Search results for: metal pollution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4006

Search results for: metal pollution

466 Plasma Technology for Hazardous Biomedical Waste Treatment

Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko

Abstract:

One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.

Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas

Procedia PDF Downloads 522
465 Cellulose Nanocrystals from Melon Plant Residues: A Sustainable and Renewable Source

Authors: Asiya Rezzouq, Mehdi El Bouchti, Omar Cherkaoui, Sanaa Majid, Souad Zyade

Abstract:

In recent years, there has been a steady increase in the exploration of new renewable and non-conventional sources for the production of biodegradable nanomaterials. Nature harbours valuable cellulose-rich materials that have so far been under-exploited and can be used to create cellulose derivatives such as cellulose microfibres (CMFs) and cellulose nanocrystals (CNCs). These unconventional sources have considerable potential as alternatives to conventional sources such as wood and cotton. By using agricultural waste to produce these cellulose derivatives, we are responding to the global call for sustainable solutions to environmental and economic challenges. Responsible management of agricultural waste is increasingly crucial to reducing the environmental consequences of its disposal, including soil and water pollution, while making efficient use of these untapped resources. In this study, the main objective was to extract cellulose nanocrystals (CNC) from melon plant residues using methods that are both efficient and sustainable. To achieve this high-quality extraction, we followed a well-defined protocol involving several key steps: pre-treatment of the residues by grinding, filtration and chemical purification to obtain high-quality (CMF) with a yield of 52% relative to the initial mass of the melon plant residue. Acid hydrolysis was then carried out using phosphoric acid and sulphuric acid to convert (CMF) into cellulose nanocrystals. The extracted cellulose nanocrystals were subjected to in-depth characterization using advanced techniques such as transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The resulting cellulose nanocrystals have exceptional properties, including a large specific surface area, high thermal stability and high mechanical strength, making them suitable for a variety of applications, including as reinforcements for composite materials. In summary, the study highlights the potential for recovering agricultural melon waste to produce high-quality cellulose nanocrystals with promising applications in industry, nanotechnology, and biotechnology, thereby contributing to environmental and economic sustainability.

Keywords: cellulose, melon plant residues, cellulose nanocrystals, properties, applications, composite materials

Procedia PDF Downloads 52
464 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film

Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena

Abstract:

Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.

Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film

Procedia PDF Downloads 269
463 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa

Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera

Abstract:

This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.

Keywords: contamination, DRASTIC, groundwater, vulnerability, model

Procedia PDF Downloads 80
462 Concentration Conditions of Industrially Valuable Accumulations of Gold Ore Mineralization of the Tulallar Ore-Bearing Structure

Authors: Narmina Ismayilova, Shamil Zabitov, Fuad Askerzadeh, Raqif Seyfullayev

Abstract:

Tulallar volcano-tectonic structure is located in the conjugation zone of the Gekgel horst-uplift, Dashkesan, and Agzhakend synclinorium. Regionally, these geological structures are an integral part of the Lok-Karabakh island arc system. Tulallar field is represented by three areas (Central, East, West). The area of the ore field is located within a partially eroded oblong volcano-tectonic depression. In the central part, the core is divided by the deep Tulallar-Chiragdara-Toganalinsky fault with arcuate fragments of the ring structure into three blocks -East, Central, and West, within which the same areas of the Tulallar field are located. In general, for the deposit, the position of both ore-bearing vein zones and ore-bearing blocks is controlled by fractures of two systems - sub-latitudinal and near-meridional orientations. Mineralization of gold-sulfide ores is confined to these zones of disturbances. The zones have a northwestern and northeastern (near-meridian) strike with a steep dip (70-85◦) to the southwest and southeast. The average thickness of the zones is 35 m; they are traced for 2.5 km along the strike and 500 m along with the dip. In general, for the indicated thickness, the zones contain an average of 1.56 ppm Au; however, areas enriched in noble metal are distinguished within them. The zones are complicated by postore fault tectonics. Gold mineralization is localized in the Kimmeridgian volcanics of andesi-basalt-porphyritic composition and their vitrolithoclastic, agglomerate tuffs, and tuff breccias. For the central part of the Tulallar ore field, a map of geochemical anomalies was built on the basis of analysis data carried out in an international laboratory. The total gold content ranges from 0.1-5 g/t, and in some places, even more than 5 g/t. The highest gold content is observed in the monoquartz facies among the secondary quartzites with quartz veins. The smallest amount of gold content appeared in the quartz-kaolin facies. And also, anomalous values of gold content are located in the upper part of the quartz vein. As a result, an en-echelon arrangement of anomalous values of gold along the strike and dip was revealed.

Keywords: geochemical anomaly, gold deposit, mineralization, Tulallar

Procedia PDF Downloads 184
461 Novel Uses of Discarded Work Rolls of Cold Rolling Mills in Hot Strip Mill of Tata Steel India

Authors: Uday Shanker Goel, Vinay Vasant Mahashabde, Biswajit Ghosh, Arvind Jha, Amit Kumar, Sanjay Kumar Patel, Uma Shanker Pattanaik, Vinit Kumar Shah, Chaitanya Bhanu

Abstract:

Pinch rolls of the Hot Mills must possess resistance to wear, thermal stability, high thermal conductivity and through hardness. Conventionally, pinch rolls have been procured either as new ones or refurbished ones. Discarded Work Rolls from the Cold Mill were taken and machined inhouse at Tata Steel to be used subsequently as the bottom pinch rolls of the Hot Mill. The hardness of the scrapped work rolls from CRM is close to 55HRC and the typical composition is ( C - 0.8% , Mn - 0.40 % , Si - 0.40% , Cr - 3.5% , Mo - 0.5% & V - 0.1% ).The Innovation was the use of a roll which would otherwise have been otherwise discarded as scrap. Also, the innovation helped in using the scrapped roll which had better wear and heat resistance. In a conventional Pinch roil (Hardness 50 HRC and typical chemistry - C - 10% , Mo+Co+V+Nb ~ 5 % ) , Pick-up is a condition whereby foreign material becomes adhered to the surface of the pinch roll during service. The foreign material is usually adhered metal from the actual product being rolled. The main attributes of the weld overlay rolls are wear resistance and crack resistance. However, the weld overlay roll has a strong tendency for strip pick-up particularly in the area of bead overlap. However, the greatest disadvantage is the depth of weld deposit, which is less than half of the usable shell thickness in most mills. Because of this, the stainless rolls require re-welding on a routine basis. By providing a significantly cheaper in house and more robust alternative of the existing bottom pinch rolls , this innovation results in significant lower worries for the roll shop. Pinch rolls now don't have to be sent outside Jamshedpur for refurbishment or for procuring new ones. Scrapped rolls from adjacent Cold Mill are procured and sent for machining to our Machine Shop inside Tata Steel works in Jamshedpur. This is far more convenient than the older methodology. The idea is also being deployed to the other hot mills of Tata Steel. Multiple campaigns have been tried out at both down coilers of Hot Strip with significantly lower wear.

Keywords: hot rolling flat, cold mill work roll, hot strip pinch roll, strip surface

Procedia PDF Downloads 118
460 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape

Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin

Abstract:

It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR( photosynthetic active radiation), the relative DLI( daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.

Keywords: daily light integral, plant design, urban open space

Procedia PDF Downloads 504
459 Phytochemicals Quatification, Trace Metal Accumulation Pattern and Contamination Risk Assessment of Different Variety of Tomatoes Cultivated on Municipal Waste Sludge Treated Soil

Authors: Mathodzi Nditsheni, Olawole Emmanuel Aina, Joshua Oluwole Olowoyo

Abstract:

The ever-increasing world population is putting extreme pressure on the already limited agricultural resources for food production. Different soil enhancers were introduced by famers to meet the need of the ever-increasing population demand for food. One of the soil enhancers is the municipal waste sludge. This research investigated the differences in the concentrations of trace metals and levels of phytochemicals in four different tomato varieties cultivated on soil treated with municipal waste sludge in Pretoria, South Africa. Fruits were harvested at maturity and analyzed for trace metals and phytochemicals contents using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and a High-Performance Liquid Chromatography (HPLC) respectively. A one-way analysis of variance (ANOVA) was used to determine the differences in the concentrations of trace metals and phytochemical from different tomato varieties were significant. From the study, Rodade tomato bioaccumulated the highest concentrations of Mn, Cr, Cu and Ni, Roma bioaccumulated the highest concentrations of, Cd, Fe and Pb while Heinz bioaccumulated the highest concentrations of As and Zn. Cherry tomato on the other hand, recorded the lowest concentrations for most metals, Cd, Cr, Cu, Mn, Ni, Pb and Zn. The results of the study further showed that phenolic and flavonoids content were higher in the Solanum lycopersicum fruit grown in soils treated with municipal waste sludge. The study also showed that there was an inverse relationship between the levels of trace metals and phytochemicals. The calculated contamination factor values of trace metals like Cr, Cu, Pb and Zn were above the safe value of 1 which indicated that the tomato fruits may be unsafe for human consumption. However, the contamination factor values for the remaining trace metals were well below the safe value of 1. From the results obtained either for the control group or the treatment, the tomato varieties used in the study, bioaccumulated the toxic trace metals in their fruits and some of the values obtained were higher than the acceptable limit, which may then imply that the varieties of tomato used in this study bio accumulated the toxic trace metals from the soil, hence care should be taken when these tomato varieties are either cultivated or harvested from polluted areas

Keywords: trace metals, flavonoids, phenolics, waste sludge, tomato, contamination factors

Procedia PDF Downloads 68
458 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite

Authors: Mohammad M. Khan, Gajendra Dixit

Abstract:

Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.

Keywords: solid lubricant, sliding wear, grey cast iron, zinc based metal matrix composites

Procedia PDF Downloads 311
457 Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney

Authors: Claire Far, Sara Wilkinson, Deborah Ascher Barnstone

Abstract:

Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed.

Keywords: thermal comfort, energy consumption, residential dwellings, sustainable design principles, thermal retrofit

Procedia PDF Downloads 262
456 Numerical Simulation on Airflow Structure in the Human Upper Respiratory Tract Model

Authors: Xiuguo Zhao, Xudong Ren, Chen Su, Xinxi Xu, Fu Niu, Lingshuai Meng

Abstract:

The respiratory diseases such as asthma, emphysema and bronchitis are connected with the air pollution and the number of these diseases tends to increase, which may attribute to the toxic aerosol deposition in human upper respiratory tract or in the bifurcation of human lung. The therapy of these diseases mostly uses pharmaceuticals in the form of aerosol delivered into the human upper respiratory tract or the lung. Understanding of airflow structures in human upper respiratory tract plays a very important role in the analysis of the “filtering” effect in the pharynx/larynx and for obtaining correct air-particle inlet conditions to the lung. However, numerical simulation based CFD (Computational Fluid Dynamics) technology has its own advantage on studying airflow structure in human upper respiratory tract. In this paper, a representative human upper respiratory tract is built and the CFD technology was used to investigate the air movement characteristic in the human upper respiratory tract. The airflow movement characteristic, the effect of the airflow movement on the shear stress distribution and the probability of the wall injury caused by the shear stress are discussed. Experimentally validated computational fluid-aerosol dynamics results showed the following: the phenomenon of airflow separation appears near the outer wall of the pharynx and the trachea. The high velocity zone is created near the inner wall of the trachea. The airflow splits at the divider and a new boundary layer is generated at the inner wall of the downstream from the bifurcation with the high velocity near the inner wall of the trachea. The maximum velocity appears at the exterior of the boundary layer. The secondary swirls and axial velocity distribution result in the high shear stress acting on the inner wall of the trachea and bifurcation, finally lead to the inner wall injury. The enhancement of breathing intensity enhances the intensity of the shear stress acting on the inner wall of the trachea and the bifurcation. If human keep the high breathing intensity for long time, not only the ability for the transportation and regulation of the gas through the trachea and the bifurcation fall, but also result in the increase of the probability of the wall strain and tissue injury.

Keywords: airflow structure, computational fluid dynamics, human upper respiratory tract, wall shear stress, numerical simulation

Procedia PDF Downloads 236
455 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 378
454 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 73
453 Air Quality Health Index in Windsor, Canada, and the Impact of Regional Scale Transport

Authors: Xiaohong Xu, Tianchu Zhang, Yangfan Chen, Rongtai Tan

Abstract:

In Canada, Air Quality Health Index (AQHI) is a scale designed to help residences understand the impact of air quality on human health. In Ontario, Canada, AQHI was implemented in June 2015. This study investigated temporal variability of daily AQHI and impact of regional transport on AQHI in Windsor, Ontario, Canada from 2016 to 2019. During 2016–2019, 1428 daily AQHIs were recorded in Windsor Downtown Station. Among those, the AQHIs were at the low health risk level (AQHI = 1, 2 or 3) in 82% of days, only a few days at high risk level (AQHI = 7), the rest were at moderate health risk level (AQHI = 4, 5, 6), indicating air quality in Windsor was fairly good with relatively low health risk. The annual mean AQHI value decreased from 2.95 in 2016 to 2.81 in 2019, demonstrating the improvement of air quality. Half of the days, AQHI were 3 regardless of season. AQHI was higher in the warm season (3.1) than in the cold season (2.6) due to more frequent moderate risk days (27%, AQHI = 4) in warm season and more frequent low risk days (42%, AQHI = 2) in the cold season. Among the three pollutants considered in AQHI calculation, O3 was the most frequently reported dominant contributor to daily AQHI (88% of days), followed by NO2 (12%), especially in the cold season, with small contribution from PM2.5 (<1%). In the past two decades, NO2 concentrations had decreased significantly and O3 concentrations had increased, resulting in daily AQHI being less reliance on NO2 (from 51% of days being the primary contributor during 2003–2010 to 12% during 2016–2019) and more on O3 concentrations (49% to 88%). Trajectory analysis found that AQHI ≤ 3 days were closely associated with air masses from the north and northwest, whereas AQHI > 3 days were closely associated with air masses from the west and southwest. This is because northerly flows brought in clear air mass owing to less industrial facilities, while polluted air masses were transported from the south of Windsor, where several industrial states of the US were located. Overall, O3 concentrations dictate the daily AQHI values, the seasonal variability of AQHI, and the impact of regional transport on AQHI in Windsor. This makes further reductions of AQHI challenging because O3 concentrations are likely to continue increasing due to weakened consumption of O3 by NO owing to decreasing NO emissions and more hot days because of climate change. The predominant and increasing contribution of O3 to AQHI calls for more effective control measures to mitigate O3 pollution and its impact on human health and the environment.

Keywords: air quality, Air Quality Health Index (AQHI), hysplit, regional transport, windsor

Procedia PDF Downloads 62
452 A Preliminary Research on Constituted Rules of Settlement Housing Alterations of Chinese New Village in Malaysia: A Study of Ampang New Village, Selangor

Authors: Song Hung Chi, Lee Chun Benn

Abstract:

Follow by the “A Research on Types of Settlement Housing Alterations of Chinese New Village in Malaysia- A Study in Ampang New Village, Selangor” preliminary informed that the main factors for expansion and enlargement suitably due to the needs of user's life and restoration purpose. The alterations behavior generally derived at the rear position of main house with different types of derivatives, the averages expansion area are not exceeding of 100㎡, while building materials used were wooden, wooden structure, and zinc which are non-permanent building materials. Therefore, a subsequent studies taken in this paper, further to analyze the drawing with summarize method, to explore the derived forms and the constituted rules of housing alterations in Ampang Village, as a more complete presentation of housing alterations in New Village. Firstly, classified the existing housing alterations into three types by using summarize method, which are Type 1, Additional of Prototype House; Type 2, Expansion of Prototype House; and Type 3, Diffusion of Additional. The results shows that the derivative mode of alterations can be divided into the use of "continuous wall" or "non-continuous wall," this will affects the structural systems and roof styles of alterations, and formed the different layers of interior space with "stages" and "continuity". On the aspects of spatial distribution, sacrificial area as a prescriptive function of space, it was mostly remains in the original location which in the center of living area after alterations. It is an important characteristic in a New Village house, reflecting the traditional Ethics of Hakka Chinese communities in the settlement. In addition, wooden as the main building materials of constituted rules for the prototype house, although there were appeared other building materials, such as cement, brick, glass, metal and zinc after alterations, but still mostly as "wooden house" pattern. Result show because of the economy of village does not significantly improve, and also forming the similarity types in alterations and constructions of the additional building with the existing. It did not significantly improve on the quality of living, but only increased the area of usage space.

Keywords: Ampang new village, derived forms, constituted rules, alterations

Procedia PDF Downloads 315
451 Pregnancy - The Unique Immunological Paradigm

Authors: Husham Bayazed

Abstract:

Purpose of presentation: Pregnancy represents the most important period for the conservation of the species. The immune system is one of the most important systems protecting the mother against the environment and preventing damage to the fetus. This presentation aims to review and discuss the role of the immune system during pregnancy, the evolutionary inflammatory process through pregnancy, infectious and environmental exposure influences on the mother and the fetus, and the impacts of sexual dimorphism of the placenta on offspring susceptibility to different disorders. Recent Findings: In 1960, Peter Medawar (Nobel Prize Winner) proposed that the fetus, a semi-allograft, is similar to a tissue graft that escapes rejection through a mechanism involving systemic immune suppression (Graft –Host response). However, recent researchers and studies have documented that implantation means inflammation, and the inflammatory process is considered a breach of tolerance in pregnancy with immune induction, which is necessary for the protection of the mother and the fetus against infections and environmental triggers. This inflammatory process should be maintained during different pregnancy phases till parturition, and any block at any phase will be associated with pregnancy complications, including pregnancy failure or loss, miscarriage, and preterm birth subsequently. Maternal immune activation following any trigger can have a positive effect on the fetus. The old concept of the placenta being asexual is inaccurate, and being with sexual dimorphism with clear differences in susceptibility to different factors that stimulate maternal immunity. Summary: The presence of different immune cells ((i.e., T cells, B cells, NK cells, etc.) at the implantation site is considered proof of a strong maternal immune response to the fetus. Therefore, human pregnancy is considered a unique immunological paradigm requiring maternal immune modulation rather than suppression. So Medawar's postulation of maternal systemic immunosuppression is wrong. Maternal immune system activation triggered by infections, stress, diet, and pollution can have a positive effect on the fetus, with the development of fetal-trained immunity necessary for survival. The sexual dimorphism of the placenta seems to have an impact on the differences in sex susceptible to the environment maternal risk stimuli. This link to why the incidence of autism is increasing more among boys than girls.

Keywords: pregnancy, maternal immunity, implantation and inflammation, placenta sexual dimorphism

Procedia PDF Downloads 86
450 Elevated Reductive Defluorination of Branched Per and Polyfluoroalkyl Substances by Soluble Metal-Porphyrins and New Mechanistic Insights on the Degradation

Authors: Jun Sun, Tsz Tin Yu, Maryam Mirabediny, Matthew Lee, Adele Jones, Denis M. O’Carroll, Michael J. Manefield, Björn Åkermark, Biswanath Das, Naresh Kumar

Abstract:

Reductive defluorination has emerged as a sustainable approach to clean water from Per and polyfluoroalkyl substances (PFASs), also known as forever organic containments. For last few decades, nano zero valent metals (nZVMs) have been intensively applied in the reductive remediation of groundwater contaminated with chlorinated organic compounds due to its low redox potential, easy application, and low production cost. However, there is inadequate information on the effective reductive defluorination of linear or branched PFAS using nZVMs as reductants because of the lack of suitable catalysts. CoII-5,10,15,20-Tetraphenyl-21H,23H-porphyrin (CoTPP) has been recently reported for effective catalyzing reductive defluorination of branched (br-) perfluorooctane sulfonate (PFOS) by using TiIII citrate as reductant. However, the low water solubility of CoTPP limited its applicability. Here, we explored a series of structurally related soluble cobalt porphyrin catalysts based on our previously reported best performing CoTPP. All soluble porphyrins [[meso-tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·₇H₂O (CoTCPP), [[meso-tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso-tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)₄·₄H₂O (CoTMpyP) displayed better defluorination efficiencies than CoTPP. Especially, CoTMpyP presented the best defluorination efficiency for br-PFOS (94 %), branched perfluorooctanoic acid (PFOA) (89 %), and 3,7-Perfluorodecanoic acid (PFDA) (60 %) after 1 day at 70 0C. CoTMpyP-nZn0 system showed 88-164 times higher defluorination rate than VB12-nZn0 system in terms of all investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature, demonstrating the potential prospect for in-situ reductive systems. Based on the analysis of the intermediate products, the calculated bond dissociation energies (BDEs) and possible first interaction between CoTMpyP and PFAS, degradation pathways of 3,7-PFDA and 6-PFOS are proposed.

Keywords: cationic, soluble porphyrin, cobalt, vitamin b12, pfas, reductive defluorination

Procedia PDF Downloads 71
449 NanoFrazor Lithography for advanced 2D and 3D Nanodevices

Authors: Zhengming Wu

Abstract:

NanoFrazor lithography systems were developed as a first true alternative or extension to standard mask-less nanolithography methods like electron beam lithography (EBL). In contrast to EBL they are based on thermal scanning probe lithography (t-SPL). Here a heatable ultra-sharp probe tip with an apex of a few nm is used for patterning and simultaneously inspecting complex nanostructures. The heat impact from the probe on a thermal responsive resist generates those high-resolution nanostructures. The patterning depth of each individual pixel can be controlled with better than 1 nm precision using an integrated in-situ metrology method. Furthermore, the inherent imaging capability of the Nanofrazor technology allows for markerless overlay, which has been achieved with sub-5 nm accuracy as well as it supports stitching layout sections together with < 10 nm error. Pattern transfer from such resist features below 10 nm resolution were demonstrated. The technology has proven its value as an enabler of new kinds of ultra-high resolution nanodevices as well as for improving the performance of existing device concepts. The application range for this new nanolithography technique is very broad spanning from ultra-high resolution 2D and 3D patterning to chemical and physical modification of matter at the nanoscale. Nanometer-precise markerless overlay and non-invasiveness to sensitive materials are among the key strengths of the technology. However, while patterning at below 10 nm resolution is achieved, significantly increasing the patterning speed at the expense of resolution is not feasible by using the heated tip alone. Towards this end, an integrated laser write head for direct laser sublimation (DLS) of the thermal resist has been introduced for significantly faster patterning of micrometer to millimeter-scale features. Remarkably, the areas patterned by the tip and the laser are seamlessly stitched together and both processes work on the very same resist material enabling a true mix-and-match process with no developing or any other processing steps in between. The presentation will include examples for (i) high-quality metal contacting of 2D materials, (ii) tuning photonic molecules, (iii) generating nanofluidic devices and (iv) generating spintronic circuits. Some of these applications have been enabled only due to the various unique capabilities of NanoFrazor lithography like the absence of damage from a charged particle beam.

Keywords: nanofabrication, grayscale lithography, 2D materials device, nano-optics, photonics, spintronic circuits

Procedia PDF Downloads 67
448 Toxic Metal and Radiological Risk Assessment of Soil, Water and Vegetables around a Gold Mine Turned Residential Area in Mokuro Area of Ile-Ife, Osun State Nigeria: An Implications for Human Health

Authors: Grace O. Akinlade, Danjuma D. Maza, Oluwakemi O. Olawolu, Delight O. Babalola, John A. O. Oyekunle, Joshua O. Ojo

Abstract:

The Mokuro area of Ile-Ife, South West Nigeria, was well known for gold mining in the past (about twenty years ago). However, the place has since been reclaimed and converted to residential area without any environmental risk assessment of the impact of the mining tailings on the environment. Soil, water, and plant samples were collected from 4 different locations around the mine-turned-residential area. Soil samples were pulverized and sieved into finer particles, while the plant samples were dried and pulverized. All the samples were digested and analyzed for As, Pb, Cd, and Zn using atomic absorption spectroscopy (AAS). From the analysis results, the hazard index (HI) was then calculated for the metals. The soil and plant samples were air dried and pulverized, then weighed, after which the samples were packed into special and properly sealed containers to prevent radon gas leakage. After the sealing, the samples were kept for 28 days to attain secular equilibrium. The concentrations of 40K, 238U, and 232Th in the samples were measured using a cesium iodide (CsI) spectrometer and URSA software. The AAS analysis showed that As, Pb, Cd (Toxic metals), and Zn (essential trace metals) are in concentrations lower than permissible limits in plants and soil samples, while the water samples had concentrations higher than permissible limits. The calculated health indices (HI) show that HI for water is >1 and that of plants and soil is <1. Gamma spectrometry result shows high levels of activity concentrations above the recommended limits for all the soil and plant samples collected from the area. Only the water samples have activity concentrations below the recommended limit. Consequently, the absorbed dose, annual effective dose, and excess lifetime cancer risk are all above the recommended safe limit for all the samples except for water samples. In conclusion, all the samples collected from the area are either contaminated with toxic metals or they pose radiological hazards to the consumers. Further detailed study is therefore recommended in order to be able to advise the residents appropriately.

Keywords: toxic metals, gamma spectrometry, Ile-Ife, radiological hazards, gold mining

Procedia PDF Downloads 47
447 Smart Sensor Data to Predict Machine Performance with IoT-Based Machine Learning and Artificial Intelligence

Authors: C. J. Rossouw, T. I. van Niekerk

Abstract:

The global manufacturing industry is utilizing the internet and cloud-based services to further explore the anatomy and optimize manufacturing processes in support of the movement into the Fourth Industrial Revolution (4IR). The 4IR from a third world and African perspective is hindered by the fact that many manufacturing systems that were developed in the third industrial revolution are not inherently equipped to utilize the internet and services of the 4IR, hindering the progression of third world manufacturing industries into the 4IR. This research focuses on the development of a non-invasive and cost-effective cyber-physical IoT system that will exploit a machine’s vibration to expose semantic characteristics in the manufacturing process and utilize these results through a real-time cloud-based machine condition monitoring system with the intention to optimize the system. A microcontroller-based IoT sensor was designed to acquire a machine’s mechanical vibration data, process it in real-time, and transmit it to a cloud-based platform via Wi-Fi and the internet. Time-frequency Fourier analysis was applied to the vibration data to form an image representation of the machine’s behaviour. This data was used to train a Convolutional Neural Network (CNN) to learn semantic characteristics in the machine’s behaviour and relate them to a state of operation. The same data was also used to train a Convolutional Autoencoder (CAE) to detect anomalies in the data. Real-time edge-based artificial intelligence was achieved by deploying the CNN and CAE on the sensor to analyse the vibration. A cloud platform was deployed to visualize the vibration data and the results of the CNN and CAE in real-time. The cyber-physical IoT system was deployed on a semi-automated metal granulation machine with a set of trained machine learning models. Using a single sensor, the system was able to accurately visualize three states of the machine’s operation in real-time. The system was also able to detect a variance in the material being granulated. The research demonstrates how non-IoT manufacturing systems can be equipped with edge-based artificial intelligence to establish a remote machine condition monitoring system.

Keywords: IoT, cyber-physical systems, artificial intelligence, manufacturing, vibration analytics, continuous machine condition monitoring

Procedia PDF Downloads 82
446 Modelling for Roof Failure Analysis in an Underground Cave

Authors: M. Belén Prendes-Gero, Celestino González-Nicieza, M. Inmaculada Alvarez-Fernández

Abstract:

Roof collapse is one of the problems with a higher frequency in most of the mines of all countries, even now. There are many reasons that may cause the roof to collapse, namely the mine stress activities in the mining process, the lack of vigilance and carelessness or the complexity of the geological structure and irregular operations. This work is the result of the analysis of one accident produced in the “Mary” coal exploitation located in northern Spain. In this accident, the roof of a crossroad of excavated galleries to exploit the “Morena” Layer, 700 m deep, collapsed. In the paper, the work done by the forensic team to determine the causes of the incident, its conclusions and recommendations are collected. Initially, the available documentation (geology, geotechnics, mining, etc.) and accident area were reviewed. After that, laboratory and on-site tests were carried out to characterize the behaviour of the rock materials and the support used (metal frames and shotcrete). With this information, different hypotheses of failure were simulated to find the one that best fits reality. For this work, the software of finite differences in three dimensions, FLAC 3D, was employed. The results of the study confirmed that the detachment was originated as a consequence of one sliding in the layer wall, due to the large roof span present in the place of the accident, and probably triggered as a consequence of the existence of a protection pillar insufficient. The results allowed to establish some corrective measures avoiding future risks. For example, the dimensions of the protection zones that must be remained unexploited and their interaction with the crossing areas between galleries, or the use of more adequate supports for these conditions, in which the significant deformations may discourage the use of rigid supports such as shotcrete. At last, a grid of seismic control was proposed as a predictive system. Its efficiency was tested along the investigation period employing three control equipment that detected new incidents (although smaller) in other similar areas of the mine. These new incidents show that the use of explosives produces vibrations which are a new risk factor to analyse in a next future.

Keywords: forensic analysis, hypothesis modelling, roof failure, seismic monitoring

Procedia PDF Downloads 107
445 Seismic Active Earth Pressure on Retaining Walls with Reinforced Backfill

Authors: Jagdish Prasad Sahoo

Abstract:

The increase in active earth pressure during the event of an earthquake results sliding, overturning and tilting of earth retaining structures. In order to improve upon the stability of structures, the soil mass is often reinforced with various types of reinforcements such as metal strips, geotextiles, and geogrids etc. The stresses generated in the soil mass are transferred to the reinforcements through the interface friction between the earth and the reinforcement, which in turn reduces the lateral earth pressure on the retaining walls. Hence, the evaluation of earth pressure in the presence of seismic forces with an inclusion of reinforcements is important for the design retaining walls in the seismically active zones. In the present analysis, the effect of reinforcing horizontal layers of reinforcements in the form of sheets (Geotextiles and Geogrids) in sand used as backfill, on reducing the active earth pressure due to earthquake body forces has been studied. For carrying out the analysis, pseudo-static approach has been adopted by employing upper bound theorem of limit analysis in combination with finite elements and linear optimization. The computations have been performed with and out reinforcements for different internal friction angle of sand varying from 30 ° to 45 °. The effectiveness of the reinforcement in reducing the active earth pressure on the retaining walls is examined in terms of active earth pressure coefficient for presenting the solutions in a non-dimensional form. The active earth pressure coefficient is expressed as functions of internal friction angle of sand, interface friction angle between sand and reinforcement, soil-wall interface roughness conditions, and coefficient of horizontal seismic acceleration. It has been found that (i) there always exists a certain optimum depth of the reinforcement layers corresponding to which the value of active earth pressure coefficient becomes always the minimum, and (ii) the active earth pressure coefficient decreases significantly with an increase in length of reinforcements only up to a certain length beyond which a further increase in length hardly causes any reduction in the values active earth pressure. The optimum depth of the reinforcement layers and the required length of reinforcements corresponding to the optimum depth of reinforcements have been established. The numerical results developed in this analysis are expected to be useful for purpose of design of retaining walls.

Keywords: active, finite elements, limit analysis, presudo-static, reinforcement

Procedia PDF Downloads 357
444 Photoluminescent Properties of Noble Metal Nanoparticles Supported Yttrium Aluminum Garnet Nanoparticles Doped with Cerium (Ⅲ) Ions

Authors: Mitsunobu Iwasaki, Akifumi Iseda

Abstract:

Yttrium aluminum garnet doped with cerium (Ⅲ) ions (Y3Al5O12:Ce3+, YAG:Ce3+) has attracted a great attention because it can efficiently convert the blue light into a very broad yellow emission band, which produces white light emitting diodes and is applied for panel displays. To improve the brightness and resolution of the display, a considerable attention has been directed to develop fine phosphor particles. We have prepared YAG:Ce3+ nanophosphors by environmental-friendly wet process. The peak maximum of absorption spectra of surface plasmon of Ag nanopaticles are close to that of the excitation spectra (460 nm) of YAG:Ce3+. It can be expected that Ag nanoparticles supported onto the surface of YAG:Ce3+ (Ag-YAG:Ce3+) enhance the absorption of Ce3+ ions. In this study, we have prepared Ag-YAG:Ce3+ nanophosphors and investigated their photoluminescent properties. YCl3・6H2O and AlCl3・6H2O with a molar ratio of Y:Al=3:5 were dissolved in ethanol (100 ml), and CeCl3•7H2O (0.3 mol%) was further added to the above solution. Then, NaOH (4.6×10-2 mol) dissolved in ethanol (50 ml) was added dropwise to the mixture under reflux over 2 hours, and the solution was further refluxed for 1 hour. After cooling to room temperature, precipitates in the reaction mixture were heated at 673 K for 1 hour. After the calcination, the particles were immersed in AgNO3 solution for 1 hour, followed by sintering at 1123 K for 1 hour. YAG:Ce3+ were confirmed to be nanocrystals with a crystallite size of 50-80 nm in diameter. Ag nanoparticles supported onto YAG:Ce3+ were single nanometers in diameter. The excitation and emission spectra were 454 nm and 539 nm at a maximum wavelength, respectively. The emission intensity was maximum for Ag-YAG:Ce3+ immersed into 0.5 mM AgCl (Ag-YAG:Ce (0.5 mM)). The absorption maximum (461 nm) was increased for Ag-YAG:Ce3+ in comparison with that for YAG:Ce3+, indicating that the absorption was enhanced by the addition of Ag. The external and internal quantum efficiencies became 11.2 % and 36.9 % for Ag-YAG:Ce (0.5 mM), respectively. The emission intensity and absorption maximum of Ag-YAG:Ce (0.5 mM)×n (n=1, 2, 3) were increased with an increase of the number of supporting times (n), respectively. The external and internal quantum efficiencies were increased for the increase of n, respectively. The external quantum efficiency of Ag-YAG:Ce (0.5 mM) (n=3) became twice as large as that of YAG:Ce. In conclusion, Ag nanoparticles supported onto YAG:Ce3+ increased absorption and quantum efficiency. Therefore, the support of Ag nanoparticles enhanced the photoluminescent properties of YAG:Ce3+.

Keywords: plasmon, quantum efficiency, silver nanoparticles, yttrium aluminum garnet

Procedia PDF Downloads 261
443 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 86
442 Cultural Landscape Planning – A Case of Chettinad Village Clusters

Authors: Adhithy Menon E., Biju C. A.

Abstract:

In the 1960s, the concept of preserving heritage monuments was first introduced. During the 1990s, the concept of cultural landscapes gained importance, highlighting the importance of culture and heritage. Throughout this paper, we examine the second category of the cultural landscape, which is an organically evolving landscape as it represents a web of tangible, intangible, and ecological heritage and the ways in which they can be rejuvenated. Cultural landscapes in various regions, such as the Chettinad Village clusters, are in serious decline, which is identified through the Heritage Passport program of this area (2007). For this reason, it is necessary to conduct a detailed analysis of the factors that contribute to this degradation to ensure its protection in the future. An analysis of the cultural landscape of the Chettinad Village clusters and its impact on the community is presented in this paper. The paper follows the first objective, which is to understand cultural landscapes and their different criteria and categories. It is preceded by the study of various methods for protecting cultural landscapes. To identify a core area of intervention based on the parameters of Cultural Landscapes and Community Based Tourism, a study and analysis of the regional context of Chettinad village clusters considering tourism development must first be conducted. Lastly, planning interventions for integrating community-based tourism in Chettinad villages for the purpose of rejuvenating the cultural landscapes of the villages as well as their communities. The major findings include the importance of the local community in protecting cultural landscapes. The parameters identified to have an impact on Chettinad Village clusters are a community (community well-being, local maintenance, and enhancement, demand, alternative income for community, public participation, awareness), tourism (location and physical access, journey time, tourist attractions), integrity (natural factors, natural disasters, demolition of structures, deterioration of materials) authenticity (sense of place, living elements, building techniques, artistic expression, religious context) disaster management (natural disasters) and environmental impact (pollution). This area can be restored to its former glory and preserved as part of the cultural landscape for future generations by focusing on and addressing these parameters within the identified core area of the Chettinad Villages cluster (Kanadukathan TP, Kothamangalam, Kottaiyur, Athangudi, Karikudi, and Palathur).

Keywords: Chettinad village clusters, community, cultural landscapes, organically evolved.

Procedia PDF Downloads 74
441 Study of Pulmonary Function Test of over the 40 Years Adults in Ulaanbaatar

Authors: D. Densenbal, Ts. Naidansuren, M. Oyunchimeg, Ts. Manaljav, D. Udval, L. Khosbayar, Kh. Solongo, D. Ichinnorov, B. Solongo

Abstract:

Background: The rapid economic growth and to the common use of smoky fuel such as coal in the small traditional houses (Ger) in Mongolia is worsening its air pollution problem. In addition, the smoking rate is considered to be high. Despite these conditions, few prevalence studies of COPD epidemiology and diagnose have been performed in Mongolia. The spirometric test is a widely used diagnose for COPD. Aims: Healthy and over the 40 aged adults were evaluated of Pulmonary function test in Ulaanbaatar. Methods: Healthy, over the 40 aged residences were admitted for this study from II sub-district, in Khan-Uul district of Ulaanbaatar city. In this cross-sectional study. Health information was collected 184 subjects between 01-03 July in 2013; spirometry device was named Hichest–105 Japan that was employed for this study. Studies were using the acceptability standards outlined, and data were compared with personal reference data generated on Asian subjects which were performed abnormally to evaluated by global initiative obstructive lung decreases (GOLD). Data were analyzed using SPSS 20 software. Results: A total of 134 subjects (age 52.9±9.8, man 32.8%) were performed PFT which were interpreted normal 73.9% (sum of man 65.0% and woman 79.4% ), abnormal 26.1% which were typed obstruction 17.2% (23), restriction 6% (8), mixed 3% (4). Airflow obstruction were determined in all man 25% (11), woman 13.3% (12) which were classified mild 43.4% (man 54.5%, woman 33.3%), moderate 52.2% (36.3% vs. 66.7%) and severe 4.3% man 1 GOLD degree. Undetermined a very severe obstruction. Normal PFT subjects were compared a group of gender and age group which man was significantly higher than the women (p<0.05). Age group of PFT decrease was no difference in gender (p>0.05) also no difference in BMI (p>0.05). Normal PFT subjects were compared with predicted values were used to Asian population which was significantly lower than FEV1 (0.15±0.36 l), PEF (1.92±1.31 l) and same deference occurred man (FEV1 0.19±0.42 l, PEF 2.04±1.64), women (0.14±0.33 l vs. 1.86±1.15 l). The decrease of FEV1 was defined in over the 60 age group higher than other age groups. Conclusion: Not only observed an air flow limitation prevalence dominance in all case but also COPD prevalence diagnosed man were higher than women. Normal PFT subjects were compared with predicted values were used to Asian population which was significant air flow limitation started early.

Keywords: PFT, obstruction, FEV1, COPD

Procedia PDF Downloads 211
440 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review

Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon

Abstract:

The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.

Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration

Procedia PDF Downloads 91
439 Assessing Environmental Psychology and Health Awareness in Delhi: A Fundamental Query for Sustainable Urban Living

Authors: Swati Rajput

Abstract:

Environmental psychology explains that the person is a social agent that seeks to extract meaning from their built and natural environment to behave in a particular manner. It also shows the attachment or detachment of people to their environment. Assessing environmental psychology of people is imperative for planners and policy makers for urban planning. The paper investigates the environmental psychology of people living in nine districts of Delhi by calculating and assessing their Environmental Emotional Quotient (EEQ). Emotional Quotient deals with the ability to sense, understand, attach and respond according to the power of emotions. An Environmental Emotional Quotient has been formulated based upon the inventory administered to them. The respondents were asked questions related to their view and emotions about the green spaces, water resource conservation, air and environmental quality. An effort has been made to assess the feeling of belongingness among the residents. Their views were assessed on green spaces, reuse, and recycling of resources and their participation level. They were also been assessed upon health awareness level by considering both preventive and curative segments of health care. It was found that only 12 percent of the people is emotionally attached to their surroundings in the city. The emotional attachment reduces as we move away from the house to housing complex to neighbouring areas and rest of the city. In fact, the emotional quotient goes lower to lowest from house to other ends of the city. It falls abruptly after the radius of 1 km from the residence. The result also shows that nearly 54% respondents accept that there is environment pollution in their area. Around 47.8% respondents in the survey consider that diseases occur because of green cover depiction in their area. Major diseases are to airborne diseases like asthma and bronchitis. Seasonal disease prevalent, which specially occurred from last 3-4 years are malaria, dengue and chikengunya. Survey also shows that only 31 % of respondents visit government hospitals while 69% respondents visit private hospitals or small clinics for healthcare services. The paper suggests the need for environmental sensitive policies and need for green insurance in mega cities like Delhi.

Keywords: environmental psychology, environmental emotional quotient, preventive health care and curative health care, sustainable living

Procedia PDF Downloads 271
438 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles

Authors: M. Vadivel, R. Ramesh Babu

Abstract:

Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.

Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization

Procedia PDF Downloads 311
437 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan

Abstract:

Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.

Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film

Procedia PDF Downloads 322