Search results for: effluent treatment plant
10670 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop
Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares
Abstract:
Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.Keywords: agriculture, composting, soil, sugar beet lime, wastewater
Procedia PDF Downloads 32310669 Modeling and Simulation of Fluid Catalytic Cracking Process
Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee
Abstract:
Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model.Keywords: fluid catalytic cracking, simulation, plant data, process design
Procedia PDF Downloads 52910668 A Systematic Review of the Antimicrobial Effects of Different Plant Extracts (Quercus infectoria) as Possible Candidates in the Treatment of Infectious Diseases
Authors: Sajjad Jafari
Abstract:
Background and Aim: The use of herbal medicines has a long history. Today, due to the resistance of microorganisms to antibiotics and antimicrobial substances, herbal medicines have attracted attention due to their significant antimicrobial effects and low toxicity. This study aims to systematically review the antimicrobial effects of different plant extracts (Quercus infectoria) as possible candidates for treating infectious diseases. Material and Methods: The present study is a review study by searching reputable scientific databases such as PubMed, Google Scholar, Scopus, and Web of Science from 2000 to 2023 using the keywords Antimicrobial, Quercus infectoria, Medicinal herbal, Infectious diseases the latest information obtained. Results: In this study, 45 articles were found and reviewed. Quercus infectoria is a small tree native to Greece, Asia Minor, and Iran. Quercus is a plant genus in the family of Fagaceae. This species is generally known under the name ‘‘baloot” in Iran and is commonly used as a medicinal plant. The extracts used included water, hydro-alcoholic, ethanol, methanol. This plant had high inhibition activity and a lethal effect on gram-positive and gram-negative bacteria of ATCC strains, hospital, and resistant strains. Therefore, in addition to antibacterial effects, antiparasitic and antifungal effects. The seed of the plant was the most used and the most effective antimicrobial extract among the ethanol and methanol extracts. Conclusion: The findings of this study suggest that Quercus infectoria has significant antimicrobial effects against a wide range of microorganisms. This makes it a potential candidate for the development of new antimicrobial drugs. Further research is needed to confirm the efficacy and safety of Quercus infectoria in clinical trials.Keywords: antimicrobial, Quercus infectoria, medicinal herbal, infectious diseases
Procedia PDF Downloads 9610667 Recirculated Sedimentation Method to Control Contamination for Algal Biomass Production
Authors: Ismail S. Bostanci, Ebru Akkaya
Abstract:
Microalgae-derived biodiesel, fertilizer or industrial chemicals' production with wastewater has great potential. Especially water from a municipal wastewater treatment plant is a very important nutrient source for biofuel production. Microalgae biomass production in open ponds system is lower cost culture systems. There are many hurdles for commercial algal biomass production in large scale. One of the important technical bottlenecks for microalgae production in open system is culture contamination. The algae culture contaminants can generally be described as invading organisms which could cause pond crash. These invading organisms can be competitors, parasites, and predators. Contamination is unavoidable in open systems. Potential contaminant organisms are already inoculated if wastewater is utilized for algal biomass cultivation. Especially, it is important to control contaminants to retain in acceptable level in order to reach true potential of algal biofuel production. There are several contamination management methods in algae industry, ranging from mechanical, chemical, biological and growth condition change applications. However, none of them are accepted as a suitable contamination control method. This experiment describes an innovative contamination control method, 'Recirculated Sedimentation Method', to manage contamination to avoid pond cash. The method can be used for the production of algal biofuel, fertilizer etc. and algal wastewater treatment. To evaluate the performance of the method on algal culture, an experiment was conducted for 90 days at a lab-scale raceway (60 L) reactor with the use of non-sterilized and non-filtered wastewater (secondary effluent and centrate of anaerobic digestion). The application of the method provided the following; removing contaminants (predators and diatoms) and other debris from reactor without discharging the culture (with microscopic evidence), increasing raceway tank’s suspended solids holding capacity (770 mg L-1), increasing ammonium removal rate (29.83 mg L-1 d-1), decreasing algal and microbial biofilm formation on inner walls of reactor, washing out generated nitrifier from reactor to prevent ammonium consumption.Keywords: contamination control, microalgae culture contamination, pond crash, predator control
Procedia PDF Downloads 20710666 Investigating the Antibacterial Properties and Omega-3 Levels of Evening Primrose Plant Against Multi-Drug Resistant Bacteria
Authors: A. H. Taghdisi, M. Mirmohammadi, S. Kamali
Abstract:
Evening primrose (Oenothera biennis L.) is a biennial and herbaceous and one of the most important species of medicinal plants in the world. due to the production of unsaturated fatty acids such as linoleic acid, alpha-linolenic acid, etc. in its seeds and roots, and compounds such as kaempferol in its leaves, Evening primrose has important medicinal efficiency such as reducing premenstrual problems, acceleration of wound healing, inhibiting platelet aggregation, sedation of cardiovascular diseases, and treatment of viral infections. The sap of the plant is used to treat warts, and the plant itself is used as a charm against mental and spiritual diseases and poisonous animals. Its leaves have significant antibacterial activity against yellow staphylococci. It is also used in the treatment of poisoning, especially the toxication caused by the consumption of alcoholic beverages, in the treatment of arteriosclerosis and diseases caused by liver cell insufficiency. Low germination and production speed are the problems of evening primrose growth and propagation. In the present study, extracts were obtained from four components (flowers, stems, seeds, leaves) of the evening primrose plant using the Soxhlet apparatus. To measure the antibacterial properties against MDR bacteria, microbial methods, including dilution, cultivation on a plate containing nutrient agar culture medium, and disc diffusion in agar, were performed using Staphylococcus aureus and Escherichia coli bacteria on all four extracts. The maximum antibacterial activity related to the dilution method was obtained in all extracts. In the plate culture method, antibacterial activity was obtained for all extracts in the nutrient agar medium. The maximum diameter of the non-growth halo was obtained in the disc diffusion method in agar in the leaf extract. The statistical analysis of the microbial part was done by one-way ANOVA test (SPSS). By comparing the amount of omega-3 in extracts of Iranian and foreign oils available in the market and the extracts extracted from evening primrose plant samples with gas chromatography, it is shown that the stem extract had the most omega-3 (oleic acid) and compared to the extract of the mentioned oils, it had the highest amount of omega-3 overall. Also, the amount of omega-3 in the extract of Iranian oils was much higher than in the extract of foreign oils. It should be noted that the extract of foreign oils had a more complete composition of omega-3 than the extract of Iranian oils.Keywords: antibacterial activity, MDR bacteria, evening primrose, omega-3
Procedia PDF Downloads 10310665 Medicinal Plants Used by Moroccan People in the Management of Diabetes and Hypertension
Authors: Alami Ilyass, Kharchoufa Loubna, Alachouri Mostafa
Abstract:
Cardiovascular disease (CDV) remains the major cause of morbidity; mortality and disability throughout the world. The ethnopharmcological and ethnobotanical studies are the paramount importance to set a high value on phytogenetic resources and to address health problems of some communities; especially poor peoples. Our work presents an analysis of published data from studies, that have been undertaken, in Morocco, by different seeker teams in separately areas during the last decades. Objectives: Evaluate and identify medicinal plants used for cardiovascular treatment by Moroccan people. Methodology: All these studies have the same approaches ; they were conducted by interviewing people suffering from diabetes. We use Factorial Analysis (FA) and principal Components analysis (PCA) to analyse the aggregated data from the different studies. Results: globally; 95 plants species were listed; all these plant were used empirically by Moroccan society for treating cardiovascular problems. These plants were divided in to 42 families and 87 genus. The lamiaceae; asteraceae; Apiaceae and poaceae are the botanical families with high number of plant species. Coclusion: Traditional medecine has been widely used for treatment of cardiovascular problems and it has been recognized as an interesting alternative to conventional medicine.Keywords: cardiovascular, ethnobotanical, medicinal plants, Morocco
Procedia PDF Downloads 23910664 Shear Enhanced Flotation Technology Applied to Treat Winery Wastewater
Authors: Bernard Bladergroen, David Vlotman, Bradley Cerff
Abstract:
The agricultural sector is one which requires and consumes large amounts of water globally. Commercial wine production, in particular, uses extensive volumes of fresh water and generates significant volumes of wastewater through various processes. The wastewater produced by wineries typically exhibits elevated levels of chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), acidic pH and varying salinity and nutrient contents. This study investigates the performance of a shear-enhanced flotation separation (SEFS) pilot plant as a primary treatment stage during winery wastewater processing by modifying a conventional Dissolved Air Flotation (DAF) system. The SEFS pilot plant achieved a 99% reduction in both turbidity and TSS in comparison to the 97% achieved with the conventional DAF system. The COD was reduced by 66% and 51% for the SEFS and DAF systems, respectively. SEFS shows the advantages of hydrodynamic shear to enhance the coagulation and subsequent flocculation processes with a significant reduction of coagulant and flocculant (36% and 31%, respectively).Keywords: shear enhanced flotation, suspended solids, primary wastewater treatment, zeta potential
Procedia PDF Downloads 6210663 Absorption Capability Examination of Heavy Metals by Spirogyra Alga in Ahvaz Water Treatment Plant
Authors: F. Fakheri Raof, F. Zobeidizadeh
Abstract:
The present study examined the potential capability of Spirogyra algae remove heavy metals Zn, Pb, Cu, and Cr from the water. For this purpose, the water treatment No. 3 of Ahvaz County in Khuzestan Province of Iran was selected as a case study. From 8 sampling stations, 4 stations were dedicated to the water samples and 4 stations to the algae samples. According to the obtained results, the concentration of the heavy metals Cr, Cu, Pb, and Zn in water samples were within the ranges of 1.98-19.53, 0.67-13.45, 1-23.18, and 2.12-83.04 µg/L. Besides, the concentration of heavy metal Cr, Pb, Cu, and Zn in spirogyra algae samples varied between the ranges 2.30-3.61, 2.06-3.43, 2.29-2.56, and 9.88-10.84 µg/L. The highest amount of metal absorption in spirogyra algae samples was related to the zinc. The obtained results also indicated that the last spirogyra algae sample which was at the inlet of Tank 4 absorbed the lowest concentration of metals. This would be due to the treatment process along the course of ponds resulted in completely pure water at the outlet without the existence of algae on the sides. The paper also provides some useful recommendations on this issue.Keywords: absorption, Ahvaz, heavy metal, spirogyra algae, water treatment plants
Procedia PDF Downloads 26510662 Evaluation of the Performance of ACTIFLO® Clarifier in the Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia
Authors: Seyed Mohsen Samaei, Shirley Gato-Trinidad
Abstract:
A pre-treatment stage prior to reverse osmosis (RO) is very important to ensure the long-term performance of the RO membranes in any wastewater treatment using RO. This study aims to evaluate the application of the Actiflo® clarifier as part of a pre-treatment unit in mining operations. It involves performing analytical testing on RO feed water before and after installation of Actiflo® unit. Water samples prior to RO plant stage were obtained on different dates from Costerfield mining operations in Victoria, Australia. Tests were conducted in an independent laboratory to determine the concentration of various compounds in RO feed water before and after installation of Actiflo® unit during the entire evaluated period from December 2015 to June 2018. Water quality analysis shows that the quality of RO feed water has remarkably improved since installation of Actiflo® clarifier. Suspended solids (SS) and turbidity removal efficiencies has been improved by 91 and 85 percent respectively in pre-treatment system since the installation of Actiflo®. The Actiflo® clarifier proved to be a valuable part of pre-treatment system prior to RO. It has the potential to conveniently condition the mining wastewater prior to RO unit, and reduce the risk of RO physical failure and irreversible fouling. Consequently, reliable and durable operation of RO unit with minimum requirement for RO membrane replacement is expected with Actiflo® in use.Keywords: ACTIFLO ® clarifier, mining wastewater, reverse osmosis, water treatment
Procedia PDF Downloads 19310661 Extraction, Isolation and Comparative Phtochemical Study of Aegle Marmelos, Calendula Officinalis and Fenugreek
Authors: Nitin Rajan, Kashif Shakeel, Shashank Tiwari, Shachan Sagar
Abstract:
Background: - Aegle Marmelos (Bael) leaf extract is taken twice daily to treat ophthalmia, ulcers, and intestinal worms, among other ailments. Poultice made from bael leaf is used in the treatment of eye conditions. The leaf juice has a variety of therapeutic applications, with the most notable being the treatment of diabetes. Fenugreek is used to cure red spots around the eyes, as well as to soften the throat and chest and to give relief from coughing. The use of this plant in the form of infusion, powder, pomade, and decoction has been extremely popular in Iranian traditional medicine. The plant may be used to wash one's vaginal linings. This plant is used as an emollient in the lack of appetite, treatment of pellagra, and gastrointestinal problems, as well as a general tonic. Calendula officinalis leaves are used to treat varicose veins on the outside of the body by infusing them. In Europe, the leaves are diaphoretic and resolvent in nature, while the blooms are employed as an emmenagogue and antispasmodic stimulant in Canada and the United States. The flowers were decocted and served as a posset drink when smallpox and measles were common in England, and the fresh juice was used to treat jaundice. Objective: - This study is done to compare the physicochemical parameter of the alcoholic extract of the leaves of Aegle Marmelos, Calendula Officinalis, and Fenugreek. Materials and Methods: Extraction and Isolation of Aegle Marmelos, Calendula Officinalis, Fenugreek, were done. Preliminary phytochemical study for alkaloids, cardiac glycosides, flavonoids, glycosides, phenols, resins, saponins, steroids, tannins, terpenoids of the extract was done individual by using the standard procedure. Result: - The phytochemical screening of Aegle Marmelos, Calendula Officinalis, and Fenugreek shows the presence of alkaloids, carbohydrates, total phenolics, total flavonoids, tannins, saponins gum. Conclusion: - In this study, we have found that crude aqueous and organic solvent extracts of Aegle Marmelos, Calendula Officinalis, and Fenugreek leaves contain some important bioactive compounds and it justifies their use in the traditional medicines for the treatment of different diseases.Keywords: Aegle Marmelos, Calendula Officinalis, Fenugreek, physiochemical parameter
Procedia PDF Downloads 15410660 Changes in Inorganic Element Contents in Potamogeton Natans Exposed to Cement Factory Pollution
Authors: Yavuz Demir, Mucip Genisel, Hulya Turk, Turgay Sisman, Serkan Erdal
Abstract:
In this study, the changes in contents of inorganic elements in the aquatic plant (Potamogeton natans) as a reflection of the impact of chemical nature pollution in a cement factory region (CFR) was evaluated. For this purpose, P, S, K, Ca, Fe, Cl, Mn, Cu, Zn, Mo, Ni, Si, Al, and Cd concentrations were measured in the aquatic plant (Potamogeton natans) taken from a CFR. As a control, aquatic plant was collected at a distance of 2000 m from the outer zone of the cement factory. Inorganic element compositions were measured by energy dispersive X-ray fluorescence spectrometry (EDXRF). Three aquatic plant exhibited similar changes in contents of microelements and macroelements in their leaves. P, S, K, Cl, Ca, and Mo contents in plant grown in the CFR were reduced significantly compared to control plant, whereas their contents of Al, Mn, Fe, Ni, Cu, Zn and Cd were very high. According to these findings, it is possible that aquatic plant (Potamogeton natans) inhabiting in the vicinity of cement factory sustains the deficiency of important essential elements like P, S, K, Ca, and Mo and greatly accumulate heavy metals like Al, Mn, Fe, Ni, Cu, Zn, and Cd. In addition, results of water analysis showed that heavy metal content such as Cu, Pb, Zn, Co, and Al of water taken from CFR was remarkably high than that of outer zone of CFR. These findings with relation to changes in inorganic composition can contribute to be elucidated of effect mechanism on growth and development of aquatic plant (Potamogeton natans) of pollution resulted from cement factories.Keywords: aquatic plant, cement factory, heavy metal pollution, inorganic element, Potamogeton natans
Procedia PDF Downloads 27410659 Nickel and Chromium Distributions in Soil and Plant Influenced by Geogenic Sources
Authors: Mohamad Sakizadeh, Fatemeh Mehrabi Sharafabadi, Hadi Ghorbani
Abstract:
Concentrations of Cr and Ni in 97 plant samples (belonged to eight different plant species) and the associated soil groups were considered in this study. The amounts of Ni in soil groups fluctuated between 26.8 and 36.8 mgkg⁻¹ whereas the related levels of chromium ranged from 67.7 to 94.3mgkg⁻¹. The index of geoaccumulation indicated that 87 percents of the studied soils for chromium and 98.8 percents for nickel are located in uncontaminated zone. The results of Mann-Whitney U-test proved that agricultural practices have not significantly influenced the values of Ni and Cr. In addition, tillage had also little impact on the Ni and Cr transfer in the surface soil. Ni showed higher accumulation and soil-to-plant transfer factor compared with that of chromium in the studied plants. There was a high similarity between the accumulation pattern of Cr and Fe in most of the plant species.Keywords: bioconcentration factor, chromium, geoaccumulation index, nickel
Procedia PDF Downloads 35810658 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber
Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo
Abstract:
Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties
Procedia PDF Downloads 35310657 Development of an Integrated Methodology for Fouling Control in Membrane Bioreactors
Authors: Petros Gkotsis, Anastasios Zouboulis, Manasis Mitrakas, Dimitrios Zamboulis, E. Peleka
Abstract:
The most serious drawback in wastewater treatment using membrane bioreactors (MBRs) is membrane fouling which gradually leads to membrane permeability decrease and efficiency deterioration. This work is part of a research project that aims to develop an integrated methodology for membrane fouling control, using specific chemicals which will enhance the coagulation and flocculation of compounds responsible for fouling, hence reducing biofilm formation on the membrane surface and limiting the fouling rate acting as a pre-treatment step. For this purpose, a pilot-scale plant with fully automatic operation achieved by means of programmable logic controller (PLC) has been constructed and tested. The experimental set-up consists of four units: wastewater feed unit, bioreactor, membrane (side-stream) filtration unit and permeate collection unit. Synthetic wastewater was fed as the substrate for the activated sludge. The dissolved oxygen (DO) concentration of the aerobic tank was maintained in the range of 2-3 mg/L during the entire operation by using an aerator below the membrane module. The membranes were operated at a flux of 18 LMH while membrane relaxation steps of 1 min were performed every 10 min. Both commercial and composite coagulants are added in different concentrations in the pilot-scale plant and their effect on the overall performance of the ΜΒR system is presented. Membrane fouling was assessed in terms of TMP, membrane permeability, sludge filterability tests, total resistance and the unified modified fouling index (UMFI). Preliminary tests showed that particular attention should be paid to the addition of the coagulant solution, indicating that pipe flocculation effectively increases hydraulic retention time and leads to voluminous sludge flocs. The most serious drawback in wastewater treatment using MBRs is membrane fouling, which gradually leads to membrane permeability decrease and efficiency deterioration. This results in increased treatment cost, due to high energy consumption and the need for frequent membrane cleaning and replacement. Due to the widespread application of MBR technology over the past few years, it becomes clear that the development of a methodology to mitigate membrane fouling is of paramount importance. The present work aims to develop an integrated technique for membrane fouling control in MBR systems and, thus, contribute to sustainable wastewater treatment.Keywords: coagulation, membrane bioreactor, membrane fouling, pilot plant
Procedia PDF Downloads 30910656 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization
Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu
Abstract:
Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.Keywords: flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up
Procedia PDF Downloads 32010655 A Decision Making Tool for Selecting the Most Environmental Friendly Wastewater Treatment Plant for Small-Scale Communities
Authors: Mehmet Bulent Topkaya, Mustafa Yildirim
Abstract:
Wastewater treatment systems are designed and used to minimize adverse impacts of the wastewater on the environment before discharging. Various treatment options for wastewater treatment have been developed, and each of them has different performance characteristics and environmental impacts (e.g. material and land usage, energy consumption, greenhouse gas emission, water and soil emission) during construction, operation or maintenance phases. Assessing the environmental impacts during these phases are essential for the overall evaluation of the treatment systems. In this study, wastewater treatment options, such as vegetated land treatment, constructed wetland, rotating biological contactor, conventional activated sludge treatment, membrane bioreactor, extended aeration and stabilization pond are evaluated. The comparison of the environmental impacts is conducted under the assumption that the effluents will be discharged to sensitive and less sensitive areas respectively. The environmental impacts of each alternative are evaluated by life cycle assessment (LCA) approach. For this purpose, data related to energy usage, land requirement, raw material consumption, and released emissions from the life phases were collected with inventory studies based on field studies and literature. The environmental impacts were assessed by using SimaPro 7.1 LCA software. As the scale of the LCA results is global, an MS-Excel based decision support tool that includes the LCA result is developed in order to meet also the local demands. Using this tool, it is possible to assign weight factors on the LCA results according to local conditions by using Analytical Hierarchy Process and finally the most environmentally appropriate treatment option can be selected.Keywords: analytical hierarchy process, decision support system, life cycle assessment, wastewater treatment
Procedia PDF Downloads 30110654 Biofertilization of Cucumber (Cucumis sativus L.) Using Trichoderma longibrachiatum
Authors: Kehinde T. Kareem
Abstract:
The need to increase the production of cucumber has led to the use of inorganic fertilizers. This chemical affects the ecological balance of nature by increasing the nitrogen and phosphorus contents of the soil. Surface runoffs into rivers and streams cause eutrophication which affects aquatic organisms as well as the consumers of aquatic animals. Therefore, this study was carried out in the screenhouse to investigate the use of a plant growth-promoting fungus; Trichoderma longibrachiatum for the growth promotion of conventional and in-vitro propagated Ashley and Marketmoor cucumber. Before planting of cucumber, spore suspension (108 cfu/ml) of Trichoderma longibrachiatum grown on Potato dextrose agar (PDA) was inoculated into the soil. Fruits were evaluated for the presence of Trichoderma longibrachiatum using a species-specific primer. Results revealed that the highest significant plant height produced by in-vitro propagated Ashley was 19 cm while the highest plant height of in-vitro propagated Marketmoor was 19.67 cm. The yield of the conventional propagated Ashley cucumber showed that the number of fruit/plant obtained from T. longibrachiatum-fertilized plants were significantly more than those of the control. The in-vitro Ashely had 7 fruits/plant while the control produced 4 fruits/plant. In-vitro Marketmoor had ten fruits/plant, and the control had a value of 4 fruits/plant. There were no traces of Trichoderma longibrachiatum genes in the harvested cucumber fruits. Therefore, the use of Trichoderma longibrachiatum as a plant growth-promoter is safe for human health as well as the environment.Keywords: biofertilizer, cucumber, genes, growth-promoter, in-vitro, propagation
Procedia PDF Downloads 24410653 Possible Role of Fenofibrate and Clofibrate in Attenuated Cardioprotective Effect of Ischemic Preconditioning in Hyperlipidemic Rat Hearts
Authors: Gurfateh Singh, Mu Khan, Razia Khanam, Govind Mohan
Abstract:
Objective: The present study has been designed to investigate the beneficial role of Fenofibrate & Clofibrate in attenuated the cardioprotective effect of ischemic preconditioning (IPC) in hyperlipidemic rat hearts. Materials & Methods: Experimental hyperlipidemia was produced by feeding high fat diet to rats for a period of 28 days. Isolated langendorff’s perfused normal and hyperlipidemic rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 120 min. The myocardial infarct size was assessed macroscopically using triphenyltetrazolium chloride staining. Coronary effluent was analyzed for lactate dehydrogenase (LDH) and creatine kinase-MB release to assess the extent of cardiac injury. Moreover, the oxidative stress in heart was assessed by measuring thiobarbituric acid reactive substance, superoxide anion generation and reduced form of glutathione. Results: The ischemia-reperfusion (I/R) has been noted to induce oxidative stress by increasing TBARS, superoxide anion generation and decreasing reduced form of glutathione in normal and hyperlipidemic rat hearts. Moreover, I/R produced myocardial injury, which was assessed in terms of increase in myocardial infarct size, LDH and CK-MB release in coronary effluent and decrease in coronary flow rate in normal and hyperlipidemic rat hearts. In addition, the hyperlipidemic rat hearts showed enhanced I/R-induced myocardial injury with high degree of oxidative stress as compared with normal rat hearts subjected to I/R. Four episodes of IPC (5 min each) afforded cardioprotection against I/R-induced myocardial injury in normal rat hearts as assessed in terms of improvement in coronary flow rate and reduction in myocardial infarct size, LDH, CK-MB and oxidative stress. On the other hand, IPC mediated myocardial protection against I/R-injury was abolished in hyperlipidemic rat hearts. However, Treatment with Fenofibrate (100 mg/kg/day, i.p.), Clofibrate (300mg/kg/day, i.p.) as a agonists of PPAR-α have not affected the cardioprotective effect of IPC in normal rat hearts, but its treatment markedly restored the cardioprotective potentials of IPC in hyperlipidemic rat hearts. Conclusion: It is noted that the high degree of oxidative stress produced in hyperlipidemic rat heart during reperfusion and consequent down regulation of PPAR-α may be responsible to abolish the cardioprotective potentials of IPC.Keywords: Hyperlipidemia, ischemia-reperfusion injury, ischemic preconditioning, PPAR-α
Procedia PDF Downloads 28810652 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation
Authors: Yongjian Gu
Abstract:
Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ
Procedia PDF Downloads 19610651 The Equality Test of Ceftriaxone Anti-Bacterial Effect and Ethanol Extract of Ant Plant (Myermecodia pendens Merr. and L. M Perry) to MRSA
Authors: Rifa’ah Mahmudah Bulu’
Abstract:
MRSA is an important nosocomial pathogen in the world. Therefore, the prevention and effort to control MRSA is still very important to conduct. One of the preventions of MRSA, which have been reported by several studies, is Cefriaxone and Ethanol Extract of Ant Plant. This research is an experimental test to determine the potency of MRSA’s anti-bacterial with Cefriaxone (30 μg) and Ethanol Extract of Ant Plant (13 mg/ml) based on inhibition zone on LAB (Lempeng Agar Biasa). The size of inhibition zone that is formed on Cefriaxone is adjusted with CSLI criteria, which ≥ 21 mm of inhibition zone is called sensitive; ≤13 mm is called resistance and between 14-20 mm is called intermediate. This research is conducted three times. Comparative test between Cefriaxone and Ethanol Extract of Ant Plant is analyzed by Maan Whitney’s statistic method. The Result of Cefriaxone anti-bacterial potency shows the variety of inhibition zone. Cefriaxone forms approximately 16,5-20 mm with average 18,22mm of inhibition zone that make Cefriaxone’s criteria to MRSA’s inhibition is intermediate. Anti-bacterial potency of Ethanol Extract of Ant Plant is about 0,5-2 mm with average 1,17 mm of inhibition zone that prove MRSA is sensitive to Ant Plant. The conclusion of this research shows that Cefriaxone is intermediate to MRSA’s inhibition, while MRSA is sensitive to Ethanol Extract of Ant Plant, which at the end; it creates different potency of anti-bacterial between Cefriaxone and Ethanol Extract of Ant Plant.Keywords: MRSA, cefriaxone, ant plant, CSLI, mann whitney
Procedia PDF Downloads 36710650 Simultaneous Removal of Phosphate and Ammonium from Eutrophic Water Using Dolochar Based Media Filter
Authors: Prangya Ranjan Rout, Rajesh Roshan Dash, Puspendu Bhunia
Abstract:
With the aim of enhancing the nutrient (ammonium and phosphate) removal from eutrophic wastewater with reduced cost, a novel media based multistage bio filter with drop aeration facility was developed in this work. The bio filter was packed with a discarded sponge iron industry by product, ‘dolochar’ primarily to remove phosphate via physicochemical approach. In the multi stage bio-filter drop, aeration was achieved by the process of percolation of the gravity-fed wastewater through the filter media and dropping down of wastewater from stage to stage. Ammonium present in wastewater got adsorbed by the filter media and biomass grown on the filter media and subsequently, got converted to nitrate through biological nitrification in the aerobic condition, as realized by drop aeration. The performance of the bio-filter in treating real eutrophic wastewater was monitored for a period of about 2 months. The influent phosphate concentration was in the range of 16-19 mg/L, and ammonium concentration was in the range of 65-78 mg/L. The average nutrient removal efficiency observed during the study period were 95.2% for phosphate and 88.7% for ammonium, with mean final effluent concentration of 0.91, and 8.74 mg/L, respectively. Furthermore, the subsequent release of nutrient from the saturated filter media, after completion of treatment process has been undertaken in this study and thin layer funnel analytical test results reveal the slow nutrient release nature of spent dolochar, thereby, recommending its potential agricultural application. Thus, the bio-filter displays immense prospective for treating real eutrophic wastewater, significantly decreasing the level of nutrients and keeping the effluent nutrient concentrations at par with the permissible limit and more importantly, facilitating the conversion of the waste materials into usable ones.Keywords: ammonium removal, phosphate removal, multi-stage bio-filter, dolochar
Procedia PDF Downloads 19410649 Exploitation of Terpenes as Guardians in Plant Biotechnology
Authors: Farzad Alaeimoghadam, Farnaz Alaeimoghadam
Abstract:
Plants are always being threatened by biotic and abiotic elements in their abode. Although they have inherited mechanisms to defend themselves, sometimes due to overpowering of their enemies or weakening of themselves, they just suffer from those elements. Human, as to help plants defend themselves, have developed several methods among which application of terpenes via plant biotechnology is promising. Terpenes are the most frequent and diverse secondary metabolites in plants. In these plants, terpenes are involved in different protective aspects. In this field, by utilizing biotechnological approaches on them, a delicate, precise, and an economic intervention will be achieved. In this review, first, the importance of terpenes as guardians in plants, which include their allelopathy effect, a call for alliances, and a mitigation impact on abiotic stresses will be pointed out. Second, problems concerning terpenes application in plant biotechnology comprising: damage to cell, undesirable terpene production and undesirable concentration and proportion of terpenes will be discussed. At the end, the approaches in plant biotechnology of terpenes including tampering with terpene gene sequences, compartmentalization, and localization and utilization of membrane transporters will be expressed. It is concluded with some useful notions concerning the topic.Keywords: plant biotechnology, plant protection, terpenes, terpenoids
Procedia PDF Downloads 35410648 Vermicomposting Amended With Microorganisms and Biochar: Phytopathogen Resistant Seedbeds for Vegetables and Heavy Metal Polluted Waste Treatment
Authors: Fuad Ameen, Ali A. Al-Homaidan
Abstract:
Biochar can be used in numerous biotechnological applications due to its properties to adsorb beneficial nutrients and harmful pollutants. Objectives: We aimed to treat heavy metal polluted organic wastes using vermicomposting process and produce a fertilizer that can be used in agriculture. We improved the process by adding biochar as well as microbial inoculum and biomass into household waste or sewage sludge before vermicomposting. The earthworm Eisenia fetida used in vermicomposting was included to accumulate heavy metals, biochar to adsorb heavy metals, and the microalga Navicula sp. or the mangrove fungus Acrophialophora sp. to promote plant growth in the final product used as a seedbed for Solanaceae vegetables. We carried out vermicomposting treatments to see the effect of different amendments. Final compost quality was analyzed for maturity. The earthworms were studied for their vitality, heavy metal accumulation, and metallothionein protein content to verify their role in the process. The compost was used as a seedbed for vegetables that were inoculated with a phytopathogen Pythium sp. known to cause root rot and destroy seeds. Compost as seedbed promoted plant growth and reduced disease symptoms in leaves. In the treatment where E. fetida, 6% biochar, and Navicula sp. had been added, 90% of the seeds germinated, while less than 20% germinated in the control treatment. The experimental plants had acquired resistance against Pythium sp. The metagenomic profile of microbial communities will be reported.Keywords: organic wastes, vermicomposting process, biochar, mangrove fungus
Procedia PDF Downloads 8810647 Bio-Efficacy of Newer Insecticides against Diamondback Moth (Plutella xylostella L. ) in Cabbage
Authors: C. G. Sawant, C. S. Patil
Abstract:
The investigation was conducted during January 2016 on Farmer’s field at Nandur Madhyameshwar, Tq. Niphad, Dist. Nashik (Maharashtra: India) on bio-efficacy of newer insecticides against Plutella xylostella L. infesting cabbage. The cabbage crop (var. Saint) was raised according to package of practices except for plant protection measures. Six newer insecticides along with two conventional insecticides and one synthetic pyrethroid were applied twice at 30 and 55 days after transplanting. Insecticidal solutions were diluted in water (375-500 L ha-1) and applied using knapsack sprayer (16L) with hollow cone nozzle. Treatments included indoxacarb @ 40 g a.i.ha-1, spinosad @ 17.5 g a.i.ha-1, flubendiamide @18.24 g a.i. ha-1, diafenthiuron @ 300 g a. i. ha-1, emamectin benzoate @ 10 g a. i. ha-1, chlorantraniliprole @ 10 g a. i. ha-1, quinalphos @ 250 g a. i. ha-1, triazophos @ 500 g a. i. ha-1, bifenthrin @ 50 g a.i. ha-1 and untreated control. The larvae were counted on head and outside the head. Observations were recorded one day before spray (Precount) and 1,3,7,14 days after spray. Results revealed that all the insecticidal treatments were significantly superior over untreated control by recording lower larval count. Among the insecticidal treatments, significantly lowest number of larvae of diamondback moth was recorded in chlorantraniliprole @ 10 g a.i.ha-1 (1.00 larvae plant-1) followed by spinosad @ 17.5 g a.i. ha-1 (1.45 larvae plant-1 and flubendiamide 18.24 g a.i. ha-1(1.53 larvae plant-1). The efficacy of insecticides reflected on yield of marketable cabbage heads by recording 242.27 qt ha-1 (1:33.38) in the treatment of chlorantraniliprole @ 10 g a.i.ha-1. It was followed by spinosad @ 17.5 g a.i. ha-1 with 236.91 qt ha-1 (1:24.92) and flubendiamide 18.24 g a.i. ha-1 with 228.49 qt ha-1 (1:30.43).Keywords: bio-efficacy, cabbage, chlorantraniliprole, Plutella xylostella L.
Procedia PDF Downloads 14510646 Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant
Authors: Azad Khalid, Ime Akanyeti
Abstract:
About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3.Keywords: aeration, sewage sludge, food waste, sawdust, composting
Procedia PDF Downloads 8910645 Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach
Authors: Pius Babuna
Abstract:
Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 ±18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GHȼ 1115.782± 50 cedis (~$182.21± 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC.Keywords: water resources carrying capacity, smart water management, optimization, sustainable water use, water withdrawal
Procedia PDF Downloads 8710644 Integrated Process Modelling of a Thermophilic Biogas Plant
Authors: Obiora E. Anisiji, Jeremiah L. Chukwuneke, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This work developed a mathematical model of a biogas plant from a mechanistic point of view, for urban area clean energy requirement. It aimed at integrating thermodynamics; which deals with the direction in which a process occurs and Biochemical kinetics; which gives the understanding of the rates of biochemical reaction. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analysis were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500m3 biogas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of biogas production is essentially a function of enthalpy ratio, the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: anaerobic digestion, biogas plant, biogas production, bio-reactor, energy, fermentation, rate of production, temperature, therm
Procedia PDF Downloads 43510643 Study of Antibacterial Activity of Phenolic Compounds Extracted from Algerian Medicinal Plant
Authors: Khadri Sihem, Abbaci Nafissa, Zerari Labiba
Abstract:
In the context of the search for new bioactive natural products, we were interested in evaluating some antibacterial properties of two plant extracts: total phenols and flavonoids of Algerian medicinal plant. Our study occurs in two axes: The first concerns the extraction of phenolic compounds and flavonoids with methanol by liquid-liquid extraction, followed by quantification of the levels of these compounds in the end the analysis of the chemical composition of extracts. In the second axis, we studied the antibacterial power of the studied plant extracts.Keywords: antibacterial activity, flavonoids, medicinal plants, polyphenols
Procedia PDF Downloads 55410642 Two-Stage Anaerobic Digester for Biogas Production from Sewage Sludge: A Case Study in One of Kuwait’s Wastewater Treatment Plant
Authors: Abdullah Almatouq, Abdulla Abusam, Hussain Hussain, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen, Mariam Al-Jumaa, Farah Al-Ajeel, Mohammad Aljassam
Abstract:
Due to the high demand for energy from unsustainable resources in Kuwait, the Kuwaiti government has focused recently on using sustainable resources for energy, such as solar and wind energy. In addition, sludge which is generated as a by-product of physical, chemical, and biological processes during wastewater treatment, can be used as a substrate to generate energy through anaerobic digestion. Kuwait’s wastewater treatment plants produce more than 1.7 million m3 of sludge per year, and this volume is accumulated in the treatment plants without any treatment. Therefore, a pilot-scale (3 m3) two-stage anaerobic digester was constructed in one of the largest treatment plants in Kuwait. The reactor was operated in batch mode, and the hydraulic retention time varied between 14 – 27 days. The main of this study is to evaluate the technical feasibility of a two-stage anaerobic digester for sludge treatability and energy generation in Kuwait. The anaerobic digester achieved a total biogas production of 37 m3, and the highest value of daily biogas production was 0.4 m3/day. The methane content ranged between 50 % and 66 %, and the other gases were as follows: CO2 20 %, H2S 13 %, and 1 % O2. The generated biogas was used on-site for cooking and lighting. In some batches, low C/N was noticed, and that lead to maintaining the concentration of CH4 between 50%-55%. In conclusion, an anaerobic digester is an environmentally friendly technology that can be applied in Kuwait, and the obtained results support the scale-up of the process in all the treatment plants.Keywords: wastewater, metahne, biogas production potential, anaerobic digestion
Procedia PDF Downloads 11410641 Passive Aeration of Wastewater: Analytical Model
Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy
Abstract:
Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.Keywords: aeration, analytical, passive, wastewater
Procedia PDF Downloads 209