Search results for: automated monitoring system.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20070

Search results for: automated monitoring system.

19740 A Visual Inspection System for Automotive Sheet Metal Chasis Parts Produced with Cold-Forming Method

Authors: İmren Öztürk Yılmaz, Abdullah Yasin Bilici, Yasin Atalay Candemir

Abstract:

The system consists of 4 main elements: motion system, image acquisition system, image processing software, and control interface. The parts coming out of the production line to enter the image processing system with the conveyor belt at the end of the line. The 3D scanning of the produced part is performed with the laser scanning system integrated into the system entry side. With the 3D scanning method, it is determined at what position and angle the parts enter the system, and according to the data obtained, parameters such as part origin and conveyor speed are calculated with the designed software, and the robot is informed about the position where it will take part. The robot, which receives the information, takes the produced part on the belt conveyor and shows it to high-resolution cameras for quality control. Measurement processes are carried out with a maximum error of 20 microns determined by the experiments.

Keywords: quality control, industry 4.0, image processing, automated fault detection, digital visual inspection

Procedia PDF Downloads 113
19739 Development of MEMS Based 3-Axis Accelerometer for Hand Movement Monitoring

Authors: Zohra Aziz Ali Manjiyani, Renju Thomas Jacob, Keerthan Kumar

Abstract:

This project develops a hand movement monitoring system, which feeds the data into the computer and gives the 3D image rotation according to the direction of the tilt and hence monitoring the movement of the hand in context to its tilt. Advancement of MEMS Technology has enabled us to get very small and low-cost accelerometer ICs which is based on capacitive principle. Accelerometer based Tilt sensor ADXL335 is used in this paper, based on MEMS technology and the project emphasis on the development of the MEMS-based accelerometer to measure the tilt, interfacing the hardware with the LabVIEW and showing the 3D rotation to the user, which is in his understandable form and tilt data can be saved in the computer. It provides an experience of working on emerging technologies like MEMS and design software like LabVIEW.

Keywords: MEMS accelerometer, tilt sensor ADXL335, LabVIEW simulation, 3D animation

Procedia PDF Downloads 518
19738 Critical Evaluation of Groundwater Monitoring Networks for Machine Learning Applications

Authors: Pedro Martinez-Santos, Víctor Gómez-Escalonilla, Silvia Díaz-Alcaide, Esperanza Montero, Miguel Martín-Loeches

Abstract:

Groundwater monitoring networks are critical in evaluating the vulnerability of groundwater resources to depletion and contamination, both in space and time. Groundwater monitoring networks typically grow over decades, often in organic fashion, with relatively little overall planning. The groundwater monitoring networks in the Madrid area, Spain, were reviewed for the purpose of identifying gaps and opportunities for improvement. Spatial analysis reveals the presence of various monitoring networks belonging to different institutions, with several hundred observation wells in an area of approximately 4000 km2. This represents several thousand individual data entries, some going back to the early 1970s. Major issues included overlap between the networks, unknown screen depth/vertical distribution for many observation boreholes, uneven time series, uneven monitored species, and potentially suboptimal locations. Results also reveal there is sufficient information to carry out a spatial and temporal analysis of groundwater vulnerability based on machine learning applications. These can contribute to improve the overall planning of monitoring networks’ expansion into the future.

Keywords: groundwater monitoring, observation networks, machine learning, madrid

Procedia PDF Downloads 79
19737 Focusing of Technology Monitoring Activities Using Indicators

Authors: Günther Schuh, Christina König, Toni Drescher

Abstract:

One of the key factors for the competitiveness and market success of technology-driven companies is the timely provision of information about emerging technologies, changes in existing technologies, as well as relevant related changes in the market's structures and participants. Therefore, many companies conduct technology intelligence (TI) activities to ensure an early identification of appropriate technologies and other (weak) signals. One base activity of TI is technology monitoring, which is defined as the systematic tracking of developments within a specified topic of interest as well as related trends over a long period of time. Due to the very large number of dynamically changing parameters within the technological and the market environment of a company as well as their possible interdependencies, it is necessary to focus technology monitoring on specific indicators or other criteria, which are able to point out technological developments and market changes. In addition to the execution of a literature review on existing approaches, which mainly propose patent-based indicators, it is examined in this paper whether indicator systems from other branches such as risk management or economic research could be transferred to technology monitoring in order to enable an efficient and focused technology monitoring for companies.

Keywords: technology forecasting, technology indicator, technology intelligence, technology management, technology monitoring

Procedia PDF Downloads 473
19736 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components

Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler

Abstract:

Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.

Keywords: case study, internet of things, predictive maintenance, reference architecture

Procedia PDF Downloads 252
19735 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 250
19734 An Advanced Method of Minimizing Unforeseen Disruptions within a Manufacturing System: A Case Study of Amico, South Africa

Authors: Max Moleke

Abstract:

Manufacturing industries are faced with different types of problems. One of the most important role of controlling and monitoring a production process is to actually determine how to deal with unforeseen disruption when they arise. A majority of manufacturing tern to spend huge amount of money in order to meet up with their customers requirements and demand but due to instabilities within the manufacturing process, this objectives and goals are difficult to be achieved. In this research, we have developed a feedback control system that can minimize instability within the manufacturing system in order to boost the system output and productivity.

Keywords: disruption, scheduling, manufacturing, instability

Procedia PDF Downloads 330
19733 Modeling Metrics for Monitoring Software Project Performance Based on the GQM Model

Authors: Mariayee Doraisamy, Suhaimi bin Ibrahim, Mohd Naz’ri Mahrin

Abstract:

There are several methods to monitor software projects and the objective for monitoring is to ensure that the software projects are developed and delivered successfully. A performance measurement is a method that is closely associated with monitoring and it can be scrutinized by looking at two important attributes which are efficiency and effectiveness both of which are factors that are important for the success of a software project. Consequently, a successful steering is achieved by monitoring and controlling a software project via the performance measurement criteria and metrics. Hence, this paper is aimed at identifying the performance measurement criteria and the metrics for monitoring the performance of a software project by using the Goal Question Metrics (GQM) approach. The GQM approach is utilized to ensure that the identified metrics are reliable and useful. These identified metrics are useful guidelines for project managers to monitor the performance of their software projects.

Keywords: component, software project performance, goal question metrics, performance measurement criteria, metrics

Procedia PDF Downloads 357
19732 Structural Health Monitoring of Buildings and Infrastructure

Authors: Mojtaba Valinejadshoubi, Ashutosh Bagchi, Osama Moselhi

Abstract:

Structures such as buildings, bridges, dams, wind turbines etc. need to be maintained against various factors such as deterioration, excessive loads, environment, temperature, etc. Choosing an appropriate monitoring system is important for determining any critical damage to a structure and address that to avoid any adverse consequence. Structural Health Monitoring (SHM) has emerged as an effective technique to monitor the health of the structures. SHM refers to an ongoing structural performance assessment using different kinds of sensors attached to or embedded in the structures to evaluate their integrity and safety to help engineers decide on rehabilitation measures. Ability of SHM in identifying the location and severity of structural damages by considering any changes in characteristics of the structures such as their frequency, stiffness and mode shapes helps engineers to monitor the structures and take the most effective corrective actions to maintain their safety and extend their service life. The main objective of this study is to review the overall SHM process specifically determining the natural frequency of an instrumented simply-supported concrete beam using modal testing and finite element model updating.

Keywords: structural health monitoring, natural frequency, modal analysis, finite element model updating

Procedia PDF Downloads 342
19731 Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam

Authors: Cheng Yang Kwa, Yoke Rung Wong

Abstract:

Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency.

Keywords: structural health monitoring, NDT, cantilever, laminate

Procedia PDF Downloads 101
19730 IoT Based Monitoring Temperature and Humidity

Authors: Jay P. Sipani, Riki H. Patel, Trushit Upadhyaya

Abstract:

Today there is a demand to monitor environmental factors almost in all research institutes and industries and even for domestic uses. The analog data measurement requires manual effort to note readings, and there may be a possibility of human error. Such type of systems fails to provide and store precise values of parameters with high accuracy. Analog systems are having drawback of storage/memory. Therefore, there is a requirement of a smart system which is fully automated, accurate and capable enough to monitor all the environmental parameters with utmost possible accuracy. Besides, it should be cost-effective as well as portable too. This paper represents the Wireless Sensor (WS) data communication using DHT11, Arduino, SIM900A GSM module, a mobile device and Liquid Crystal Display (LCD). Experimental setup includes the heating arrangement of DHT11 and transmission of its data using Arduino and SIM900A GSM shield. The mobile device receives the data using Arduino, GSM shield and displays it on LCD too. Heating arrangement is used to heat and cool the temperature sensor to study its characteristics.

Keywords: wireless communication, Arduino, DHT11, LCD, SIM900A GSM module, mobile phone SMS

Procedia PDF Downloads 283
19729 Bioelectronic System for Continuous Monitoring of Cardiac Activity of Benthic Invertebrates for the Assessment of a Surface Water Quality

Authors: Sergey Kholodkevich, Tatiana Kuznetsova

Abstract:

The objective assessment of ecological state of water ecosystems is impossible without the use of biological methods of the environmental monitoring capable in the integrated look to reveal negative for biota changes of quality of water as habitats. Considerable interest for the development of such methods of environmental quality control represents biomarker approach. Measuring systems, by means of which register cardiac activity characteristics, received the name of bioelectronic. Bioelectronic systems are information and measuring systems in which animals (namely, benthic invertebrates) are directly included in structure of primary converters, being an integral part of electronic system of registration of these or those physiological or behavioural biomarkers. As physiological biomarkers various characteristics of cardiac activity of selected invertebrates have been used in bioelectronic system.lChanges in cardiac activity are considered as integrative measures of the physiological condition of organisms, which reflect the state of the environment of their dwelling. Greatest successes in the development of tools of biological methods and technologies of an assessment of surface water quality in real time. Essential advantage of bioindication of water quality by such tool is a possibility of an integrated assessment of biological effects of pollution on biota and also the expressness of such method and used approaches. In the report the practical experience of authors in biomonitoring and bioindication of an ecological condition of sea, brackish- and freshwater areas is discussed. Authors note that the method of non-invasive cardiac activity monitoring of selected invertebrates can be used not only for the advancement of biomonitoring, but also is useful in decision of general problems of comparative physiology of the invertebrates.

Keywords: benthic invertebrates, physiological state, heart rate monitoring, water quality assessment

Procedia PDF Downloads 718
19728 Analysis of Nuclear Power Plant Operator Activities and Risk Factors Using an EEG System

Authors: John Gaber, Youssef Ahmed, Hossam A.Gabbar, Jing Ren

Abstract:

Nuclear Power Plant (NPP) operators have a large responsibility on their shoulders. They must allow the plant to generate a high amount of energy while inspecting and maintaining the safety of the plant. This type of occupation comes with high amounts of mental fatigue, and a small mistake can have grave consequences. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue. This requires an analysis of the tasks and mental models of the NPP operator, as well as risk factors on mental fatigue and attention that NPP operators face when performing their tasks. The brain waves generated from experiencing mental fatigue can then be monitored for. These factors are analyzed, developing an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention start affecting their performance in task completion.

Keywords: EEG, power plant operator, psychology, task analysis

Procedia PDF Downloads 100
19727 An Open-Source Guidance System for an Autonomous Planter Robot in Precision Agriculture

Authors: Nardjes Hamini, Mohamed Bachir Yagoubi

Abstract:

Precision agriculture has revolutionized farming by enabling farmers to monitor their crops remotely in real-time. By utilizing technologies such as sensors, farmers can detect the state of growth, hydration levels, and nutritional status and even identify diseases affecting their crops. With this information, farmers can make informed decisions regarding irrigation, fertilization, and pesticide application. Automated agricultural tasks, such as plowing, seeding, planting, and harvesting, are carried out by autonomous robots and have helped reduce costs and increase production. Despite the advantages of precision agriculture, its high cost makes it inaccessible to small and medium-sized farms. To address this issue, this paper presents an open-source guidance system for an autonomous planter robot. The system is composed of a Raspberry Pi-type nanocomputer equipped with Wi-Fi, a GPS module, a gyroscope, and a power supply module. The accompanying application allows users to enter and calibrate maps with at least four coordinates, enabling the localized contour of the parcel to be captured. The application comprises several modules, such as the mission entry module, which traces the planting trajectory and points, and the action plan entry module, which creates an ordered list of pre-established tasks such as loading, following the plan, returning to the garage, and entering sleep mode. A remote control module enables users to control the robot manually, visualize its location on the map, and use a real-time camera. Wi-Fi coverage is provided by an outdoor access point, covering a 2km circle. This open-source system offers a low-cost alternative for small and medium-sized farms, enabling them to benefit from the advantages of precision agriculture.

Keywords: autonomous robot, guidance system, low-cost, medium farms, open-source system, planter robot, precision agriculture, real-time monitoring, remote control, small farms

Procedia PDF Downloads 111
19726 The Impact of Automation on Supply Chain Management in West Africa

Authors: Nwauzoma Ohale Rowland, Bright Ugochukwu Umunna

Abstract:

The world has been referred to as a global village for decades, adapting various technological and digital innovations to progress along the lines of development. Different continents have fully automated processes and procedures in the various sectors of their economies. This paper attempts to ascertain why the West African sub-continent while displaying a slow progression, has also joined the race toward having a fully automated process, albeit only in certain areas of its economy. Different reasons for this have been posited and will be discussed in this work. These reasons include high illiteracy rates and poor acceptance of new technologies. Studies were carried out that involved interactions with different business sectors and also a secondary-level investigation of experiments to ascertain the impact of automation in supply chain management on the West African market. Our reports show remarkable growth in businesses and sectors that have automated their processes. While this is the case, other results have also confirmed as due to the high illiteracy rates; the labour force has also been affected.

Keywords: Africa, automation, business, innovation, supply chain management, technology

Procedia PDF Downloads 106
19725 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems

Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa

Abstract:

Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.

Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring

Procedia PDF Downloads 555
19724 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: artificial neural network (ANN), chromatic dispersion (CD), delay-tap sampling (DTS), optical signal-to-noise ratio (OSNR)

Procedia PDF Downloads 114
19723 Description of a Structural Health Monitoring and Control System Using Open Building Information Modeling

Authors: Wahhaj Ahmed Farooqi, Bilal Ahmad, Sandra Maritza Zambrano Bernal

Abstract:

In view of structural engineering, monitoring of structural responses over time is of great importance with respect to recent developments of construction technologies. Recently, developments of advanced computing tools have enabled researcher’s better execution of structural health monitoring (SHM) and control systems. In the last decade, building information modeling (BIM) has substantially enhanced the workflow of planning and operating engineering structures. Typically, building information can be stored and exchanged via model files that are based on the Industry Foundation Classes (IFC) standard. In this study a modeling approach for semantic modeling of SHM and control systems is integrated into the BIM methodology using the IFC standard. For validation of the modeling approach, a laboratory test structure, a four-story shear frame structure, is modeled using a conventional BIM software tool. An IFC schema extension is applied to describe information related to monitoring and control of a prototype SHM and control system installed on the laboratory test structure. The SHM and control system is described by a semantic model applying Unified Modeling Language (UML). Subsequently, the semantic model is mapped into the IFC schema. The test structure is composed of four aluminum slabs and plate-to-column connections are fully fixed. In the center of the top story, semi-active tuned liquid column damper (TLCD) is installed. The TLCD is used to reduce effects of structural responses in context of dynamic vibration and displacement. The wireless prototype SHM and control system is composed of wireless sensor nodes. For testing the SHM and control system, acceleration response is automatically recorded by the sensor nodes equipped with accelerometers and analyzed using embedded computing. As a result, SHM and control systems can be described within open BIM, dynamic responses and information of damages can be stored, documented, and exchanged on the formal basis of the IFC standard.

Keywords: structural health monitoring, open building information modeling, industry foundation classes, unified modeling language, semi-active tuned liquid column damper, nondestructive testing

Procedia PDF Downloads 153
19722 Improving Security Features of Traditional Automated Teller Machines-Based Banking Services via Fingerprint Biometrics Scheme

Authors: Anthony I. Otuonye, Juliet N. Odii, Perpetual N. Ibe

Abstract:

The obvious challenges faced by most commercial bank customers while using the services of ATMs (Automated Teller Machines) across developing countries have triggered the need for an improved system with better security features. Current ATM systems are password-based, and research has proved the vulnerabilities of these systems to heinous attacks and manipulations. We have discovered by research that the security of current ATM-assisted banking services in most developing countries of the world is easily broken and maneuvered by fraudsters, majorly because it is quite difficult for these systems to identify an impostor with privileged access as against the authentic bank account owner. Again, PIN (Personal Identification Number) code passwords are easily guessed, just to mention a few of such obvious limitations of traditional ATM operations. In this research work also, we have developed a system of fingerprint biometrics with PIN code Authentication that seeks to improve the security features of traditional ATM installations as well as other Banking Services. The aim is to ensure better security at all ATM installations and raise the confidence of bank customers. It is hoped that our system will overcome most of the challenges of the current password-based ATM operation if properly applied. The researchers made use of the OOADM (Object-Oriented Analysis and Design Methodology), a software development methodology that assures proper system design using modern design diagrams. Implementation and coding were carried out using Visual Studio 2010 together with other software tools. Results obtained show a working system that provides two levels of security at the client’s side using a fingerprint biometric scheme combined with the existing 4-digit PIN code to guarantee the confidence of bank customers across developing countries.

Keywords: fingerprint biometrics, banking operations, verification, ATMs, PIN code

Procedia PDF Downloads 45
19721 Integrated Target Tracking and Control for Automated Car-Following of Truck Platforms

Authors: Fadwa Alaskar, Fang-Chieh Chou, Carlos Flores, Xiao-Yun Lu, Alexandre M. Bayen

Abstract:

This article proposes a perception model for enhancing the accuracy and stability of car-following control of a longitudinally automated truck. We applied a fusion-based tracking algorithm on measurements of a single preceding vehicle needed for car-following control. This algorithm fuses two types of data, radar and LiDAR data, to obtain more accurate and robust longitudinal perception of the subject vehicle in various weather conditions. The filter’s resulting signals are fed to the gap control algorithm at every tracking loop composed by a high-level gap control and lower acceleration tracking system. Several highway tests have been performed with two trucks. The tests show accurate and fast tracking of the target, which impacts on the gap control loop positively. The experiments also show the fulfilment of control design requirements, such as fast speed variations tracking and robust time gap following.

Keywords: object tracking, perception, sensor fusion, adaptive cruise control, cooperative adaptive cruise control

Procedia PDF Downloads 230
19720 Real Time Monitoring and Control of Proton Exchange Membrane Fuel Cell in Cognitive Radio Environment

Authors: Prakash Thapa, Gye Choon Park, Sung Gi Kwon, Jin Lee

Abstract:

The generation of electric power from a proton exchange membrane (PEM) fuel cell is influenced by temperature, pressure, humidity, flow rate of reactant gaseous and partial flooding of membrane electrode assembly (MEA). Among these factors, temperature and cathode flooding are the most affecting parameters on the performance of fuel cell. This paper describes the detail design and effect of these parameters on PEM fuel cell. Performance of all parameters was monitored, analyzed and controlled by using 5KWatt PEM fuel cell. In the real-time data communication for remote monitoring and control of PEM fuel cell, a normalized least mean square algorithm in cognitive radio environment is used. By the use of this method, probability of energy signal detection will be maximum which solved the frequency shortage problem. So the monitoring system hanging out and slow speed problem will be solved. Also from the control unit, all parameters are controlled as per the system requirement. As a result, PEM fuel cell generates maximum electricity with better performance.

Keywords: proton exchange membrane (PEM) fuel cell, pressure, temperature and humidity sensor (PTH), efficiency curve, cognitive radio network (CRN)

Procedia PDF Downloads 459
19719 Scouring Rate Pattern/Monitoring at Coastal and Offshore Structures

Authors: Ahmad Saifullah Mazlan, Hossein Basser, Shatirah Akib

Abstract:

Scouring pattern evaluation and measuring its depth around coastal and offshore structures is very essential issue to assure the safety of the structures as well as providing needed design parameters. Scouring is known as one of the important phenomena which threatens the safety of infrastructures. Several countermeasures have been developed to control scouring by protecting the structures against water flow attack directly or indirectly by changing the water flow pattern. Recently, monitoring methods for estimating water flow pattern and scour depth are studied to track the safety of structures. Since most of studies regarding scouring is related to monitoring scouring around piers in rivers therefore it is necessary to develop researches investigating scouring around piers in coastal and offshore areas. This paper describes a review of monitoring methods may be used for detecting scour depth around piers in coastal and offshore structures.

Keywords: scour, monitoring, pier, coastal, offshore

Procedia PDF Downloads 644
19718 Comparative Analysis of Automation Testing Tools

Authors: Amit Bhanushali

Abstract:

In the ever-changing landscape of software development, automated software testing has emerged as a critical component of the Software Development Life Cycle (SDLC). This research undertakes a comparative study of three major automated testing tools -UFT, Selenium, and RPA- evaluating them on usability, maintenance, and effectiveness. Leveraging existing JAVA-based applications as test cases, the study aims to guide testers in selecting the optimal tool for specific applications. By exploring key features such as source and licensing, testing expenses, object repositories, usability, and language support, the research provides practical insights into UFT, Selenium, and RPA. Acknowledging the pivotal role of these tools in streamlining testing processes amid time constraints and resource limitations, the study assists professionals in making informed choices aligned with their organizational needs.

Keywords: software testing tools, software development lifecycle (SDLC), test automation frameworks, automated software, JAVA-based, UFT, selenium and RPA (robotic process automation), source and licensing, object repository

Procedia PDF Downloads 100
19717 Analysis of Transformer by Gas and Moisture Sensor during Laboratory Time Monitoring

Authors: Miroslav Gutten, Daniel Korenciak, Milan Simko, Milan Chupac

Abstract:

Ensure the reliable and correct function of transformers is the main essence of on-line non-destructive diagnostic tool, which allows the accurately track of the status parameters. Devices for on-line diagnostics are very costly. However, there are devices, whose price is relatively low and when used correctly, they can be executed a complex diagnostics. One of these devices is sensor HYDRAN M2, which is used to detect the moisture and gas content in the insulation oil. Using the sensor HYDRAN M2 in combination with temperature, load measurement, and physicochemical analysis can be made the economically inexpensive diagnostic system, which use is not restricted to distribution transformers. This system was tested in educational laboratory environment at measured oil transformer 22/0.4 kV. From the conclusions referred in article is possible to determine, which kind of fault was occurred in the transformer and how was an impact on the temperature, evolution of gases and water content.

Keywords: transformer, diagnostics, gas and moisture sensor, monitoring

Procedia PDF Downloads 385
19716 Satellites and Drones: Integrating Two Systems for Monitoring Air Quality and the Stress of the Plants

Authors: Bernabeo R. Alberto

Abstract:

Unmanned aerial vehicles (UAV) platforms or remotely piloted aircraft system (Rpas) - with dedicated sensors - are fundamental support to the planning, running, and control of the territory in which public safety is or may be at risk for post-disaster assessments such as flooding or landslides, for searching lost people, for crime and accident scene photography, for assisting traffic control at major events, for teaching geography, history, natural science and all those subjects that require a continuous cyclical process of observation, evaluation and interpretation. Through the use of proximal remote sensing information related to anthropic landscape and nature integration, there is an opportunity to improve knowledge and management decision-making for the safeguarding of the environment, for farming, wildlife management, land management, mapping, glacier monitoring, atmospheric monitoring, for the conservation of archeological, historical, artistic and architectural sites, allowing an exact delimitation of the site in the territory. This paper will go over many different mission types. Within each mission type, it will give a broad overview to familiarize the reader but not make them an expert. It will also give detailed information on the payloads and other testing parameters the Unmanned Aerial Vehicles (UAV) use to complete a mission. The project's goal is to improve satellite maps about the stress of the plants, air quality monitoring, and related health issues.

Keywords: proximal remote sensing, remotely piloted aircraft system, risk, safety, unmanned aerial vehicle

Procedia PDF Downloads 23
19715 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems

Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra

Abstract:

Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.

Keywords: automated, biomechanics, team-sports, sprint

Procedia PDF Downloads 119
19714 Portfolio Selection with Active Risk Monitoring

Authors: Marc S. Paolella, Pawel Polak

Abstract:

The paper proposes a framework for large-scale portfolio optimization which accounts for all the major stylized facts of multivariate financial returns, including volatility clustering, dynamics in the dependency structure, asymmetry, heavy tails, and non-ellipticity. It introduces a so-called risk fear portfolio strategy which combines portfolio optimization with active risk monitoring. The former selects optimal portfolio weights. The latter, independently, initiates market exit in case of excessive risks. The strategy agrees with the stylized fact of stock market major sell-offs during the initial stage of market downturns. The advantages of the new framework are illustrated with an extensive empirical study. It leads to superior multivariate density and Value-at-Risk forecasting, and better portfolio performance. The proposed risk fear portfolio strategy outperforms various competing types of optimal portfolios, even in the presence of conservative transaction costs and frequent rebalancing. The risk monitoring of the optimal portfolio can serve as an early warning system against large market risks. In particular, the new strategy avoids all the losses during the 2008 financial crisis, and it profits from the subsequent market recovery.

Keywords: comfort, financial crises, portfolio optimization, risk monitoring

Procedia PDF Downloads 525
19713 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier

Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu

Abstract:

Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.

Keywords: bias, augmentation, melanoma, convolutional neural network

Procedia PDF Downloads 213
19712 RFID Based Student Attendance System

Authors: Aniket Tiwari, Ameya London

Abstract:

Web-based student attendance management system is required to assist the faculty and the lecturer for the time-consuming process. For this purpose, GSM/GPRS (Global System for Mobile Communication/General Packet Radio Service) based student’s attendance management system using RFID (Radio Frequency Identification) is a much convenient method to take the attendance. Student is provided with the RFID tags. When student comes near to the reader, it will sense the respective student and update attendance. The whole process is controlled using the microcontroller. The main advantage of this system is that it reduced the complexity comparison to student attendance system using RF technology. This system requires only one microcontroller for the operation, it is real time process. This paper reviews some of these monitoring systems and proposes a GPRS based student attendance system. The system can be easily accessed by the lecturers via the web and most importantly, the reports can be generated in real-time processing, thus, provides valuable information about the students’ commitments in attending the classes.

Keywords: RFID reader, RFID tags, student, attendance

Procedia PDF Downloads 512
19711 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: sound detection, impulsive signal, background noise, neural network

Procedia PDF Downloads 322