brain, functional networks, network science, graph theory
Procedia PDF Downloads 4433982 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development
Authors: R. Byler
Abstract:
Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.Keywords: community-based innovation, integrated knowledge networks, nanotechnology, technology innovation
Procedia PDF Downloads 4113981 An Observational Study Assessing the Baseline Communication Behaviors among Healthcare Professionals in an Inpatient Setting in Singapore
Authors: Pin Yu Chen, Puay Chuan Lee, Yu Jen Loo, Ju Xia Zhang, Deborah Teo, Jack Wei Chieh Tan, Biauw Chi Ong
Abstract:
Background: Synchronous communication, such as telephone calls, remains the standard communication method between nurses and other healthcare professionals in Singapore public hospitals despite advances in asynchronous technological platforms, such as instant messaging. Although miscommunication is one of the most common causes of lapses in patient care, there is a scarcity of research characterizing baseline inter-professional healthcare communications in a hospital setting due to logistic difficulties. Objective: This study aims to characterize the frequency and patterns of communication behaviours among healthcare professionals. Methods: The one-week observational study was conducted on Monday through Sunday at the nursing station of a cardiovascular medicine and cardiothoracic surgery inpatient ward at the National Heart Centre Singapore. Subjects were shadowed by two physicians for sixteen hours or consecutive morning and afternoon nursing shifts. Communications were logged and characterized by type, duration, caller, and recipient. Results: A total of 1,023 communication events involving the attempted use of the common telephones at the nursing station were logged over a period of one week, corresponding to a frequency of one event every 5.45 minutes (SD 6.98, range 0-56 minutes). Nurses initiated the highest proportion of outbound calls (38.7%) via the nursing station common phone. A total of 179 face-to-face communications (17.5%), 362 inbound calls (35.39%), 481 outbound calls (47.02%), and 1 emergency alert (0.10%) were captured. Average response time for task-oriented communications was 159 minutes (SD 387.6, range 86-231). Approximately 1 in 3 communications captured aimed to clarify patient-related information. The total duration of time spent on synchronous communication events over one week, calculated from total inbound and outbound calls, was estimated to be a total of 7 hours. Conclusion: The results of our study showed that there is a significant amount of time spent on inter-professional healthcare communications via synchronous channels. Integration of patient-related information and use of asynchronous communication channels may help to reduce the redundancy of communications and clarifications. Future studies should explore the use of asynchronous mobile platforms to address the inefficiencies observed in healthcare communications.Keywords: healthcare communication, healthcare management, nursing, qualitative observational study
Procedia PDF Downloads 2103980 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 833979 Securing Health Monitoring in Internet of Things with Blockchain-Based Proxy Re-Encryption
Authors: Jerlin George, R. Chitra
Abstract:
The devices with sensors that can monitor your temperature, heart rate, and other vital signs and link to the internet, known as the Internet of Things (IoT), have completely transformed the way we control health. Providing real-time health data, these sensors improve diagnostics and treatment outcomes. Security and privacy matters when IoT comes into play in healthcare. Cyberattacks on centralized database systems are also a problem. To solve these challenges, the study uses blockchain technology coupled with proxy re-encryption to secure health data. ThingSpeak IoT cloud analyzes the collected data and turns them into blockchain transactions which are safely kept on the DriveHQ cloud. Transparency and data integrity are ensured by blockchain, and secure data sharing among authorized users is made possible by proxy re-encryption. This results in a health monitoring system that preserves the accuracy and confidentiality of data while reducing the safety risks of IoT-driven healthcare applications.Keywords: internet of things, healthcare, sensors, electronic health records, blockchain, proxy re-encryption, data privacy, data security
Procedia PDF Downloads 153978 The Role of Social Networking in Activating the Participation of Youth in the Community
Authors: Raya Hamed Hial Al Maamari
Abstract:
The gulf societies have been undergoing radical changes because of the technology transfer. It altered the humanities attitudes. Especially, youth habits so they become a fond of using social networking. This study aimed to find out the ratio of social networking in Directing youth to participate with government institutions in decision-making and improving their societies. The study considered a descriptive study, social survey method was used on a sample of 100 young men from different gulf countries, using an electronic questionnaire, with some interviews with famous leaders of youth groups. Finally, the researchers suggested many effective views to activate youth efforts using social networks as an effective manner to plan for the development policy and Implemented accurately in the community. The findings illustrated that social networks play a vital role in encouraging youth to participate Enthusiastically in providing the service. As it notices these networks contain large numbers of youth. Therefore, the influences become widely and feasible. Moreover, the study indicated the fact that most of youth teamwork started in these social networks. Then, it has been growing to the real society.Keywords: social work, volunteering, youth, community
Procedia PDF Downloads 3463977 Future Considerations for Wounded Service Members and Veterans of the Global War on Terror
Authors: Selina Doncevic, Lisa Perla, Angela Kindvall
Abstract:
The Global War on Terror which began after September 11, 2011, increased survivability of severe injuries requiring varying trajectories of rehabilitation and recovery. The costs encompass physiologic, functional, social, emotional, psychological, vocational and scholastic domains of life. The purpose of this poster is to inform private sector health care practitioners and clinicians at various levels of the unique and long term dynamics of healthcare recovery for polytrauma, and traumatic brain injured service members and veterans in the United States of America. Challenges include care delivery between the private sector, the department of defense, and veterans affairs healthcare systems while simultaneously supporting the dynamics of acute as well as latent complications associated with severe injury and illness. Clinical relevance, subtleties of protracted recovery, and overwhelmed systems of care are discussed in the context of lessons learned and in reflection on previous wars. Additional concerns for consideration and discussion include: the cost of protracted healthcare, various U.S. healthcare payer systems, lingering community reintegration challenges, ongoing care giver support, the rise of veterans support groups and the development of private sector clinical partnerships.Keywords: brain injury, future, polytrauma, rehabilitation
Procedia PDF Downloads 1983976 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework
Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari
Abstract:
The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency
Procedia PDF Downloads 59