Search results for: clean fuels
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1316

Search results for: clean fuels

986 A Centralized Architecture for Cooperative Air-Sea Vehicles Using UAV-USV

Authors: Salima Bella, Assia Belbachir, Ghalem Belalem

Abstract:

This paper deals with the problem of monitoring and cleaning dirty zones of oceans using unmanned vehicles. We present a centralized cooperative architecture for unmanned aerial vehicles (UAVs) to monitor ocean regions and clean dirty zones with the help of unmanned surface vehicles (USVs). Due to the rapid deployment of these unmanned vehicles, it is convenient to use them in oceanic regions where the water pollution zones are generally unknown. In order to optimize this process, our solution aims to detect and reduce the pollution level of the ocean zones while taking into account the problem of fault tolerance related to these vehicles.

Keywords: centralized architecture, fault tolerance, UAV, USV

Procedia PDF Downloads 325
985 The Environmental Challenges of Energy Generation and Usage in Nigeria

Authors: Aliyu Mohammed Lawal, Dahiru Ya'u Gital

Abstract:

The problems placed on the environment as a result of energy generation and usage in Nigeria are: Potential damage to the environment health by Co, Co2, Sox and Nox effluent gas emissions and global warming. For instance in the year 2004 in Nigeria energy consumption was 58% oil and 34% natural gas but about 94 million metric tons of Co2 was emitted out of which 64% came from fossil fuels while about 35% came from fuel wood. The findings from this research on how to alleviate these problems are that long term sustainable development solutions should be enhanced globally; energy should be used more rationally renewable energy resources should be exploited and the existing emissions should be controlled to tolerate limits because the increase in energy demand in Nigeria places enormous strain on current energy facilities.

Keywords: energy generation, environmental health, effluent gas emission, global warming, fossil fuel

Procedia PDF Downloads 454
984 Numerical Study of Fire Propagation in Confined and Open Area

Authors: Hadj Miloua, Abbes Azzi

Abstract:

The objective of the present paper is to understand, predict and modeled the fire behavior in confined and open area in different conditions and diverse fuels such as liquid pool fire and the vegetative materials. The distinctive problems are a ventilated road tunnel used for urban transport, by the characterization installations of ventilation and his influence in the mode of smoke dispersion and the flame shape. A general investigation is relatively traditional, based on the modeling and simulation the scenario of the pool fire interacted with wind ventilation by the use of numerical software fire dynamic simulator FDS ver.5 to simulate the fire in ventilated tunnel. The second simulation by WFDS.5 is Wildland fire which is always occurs in forest and rangeland fire environments and will thus have an impact on people, property and resources.

Keywords: fire, road tunnel, simulation, vegetation, wildland

Procedia PDF Downloads 510
983 Tests and Comparison of Two Mobile Industrial Analytical Systems for Mercury Speciation in Flue Gas

Authors: Karel Borovec, Jerzy Gorecki, Tadeas Ochodek

Abstract:

Combustion of solid fuels is one of the main sources of mercury in the environment. To reduce the amount of mercury emitted to the atmosphere, it is necessary to modify or optimize old purification technologies or introduce the new ones. Effective reduction of mercury level in the flue gas requires the use of speciation systems for mercury form determination. This paper describes tests and provides comparison of two industrial portable and continuous systems for mercury speciation in the flue gas: Durag HM-1400 TRX with a speciation module and the Portable Continuous Mercury Speciation System based on the SGM-8 mercury speciation set, made by Nippon Instruments Corporation. Additionally, the paper describes a few analytical problems that were encountered during a two-year period of using the systems.

Keywords: continuous measurement, flue gas, mercury determination, speciation

Procedia PDF Downloads 194
982 Lead in The Blood and Hypertension in Indonesia: A Systematic Review

Authors: Ainia Nurul Aqida

Abstract:

Lead is one of the sources of air pollution. The use of lead on motor vehicle fuels resulted in the increasing contamination of lead in the air. The polluted air that has been inhaled by many people, especially guards and sellers of retail gasoline filling stations. The impact is increased levels of lead in blood. One result is an increase in blood pressure that causes hypertension. This research would like to know the relationship between blood lead levels in the incidence of hypertension in Indonesia. The method used in this study is a systematic review of the three journals have been published in the year 2007 to the year 2010 with the total sample is 312 samples. Odd ratio values obtained in the first article was OR = 6.50 pvalue = 0.000, CI = 95 % (2.89 to 14.60), and the second article was obtained OR 2.619 (95 % CI: 0.944 to 7.625) pvalue = 0.028, and the third article was obtained 0.002 r = 0.324 R2 = 10.5 %. Over all, there is a relationship between blood lead levels with the incidence of hypertension in Indonesia.

Keywords: lead, blood, air pollution, hypertension

Procedia PDF Downloads 320
981 CFD Simulation for Development of Cooling System in a Cooking Oven

Authors: V. Jagadish, Mathiyalagan V.

Abstract:

Prediction of Door Touch temperature of a Cooking Oven using CFD Simulation. Self-Clean cycle is carried out in Cooking ovens to convert food spilling into ashes which makes cleaning easy. During this cycle cavity of oven is exposed to high temperature around 460 C. At this operating point the user may prone to touch the Door surfaces, Side Shield, Control Panel. To prevent heat experienced by user, cooling system is built in oven. The most effective cooling system is developed with existing design constraints through CFD Simulations. Cross Flow fan is used for Cooling system due to its cost effectiveness and it can give more air flow with low pressure drop.

Keywords: CFD, MRF, RBM, RANS, new product development, simulation, thermal analysis

Procedia PDF Downloads 151
980 A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature

Authors: Kyoung Hoon Kim

Abstract:

Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100°C to 140°C using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high.

Keywords: Organic Rankine Cycle (ORC), low temperature heat source, exergy, source temperature

Procedia PDF Downloads 446
979 Prediction of a Nanostructure Called Porphyrin-Like Buckyball, Using Density Functional Theory and Investigating Electro Catalytic Reduction of Co₂ to Co by Cobalt– Porphyrin-Like Buckyball

Authors: Mohammad Asadpour, Maryam Sadeghi, Mahmoud Jafari

Abstract:

The transformation of carbon dioxide into fuels and commodity chemicals is considered one of the most attractive methods to meet energy demands and reduce atmospheric CO₂ levels. Cobalt complexes have previously shown high faradaic efficiency in the reduction of CO₂ to CO. In this study, a nanostructure, referred to as a porphyrin-like buckyball, is simulated and analyzed for its electrical properties. The investigation aims to understand the unique characteristics of this material and its potential applications in electronic devices. Through computational simulations and analysis, the electrocatalytic reduction of CO₂ to CO by Cobalt-porphyrin-like buckyball is explored. The findings of this study offer valuable insights into the electrocatalytic properties of this predicted structure, paving the way for further research and development in the field of nanotechnology.

Keywords: porphyrin-like buckyball, DFT, nanomaterials, CO₂ to CO

Procedia PDF Downloads 43
978 S-S Coupling of Thiols to Disulfides Using Ionic Liquid in the Presence of Free Nano Fe2O3 Catalyst

Authors: Askar Sabet, Abdolrasoul Fakhraee, Motahahre Ramezanpour, Noorallah Alipour

Abstract:

An efficient and green method for oxidation of thiols to the corresponding disulfides is reported using ionic liquid [HSO3N(C2H4OSO3H)3] in the presence of free nano-Fe2O3 at 60°C. Ionic liquid is selective oxidant for S-S Coupling variety aliphatic and aromatic of thiols to corresponding disulfide in the presence of free nano-Fe2O3 as recoverable catalyst. Reaction has been performed in methanol as an inexpensive solvent. This reaction is clean and easy work-up with no side reaction.

Keywords: thiol, disulfide, ionic liquid, free nano-Fe2O3, oxidation, coupling

Procedia PDF Downloads 283
977 Dinitrotoluene and Trinitrotoluene Measuring in Double-Base Solid Propellants

Authors: Z. H. Safari, M. Anbia, G. H. Kouzegari, R. Amirkhani

Abstract:

Toluene and Nitro derivatives are widely used in industry particularly in various defense applications. Tri-nitro-toluene derivative is a powerful basic explosive material that is a basis upon which to compare equivalent explosive power of similar materials. The aim of this paper is to measure the explosive power of these hazardous substances in fuels having different shelf-life and therefore optimizing their storage and maintenance. The methodology involves measuring the amounts of di- nitro- toluene and tri-nitro-toluene in the aged samples at 90 ° C by gas chromatography. Results show no significant difference in the concentration of the TNT compound over a given time while there was a significant difference in DNT compound over the same period. The underlying reason is attributed to the simultaneous production of the material with destruction of stabilizer.

Keywords: dinitrotoluene, trinitrotoluene, double-base solid propellants, artificial aging

Procedia PDF Downloads 399
976 NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil

Authors: Vipan Kumar Sohpal, Rajesh K Sharma

Abstract:

Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant.

Keywords: jatropha curcus, computational analysis, emissions, NOx biofuels

Procedia PDF Downloads 582
975 Fuelwood Heating, Felling, Energy Renewing in Total Fueling of Fuelwood, Renewable Technologies

Authors: Adeiza Matthew, Oluwamishola Abubakar

Abstract:

In conclusion, Fuelwood is a traditional and renewable source of energy that can have both positive and negative impacts. Adopting sustainable practices for its collection, transportation, and use and investing in renewable technologies can help mitigate the negative effects and provide a clean and reliable source of energy, improve living standards and support economic development. For example, solar energy can be used to generate electricity, heat homes and water, and can even be used for cooking. Wind energy can be used to generate electricity, and geothermal energy can be used for heating and cooling. Biogas can be produced from waste products such as animal manure, sewage, and organic kitchen waste and can be used for cooking and lighting.

Keywords: calorific, BTU, wood moisture content, density of wood

Procedia PDF Downloads 100
974 AG Loaded WO3 Nanoplates for Photocatalytic Degradation of Sulfanilamide and Bacterial Removal under Visible Light

Authors: W. Y. Zhu, X. L. Yan, Y. Zhou

Abstract:

Sulfonamides (SAs) are extensively used antibiotics; photocatalysis is an effective, way to remove the SAs from water driven by solar energy. Here we used WO3 nanoplates and their Ag heterogeneous as photocatalysts to investigate their photodegradation efficiency against sulfanilamide (SAM) which is the precursor of SAs. Results showed that WO3/Ag composites performed much better than pure WO3 where the highest removal rate was 96.2% can be achieved under visible light irradiation. Ag as excellent antibacterial agent also endows certain antibacterial efficiency to WO3, and 100% removal efficiency could be achieved in 2 h under visible light irradiation for all WO3/Ag composites. Generally, WO3/Ag composites are very effective photocatalysts with potentials in practical applications which mainly use cheap, clean and green solar energy as energy source.

Keywords: antibacterial, photocatalysis, semiconductor, sulfanilamide

Procedia PDF Downloads 354
973 Active Treatment of Water Chemistry for Swimming Pools Using Novel Automated System (NAS)

Authors: Saeed Asiri

Abstract:

The Novel Automated System (NAS) has the control system of the level of chlorine and acid (i.e. pH level) through a feedback in three forms of synchronous alerts. The feedback is in the form of an alert voice, a visible color, and a message on a digital screen. In addition, NAS contains a slide-in container in which chemicals are used to treat the problems of chlorine and acid levels independently. Moreover, NAS has a net in front of it to clean the pool on the surface of the water from leaves and wastes and so on which is controlled through a remote control. The material used is a lightweight aluminum with mechanical and electric parts integrated with each other. In fact, NAS is qualified to serve as an assistant security guard for swimming pools because it has the characteristics that make it unique and smart.

Keywords: novel automated system, pool safety, maintenance, pH level, digital screen

Procedia PDF Downloads 69
972 Cross-Sectoral Energy Demand Prediction for Germany with a 100% Renewable Energy Production in 2050

Authors: Ali Hashemifarzad, Jens Zum Hingst

Abstract:

The structure of the world’s energy systems has changed significantly over the past years. One of the most important challenges in the 21st century in Germany (and also worldwide) is the energy transition. This transition aims to comply with the recent international climate agreements from the United Nations Climate Change Conference (COP21) to ensure sustainable energy supply with minimal use of fossil fuels. Germany aims for complete decarbonization of the energy sector by 2050 according to the federal climate protection plan. One of the stipulations of the Renewable Energy Sources Act 2017 for the expansion of energy production from renewable sources in Germany is that they cover at least 80% of the electricity requirement in 2050; The Gross end energy consumption is targeted for at least 60%. This means that by 2050, the energy supply system would have to be almost completely converted to renewable energy. An essential basis for the development of such a sustainable energy supply from 100% renewable energies is to predict the energy requirement by 2050. This study presents two scenarios for the final energy demand in Germany in 2050. In the first scenario, the targets for energy efficiency increase and demand reduction are set very ambitiously. To build a comparison basis, the second scenario provides results with less ambitious assumptions. For this purpose, first, the relevant framework conditions (following CUTEC 2016) were examined, such as the predicted population development and economic growth, which were in the past a significant driver for the increase in energy demand. Also, the potential for energy demand reduction and efficiency increase (on the demand side) was investigated. In particular, current and future technological developments in energy consumption sectors and possible options for energy substitution (namely the electrification rate in the transport sector and the building renovation rate) were included. Here, in addition to the traditional electricity sector, the areas of heat, and fuel-based consumptions in different sectors such as households, commercial, industrial and transport are taken into account, supporting the idea that for a 100% supply from renewable energies, the areas currently based on (fossil) fuels must be almost completely be electricity-based by 2050. The results show that in the very ambitious scenario a final energy demand of 1,362 TWh/a is required, which is composed of 818 TWh/a electricity, 229 TWh/a ambient heat for electric heat pumps and approx. 315 TWh/a non-electric energy (raw materials for non-electrifiable processes). In the less ambitious scenario, in which the targets are not fully achieved by 2050, the final energy demand will need a higher electricity part of almost 1,138 TWh/a (from the total: 1,682 TWh/a). It has also been estimated that 50% of the electricity revenue must be saved to compensate for fluctuations in the daily and annual flows. Due to conversion and storage losses (about 50%), this would mean that the electricity requirement for the very ambitious scenario would increase to 1,227 TWh / a.

Keywords: energy demand, energy transition, German Energiewende, 100% renewable energy production

Procedia PDF Downloads 132
971 A Paradigm Shift in Energy Policy and Use: Exergy and Hybrid Renewable Energy Technologies

Authors: Adavbiele Airewe Stephen

Abstract:

Sustainable energy use is exploiting energy resources within acceptable levels of global resource depletion without destroying the ecological balance of an area. In the context of sustainability, the rush to quell the energy crisis of the fossil fuels of the 1970's by embarking on nuclear energy technology has now been seen as a disaster. In the circumstance, action (policy) suggested in this study to avoid future occurrence is exergy maximization/entropy generation minimization and the use is renewable energy technologies that are hybrid based. Thirty-two (32) selected hybrid renewable energy technologies were assessed with respect to their energetic efficiencies and entropy generation. The results indicated that determining which of the hybrid technologies is the most efficient process and sustainable is a matter of defining efficiency and knowing which of them possesses the minimum entropy generation.

Keywords: entropy, exergy, hybrid renewable energy technologies, sustainability

Procedia PDF Downloads 435
970 Production of Geopolymers for Structural Applications from Fluidized Bed Combustion Bottom Ash

Authors: Thapelo Aubrey Motsieng

Abstract:

Fluidized bed combustion (FBC) is a clean coal technology used in the combustion of low-grade coals for power generation. The production of large solid wastes such as bottom ashes from this process is a problem. The bottom ash contains some toxic elements which can leach out soils and contaminate surface and ground water; for this reason, they can neither be disposed of in landfills nor lagoons anymore. The production of geopolymers from bottom ash for structural and concrete applications is an option for their disposal. In this study, the waste bottom ash obtained from the combustion of three low grade South African coals in a bubbling fluidized bed reactor was used to produce geopolymers. The geopolymers were cured in a household microwave. The results showed that the microwave curing enhanced the reactivity and strength of the geopolymers.

Keywords: bottom ash, geopolymers, coal, compressive strength

Procedia PDF Downloads 315
969 Development of Polybenzoxazine Membranes on Al2O3 Support for Water-Ethanol Separation via Pervaporation Technique

Authors: Chonlada Choedchun, Ni-on Saelim, Panupong Chuntanalerg, Thanyalak Chaisuwan, Sujitra Wongkasemjit

Abstract:

Bioethanol is one of the candidates to replace fossil fuels. Membrane technique is one of the attractive processes to produce high purity of ethanol. In this work, polybenzoxazine (PBZ) membrane successfully synthesized from bisphenol-A (BPA), formaldehyde, and two different types of multifunctionalamines: tetraethylenepentamine (tepa), and diethylenetriamine (deta), was evaluated for water-ethanol separation. The membrane thickness was determined by scanning electron microscopy (SEM). Pervaporation technique was carried out to find separation performance. It was found that the optimum PBZ concentration for the preparation of the membranes is 25%. The dipping cycles of PBZ-tepa and PBZ-deta was found to be 4 and 5, giving the total permeation flux of 28.97 and 14.75 g/m2.h, respectively. The separation factor of both membranes was higher than 10,000.

Keywords: polybenzoxazine, pervaporation, permeation flux, separation factor

Procedia PDF Downloads 414
968 Comprehensive Study of Renewable Energy Resources and Present Scenario in India

Authors: Aparna Bhat, Rajeshwari Hegde

Abstract:

Renewable energy sources also called non-conventional energy sources that are continuously replenished by natural processes. For example, solar energy, wind energy, bio-energy- bio-fuels grown sustain ably), hydropower etc., are some of the examples of renewable energy sources. A renewable energy system converts the energy found in sunlight, wind, falling-water, sea-waves, geothermal heat, or biomass into a form, we can use such as heat or electricity. Most of the renewable energy comes either directly or indirectly from sun and wind and can never be exhausted, and therefore they are called renewable. This paper presents a review about conventional and renewable energy scenario of India. The paper also presents current status, major achievements and future aspects of renewable energy in India and implementing renewable for the future is also been presented.

Keywords: solar energy, renewabe energy, wind energy, bio-diesel, biomass, feedin

Procedia PDF Downloads 604
967 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri, Hana Ali Alafi

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present-day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly found by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.

Keywords: fine migration, formation damage, kaolinite, soled bulging.

Procedia PDF Downloads 66
966 A 'Four Method Framework' for Fighting Software Architecture Erosion

Authors: Sundus Ayyaz, Saad Rehman, Usman Qamar

Abstract:

Software Architecture is the basic structure of software that states the development and advancement of a software system. Software architecture is also considered as a significant tool for the construction of high quality software systems. A clean design leads to the control, value and beauty of software resulting in its longer life while a bad design is the cause of architectural erosion where a software evolution completely fails. This paper discusses the occurrence of software architecture erosion and presents a set of methods for the detection, declaration and prevention of architecture erosion. The causes and symptoms of architecture erosion are observed with the examples of prescriptive and descriptive architectures and the practices used to stop this erosion are also discussed by considering different types of software erosion and their affects. Consequently finding and devising the most suitable approach for fighting software architecture erosion and in some way reducing its affect is evaluated and tested on different scenarios.

Keywords: software architecture, architecture erosion, prescriptive architecture, descriptive architecture

Procedia PDF Downloads 494
965 The Elimination of Fossil Fuel Subsidies from the Road Transportation Sector and the Promotion of Electro Mobility: The Ecuadorian Case

Authors: Henry Acurio, Alvaro Corral, Juan Fonseca

Abstract:

In Ecuador, subventions on fossil fuels for the road transportation sector have always been part of its economy throughout time, mainly because of demagogy and populism from political leaders. It is clearly seen that the government cannot maintain the subsidies anymore due to its commercial balance and its general state budget; subsidies are a key barrier to implementing the use of cleaner technologies. However, during the last few months, the elimination of subsidies has been done gradually with the purpose of reaching international prices. It is expected that with this measure, the population will opt for other means of transportation, and in a certain way, it will promote the use of private electric vehicles and public, e.g., taxis and buses (urban transport). Considering the three main elements of sustainable development, an analysis of the social, economic, and environmental impacts of eliminating subsidies will be generated at the country level. To achieve this, four scenarios will be developed in order to determine how the subsidies will contribute to the promotion of electro-mobility: 1) A Business as Usual (BAU) scenario; 2) the introduction of 10 000 electric vehicles by 2025; 3) the introduction of 100 000 electric vehicles by 2030; 4) the introduction of 750 000 electric vehicles by 2040 (for all the scenarios, buses, taxis, lightweight duty vehicles, and private vehicles will be introduced, as it is established in the National Electro Mobility Strategy for Ecuador). The Low Emissions Analysis Platform (LEAP) will be used, and it will be suitable to determine the cost for the government in terms of importing derivatives for fossil fuels and the cost of electricity to power the electric fleet that can be changed. The elimination of subventions generates fiscal resources for the state that can be used to develop other kinds of projects that will benefit Ecuadorian society. It will definitely change the energy matrix, and it will provide energy security for the country; it will be an opportunity for the government to incentivize a greater introduction of renewable energies, e.g., solar, wind, and geothermal. At the same time, it will also reduce greenhouse gas emissions (GHG) from the transportation sector, considering its mitigation potential, which as a result, will ameliorate the inhabitant quality of life by improving the quality of air, therefore reducing respiratory diseases associated with exhaust emissions, consequently, achieving sustainability, the Sustainable Development Goals (SDGs), and complying with the agreements established in the Paris Agreement COP 21 in 2015. Electro-mobility in Latin America and the Caribbean can only be achieved by the implementation of the right policies by the central government, which need to be accompanied by a National Urban Mobility Policy (NUMP), and can encompass a greater vision to develop holistic, sustainable transport systems at local governments.

Keywords: electro mobility, energy, policy, sustainable transportation

Procedia PDF Downloads 80
964 Passive Solar Distiller with Low Cost of Implementation, Operation and Maintenance

Authors: Valentina Alessandra Carvalho do Vale, Elmo Thiago Lins Cöuras Ford, Rudson de Sousa Lima

Abstract:

Around the planet Earth, access to clean water is a problem whose importance has increased due to population growth and its misuse. Thus, projects that seek to transform water sources improper (salty and brackish) in drinking water sources are current issues. However, this transformation generally requires a high cost of implementation, operation and maintenance. In this context, the aim of this work is the development of a passive solar distiller for brackish water, made from recycled and durable materials such as aluminum, cement, glass and PVC basins. The results reveal factors that influence the performance and viability of the expansion project.

Keywords: solar distiller, passive distiller, distiller with pyramidal roof, ecologically correct

Procedia PDF Downloads 408
963 A Numerical Model Simulation for an Updraft Gasifier Using High-Temperature Steam

Authors: T. M. Ismail, M. A. El-Salam

Abstract:

A mathematical model study was carried out to investigate gasification of biomass fuels using high-temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promising way in its capability and sensitivity for the parameter effects that influence the gasification process.

Keywords: computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier

Procedia PDF Downloads 398
962 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 105
961 The Influences of Facies and Fine Kaolinite Formation Migration on Sandstone's Reservoir Quality, Sarir Formation, Sirt Basin Libya

Authors: Faraj M. Elkhatri

Abstract:

The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. ( present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Basin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets but also small disaggregated kaolinite platelets derived from the disaggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore but also coat some of the surrounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and reduce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on selected minerals observed during the SEM study were obtained through the use of an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats with limited occlusion by kaolinite. very fine-grained elemental combinations (Si/Al/Na/Cl, Si/Al Ca/Cl/Ti, and Qtz/Ti) have been identified and conformed by EDS analysis. However, the identification of the fine grained disaggregated material as mainly kaolinite though study area.

Keywords: pore throat, fine migration, formation damage, solids plugging, porosity loss

Procedia PDF Downloads 150
960 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis

Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov

Abstract:

Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.

Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil

Procedia PDF Downloads 113
959 Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization

Authors: Cheng-Jui Li, Chien-Chou Tseng

Abstract:

This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency.

Keywords: Computational Fluid Dynamics (CFD), Eulerian-Eulerian Model, Flue Gas Desulfurization (FGD), perforated sieve tray

Procedia PDF Downloads 279
958 Potential Distribution and Electric Field Analysis around a Polluted Outdoor Polymeric Insulator with Broken Sheds

Authors: Adel Kara, Abdelhafid Bayadi, Hocine Terrab

Abstract:

This paper presents a study of electric field distribution along of 72 kV polymeric outdoor insulators with broken sheds. Different cases of damaged insulators are modeled and both of clean and polluted cases. By 3D finite element analysis using the software package COMSOL Multiphysics 4.3b. The obtained results of potential and the electrical field distribution around insulators by 3D simulation proved that finite element computations is useful tool for studying insulation electrical field distribution.

Keywords: electric field distributions, insulator, broken sheds, potential distributions

Procedia PDF Downloads 508
957 A Systematic Review of Business Strategies Which Can Make District Heating a Platform for Sustainable Development of Other Sectors

Authors: Louise Ödlund, Danica Djuric Ilic

Abstract:

Sustainable development includes many challenges related to energy use, such as (1) developing flexibility on the demand side of the electricity systems due to an increased share of intermittent electricity sources (e.g., wind and solar power), (2) overcoming economic challenges related to an increased share of renewable energy in the transport sector, (3) increasing efficiency of the biomass use, (4) increasing utilization of industrial excess heat (e.g., approximately two thirds of the energy currently used in EU is lost in the form of excess and waste heat). The European Commission has been recognized DH technology as of essential importance to reach sustainability. Flexibility in the fuel mix, and possibilities of industrial waste heat utilization, combined heat, and power (CHP) production and energy recovery through waste incineration, are only some of the benefits which characterize DH technology. The aim of this study is to provide an overview of the possible business strategies which would enable DH to have an important role in future sustainable energy systems. The methodology used in this study is a systematic literature review. The study includes a systematic approach where DH is seen as a part of an integrated system that consists of transport , industrial-, and electricity sectors as well. The DH technology can play a decisive role in overcoming the sustainability challenges related to our energy use. The introduction of biofuels in the transport sector can be facilitated by integrating biofuel and DH production in local DH systems. This would enable the development of local biofuel supply chains and reduce biofuel production costs. In this way, DH can also promote the development of biofuel production technologies that are not yet developed. Converting energy for running the industrial processes from fossil fuels and electricity to DH (above all biomass and waste-based DH) and delivering excess heat from industrial processes to the local DH systems would make the industry less dependent on fossil fuels and fossil fuel-based electricity, as well as the increasing energy efficiency of the industrial sector and reduce production costs. The electricity sector would also benefit from these measures. Reducing the electricity use in the industry sector while at the same time increasing the CHP production in the local DH systems would (1) replace fossil-based electricity production with electricity in biomass- or waste-fueled CHP plants and reduce the capacity requirements from the national electricity grid (i.e., it would reduce the pressure on the bottlenecks in the grid). Furthermore, by operating their central controlled heat pumps and CHP plants depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid.

Keywords: energy system, district heating, sustainable business strategies, sustainable development

Procedia PDF Downloads 168