Search results for: learning and teaching environment
12607 Knowledge and Attitude: Challenges for Continuing Education in Health
Authors: André M. Senna, Mary L. G. S. Senna, Rosa M. Machado-de-Sena
Abstract:
One of the great challenges presented in educational practice is how to ensure the students not only acquire knowledge of training courses throughout their academic life, but also how to apply it in their current professional activities. Consequently, aiming to incite changes in the education system of healthcare professionals noticed the inadequacy of the training providers to solve the social problems related to health, the education related to these procedures should initiate in the earliest years of process. Following that idea, there is another question that needs an answer: If the change in the education should start sooner, in the period of basic training of healthcare professionals, what guidelines should a permanent education program incorporate to promote changes in an already established system? For this reason, the objective of this paper is to present different views of the teaching-learning process, with the purpose of better understanding the behavior adopted by healthcare professionals, through bibliographic study. The conclusion was that more than imparting knowledge to the individual, a larger approach is necessary on permanent education programs concerning the performance of professional health services in order to foment significant changes in education.Keywords: Health Education, continuing education, training, behavior
Procedia PDF Downloads 26312606 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 17512605 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 7712604 MULTI-FLGANs: Multi-Distributed Adversarial Networks for Non-Independent and Identically Distributed Distribution
Authors: Akash Amalan, Rui Wang, Yanqi Qiao, Emmanouil Panaousis, Kaitai Liang
Abstract:
Federated learning is an emerging concept in the domain of distributed machine learning. This concept has enabled General Adversarial Networks (GANs) to benefit from the rich distributed training data while preserving privacy. However, in a non-IID setting, current federated GAN architectures are unstable, struggling to learn the distinct features, and vulnerable to mode collapse. In this paper, we propose an architecture MULTI-FLGAN to solve the problem of low-quality images, mode collapse, and instability for non-IID datasets. Our results show that MULTI-FLGAN is four times as stable and performant (i.e., high inception score) on average over 20 clients compared to baseline FLGAN.Keywords: federated learning, generative adversarial network, inference attack, non-IID data distribution
Procedia PDF Downloads 15812603 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning
Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel
Abstract:
Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection
Procedia PDF Downloads 4312602 Technology and the Need for Integration in Public Education
Authors: Eric Morettin
Abstract:
Cybersecurity and digital literacy are pressing issues among Canadian citizens, yet formal education does not provide today’s students with the necessary knowledge and skills needed to adapt to these challenging issues within the physical and digital labor-market. Canada’s current education systems do not highlight the importance of these respective fields, aside from using technology for learning management systems and alternative methods of assignment completion. Educators are not properly trained to integrate technology into the compulsory courses within public education, to better prepare their learners in these topics and Canada’s digital economy. ICTC addresses these gaps in education and training through cross-Canadian educational programming in digital literacy and competency, cybersecurity and coding which is bridged with Canada’s provincially regulated K-12 curriculum guidelines. After analyzing Canada’s provincial education, it is apparent that there are gaps in learning related to technology, as well as inconsistent educational outcomes that do not adequately represent the current Canadian and global economies. Presently only New Brunswick, Nova Scotia, Ontario, and British Columbia offer curriculum guidelines for cybersecurity, computer programming, and digital literacy. The remaining provinces do not address these skills in their curriculum guidelines. Moreover, certain courses across some provinces not being updated since the 1990’s. The three territories respectfully take curriculum strands from other provinces and use them as their foundation in education. Yukon uses all British Columbia curriculum. Northwest Territories and Nunavut respectfully use a hybrid of Alberta and Saskatchewan curriculum as their foundation of learning. Education that is provincially regulated does not allow for consistency across the country’s educational outcomes and what Canada’s students will achieve – especially when curriculum outcomes have not been updated to reflect present day society. Through this, ICTC has aligned Canada’s provincially regulated curriculum and created opportunities for focused education in the realm of technology to better serve Canada’s present learners and teachers; while addressing inequalities and applicability within curriculum strands and outcomes across the country. As a result, lessons, units, and formal assessment strategies, have been created to benefit students and teachers in this interdisciplinary, cross-curricular, practice - as well as meeting their compulsory education requirements and developing skills and literacy in cyber education. Teachers can access these lessons and units through ICTC’s website, as well as receive professional development regarding the assessment and implementation of these offerings from ICTC’s education coordinators, whose combines experience exceeds 50 years of teaching in public, private, international, and Indigenous schools. We encourage you to take this opportunity that will benefit students and educators, and will bridge the learning and curriculum gaps in Canadian education to better reflect the ever-changing public, social, and career landscape that all citizens are a part of. Students are the future, and we at ICTC strive to ensure their futures are bright and prosperous.Keywords: cybersecurity, education, curriculum, teachers
Procedia PDF Downloads 8212601 Pupils' and Teachers' Perceptions and Experiences of Welsh Language Instruction
Authors: Mirain Rhys, Kevin Smith
Abstract:
In 2017, the Welsh Government introduced an ambitious, new strategy to increase the number of Welsh speakers in Wales to 1 million by 2050. The Welsh education system is a vitally important feature of this strategy. All children attending state schools in Wales learn Welsh as a second language until the age of 16 and are assessed at General Certificate of Secondary Education (GCSE) level. In 2013, a review of Welsh second language instruction in Key Stages 3 and 4 was completed. The report identified considerable gaps in teachers’ preparation and training for teaching Welsh; poor Welsh language ethos at many schools; and a general lack of resources to support the instruction of Welsh. Recommendations were made across a number of dimensions including curriculum content, pedagogical practice, and teacher assessment, training, and resources. With a new national curriculum currently in development, this study builds on this review and provides unprecedented detail into pupils’ and teachers’ perceptions of Welsh language instruction. The current research built on data taken from an existing capacity building research project on Welsh education, the Wales multi-cohort study (WMS). Quantitative data taken from WMS surveys with over 1200 pupils in schools in Wales indicated that Welsh language lessons were the least enjoyable subject among pupils. The current research aimed to unpick pupil experiences in order to add to the policy development context. To achieve this, forty-four pupils and four teachers in three schools from the larger WMS sample participated in focus groups. Participants from years 9, 11 and 13 who had indicated positive, negative and neutral attitudes towards the Welsh language in a previous WMS survey were selected. Questions were based on previous research exploring issues including, but not limited to pedagogy, policy, assessment, engagement and (teacher) training. A thematic analysis of the focus group recordings revealed that the majority of participants held positive views around keeping the language alive but did not want to take on responsibility for its maintenance. These views were almost entirely based on their experiences of learning Welsh at school, especially in relation to their perceived lack of choice and opinions around particular lesson strategies and assessment. Analysis of teacher interviews highlighted a distinct lack of resources (materials and staff alike) compared to modern foreign languages, which had a negative impact on student motivation and attitudes. Both staff and students indicated a need for more practical, oral language instruction which could lead to Welsh being used outside the classroom. The data corroborate many of the review’s previous findings, but what makes this research distinctive is the way in which pupils poignantly address generally misguided aims for Welsh language instruction, poor pedagogical practice and a general disconnect between Welsh instruction and its daily use in their lives. These findings emphasize the complexity of incorporating the educational sector in strategies for Welsh language maintenance and the complications arising from pedagogical training, support, and resources, as well as teacher and pupil perceptions of, and attitudes towards, teaching and learning Welsh.Keywords: bilingual education, language maintenance, language revitalisation, minority languages, Wales
Procedia PDF Downloads 11212600 Policy and Practice of Later-Life Learning in China: A Critical Document Discourse Analysis
Authors: Xue Wu
Abstract:
Since the 1980s, a series of policies and practices have been implemented in China in response to the unprecedented rate of ageing population. The paper provides a detailed narrative of what later-life learning policy discourses have been advocated and gives a description on relevant practical issues during the past three decades. The research process based on the discourse approach with a systematic review of the government-issued documents. It finds that the main practices taken by central government at various levels were making University of the Aged (UA) available in all urban and rural regions to consolidate the newly student enrollments; focusing social-recreational, leisure and cultural activities on 55-75 age group; and utilizing various methods including voluntary works and tourism to improve older adults’ physical and mental wellness. Although there were greater achievements with 30 years of development, many problems still exist. Finding reveals that the curriculum should be modified to meet the needs of the local development, to promote older adults’ contact and contribution to the community, and to enhance technical competences of those in rural areas involving in agricultural production. Central government should also integrate resources from all sectors of the society for further developing later-life learning in China. The result of this paper highlights the value to promote community-based later-life learning for building a society for active ageing and ageing in place.Keywords: ageing population, China, later-life learning, policy, University of the Aged
Procedia PDF Downloads 14412599 Enhancing French Vocabulary Acquisition: The Impact of Explicit Instruction on Productive Non-Cognate Suffixes for Beginner Learners
Authors: Deborah Idowu
Abstract:
This research delves into the effectiveness of explicitly teaching productive non-cognate French suffixes to English beginner learners of the French language. It is widely accepted that cognates, especially orthographic ones, can be inferred by learners from their first language (in this case, English). The same is the case for derived French words with cognate suffixes, provided the learner is familiar with the lemma, which can either be cognate or non-cognate. However, the same cannot be said for derived French words with non-cognate suffixes. These suffixes often pose challenges to learners, even when the base word is familiar to them. The primary goal of this research is to enhance the vocabulary comprehension and expansion of English-speaking beginners in French by focusing on the recognition of derived French words that may not align with their L1 knowledge. The methodology employed in this study of derivational morphology involves an experimental group receiving explicit instruction on productive non-cognate suffixes, while a control group does not. By utilizing confidence ratings and other analytical tools, the analysis aims to measure the impact of this targeted instruction on the learners' ability to understand and incorporate non-cognate suffixes into their French vocabulary. Through this experimental approach, the research seeks to provide valuable insights into how explicit instruction on non-cognate suffixes can benefit beginner French learners, ultimately aiding them in navigating the intricacies of French derivational morphology. The objectives of this research are as follows: i. to investigate the impact of explicitly teaching productive non-cognate suffixes on the vocabulary comprehension and expansion of beginner learners of the French language; ii. to assess the effectiveness of targeted instruction on non-cognate suffixes in aiding English-speaking learners in recognizing and understanding derived French words that may not align with their native language knowledge, iii. to compare the vocabulary acquisition and retention of beginner French learners who receive explicit instruction on non-cognate suffixes with those who do not to determine the effectiveness of this instructional approach, iv. to analyze the confidence ratings and other analytical methods to gauge the learners' ability to integrate non-cognate suffixes into their French vocabulary and comprehend the meaning of derived words more effectively, v. to contribute insights into how explicit instruction on non-cognate suffixes can enhance the overall language learning experience for beginner learners of French, particularly in the area of French derivational morphology.Keywords: suffixes, derivational morphology, non-cognates, vocabulary acquisition, French language learners
Procedia PDF Downloads 3812598 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms
Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama
Abstract:
Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.Keywords: machine learning, ChatGPT, education, learning, implications
Procedia PDF Downloads 23212597 Desk Graffiti as Art, Archive or Collective Knowledge Sharing: A Case Study of Schools in Addis Ababa, Ethiopia
Authors: Behailu Bezabih Ayele
Abstract:
Illustrative expressions in art education and in overall learning are being given increasing attention in the transmission of knowledge. The objective of this paper, therefore, is to present an analysis of graffiti on school desks-a way of smuggling knowledge on the edge of classroom education and learning. The methodological approach focuses on the systematic collection and selection of desk graffiti. Four schools are chosen to reflect socioeconomic status and gender composition. The analysis focused on the categorization of graffiti by genre. This was followed by an analysis of the style, intensity as well as content of the messages in terms of overall social impacts. The paper grounds the analysis by reviewing the literature on modern education and art education in the Ethiopian context, as well as the place of desk graffiti. The findings generally show that the school desks and the school environment, by and large, have managed to serve as vessels through which formal and informal knowledge is acquired, transmitted, engrained into the students and transformed into messages by the students. The desks have also apparently served as a springboard to maximize the interfaces between several ideas and disciplines and communications. However, the very fact that the desks serve as massive channels of expression and knowledge transmission also points to a lack of breadth availability of channels of expression, perhaps confounding the ability of classrooms as means of outlet of expression and documentation for the students. This points to the need for efforts in education policy and funding of artistic endeavors for young students.Keywords: artistic expression, desk graffiti, education, school children, Ethiopia
Procedia PDF Downloads 6812596 Current Methods for Drug Property Prediction in the Real World
Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh
Abstract:
Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning
Procedia PDF Downloads 8112595 Assessment and Prevalence of Burnout Syndrome and the Coping Strategies among Nurses in Lagos University Teaching Hospital, Lagos, Nigeria
Authors: Calassandra Nwokoro
Abstract:
Introduction: The nursing profession requires a lot of commitment, effort, and time to efficiently manage patients and provide them quality healthcare services, this work load may eventually cause the nurses to become burned out and experience psychological distress. This study assessed the prevalence of burnout, risk factors, and the coping strategies among nurses working in Lagos University Teaching Hospital (LUTH), Lagos state, Nigeria. Methodology: A descriptive cross-sectional study design was conducted among 308 nurses working in LUTH. Simple random sampling was used in selection of study respondents. The questionnaire comprised three parts; the sociodemographic characteristics of the respondents, the extent of burnout syndrome using the Maslach Burnout Inventory, and the coping strategies used among the respondents using the BRIEF-COPE Inventory. Results: This study revealed relatively high levels of burnout among the nurses in LUTH with a prevalence of 16.9%, 31.2% and 20.1% for high emotional exhaustion, high depersonalization and reduced professional accomplishment respectively. It also showed that burnout was significantly associated with long working hours. Religion was found to be the most commonly used coping strategy overall, while emotional support was the most frequently used coping strategy among nurses who had burnout. Conclusion: This study has revealed a relatively high prevalence of burnout among the nurses in Lagos University Teaching Hospital. In order to minimize the negative health impacts of burnout, the government should collaborate with psychologists and psychiatrists to implement regular stress management and stress inoculation programs for nurses and other health professionals in the country.Keywords: burnout, nurses, coping strategies, healthcare
Procedia PDF Downloads 8112594 Application of Fourier Series Based Learning Control on Mechatronic Systems
Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt
Abstract:
A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.Keywords: climbing stairs, FSBLC, ILC, service robot
Procedia PDF Downloads 31412593 Integrated Models of Reading Comprehension: Understanding to Impact Teaching—The Teacher’s Central Role
Authors: Sally A. Brown
Abstract:
Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aid teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.Keywords: explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role
Procedia PDF Downloads 9712592 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 4912591 A Review of Deep Learning Methods in Computer-Aided Detection and Diagnosis Systems based on Whole Mammogram and Ultrasound Scan Classification
Authors: Ian Omung'a
Abstract:
Breast cancer remains to be one of the deadliest cancers for women worldwide, with the risk of developing tumors being as high as 50 percent in Sub-Saharan African countries like Kenya. With as many as 42 percent of these cases set to be diagnosed late when cancer has metastasized and or the prognosis has become terminal, Full Field Digital [FFD] Mammography remains an effective screening technique that leads to early detection where in most cases, successful interventions can be made to control or eliminate the tumors altogether. FFD Mammograms have been proven to multiply more effective when used together with Computer-Aided Detection and Diagnosis [CADe] systems, relying on algorithmic implementations of Deep Learning techniques in Computer Vision to carry out deep pattern recognition that is comparable to the level of a human radiologist and decipher whether specific areas of interest in the mammogram scan image portray abnormalities if any and whether these abnormalities are indicative of a benign or malignant tumor. Within this paper, we review emergent Deep Learning techniques that will prove relevant to the development of State-of-The-Art FFD Mammogram CADe systems. These techniques will span self-supervised learning for context-encoded occlusion, self-supervised learning for pre-processing and labeling automation, as well as the creation of a standardized large-scale mammography dataset as a benchmark for CADe systems' evaluation. Finally, comparisons are drawn between existing practices that pre-date these techniques and how the development of CADe systems that incorporate them will be different.Keywords: breast cancer diagnosis, computer aided detection and diagnosis, deep learning, whole mammogram classfication, ultrasound classification, computer vision
Procedia PDF Downloads 9312590 The School Based Support Program: An Evaluation of a Comprehensive School Reform Initiative in the State of Qatar
Authors: Abdullah Abu-Tineh, Youmen Chaaban
Abstract:
This study examines the development of a professional development (PD) model for teacher growth and learning that is embedded into the school context. The School based Support Program (SBSP), designed for the Qatari context, targets the practices, knowledge and skills of both school leadership and teachers in an attempt to improve student learning outcomes. Key aspects of the model include the development of learning communities among teachers, strong leadership that supports school improvement activities, and the use of research-based PD to improve teacher practices and student achievement. This paper further presents findings from an evaluation of this PD program. Based on an adaptation of Guskey’s evaluation of PD models, 100 teachers at the participating schools were selected for classroom observations and 40 took part in in-depth interviews to examine changed classroom practices. The impact of the PD program on student learning was also examined. Teachers’ practices and their students’ achievement in English, Arabic, mathematics and science were measured at the beginning and at the end of the intervention.Keywords: initiative, professional development, school based support Program (SBSP), school reform
Procedia PDF Downloads 49612589 A Guide to User-Friendly Bash Prompt: Adding Natural Language Processing Plus Bash Explanation to the Command Interface
Authors: Teh Kean Kheng, Low Soon Yee, Burra Venkata Durga Kumar
Abstract:
In 2022, as the future world becomes increasingly computer-related, more individuals are attempting to study coding for themselves or in school. This is because they have discovered the value of learning code and the benefits it will provide them. But learning coding is difficult for most people. Even senior programmers that have experience for a decade year still need help from the online source while coding. The reason causing this is that coding is not like talking to other people; it has the specific syntax to make the computer understand what we want it to do, so coding will be hard for normal people if they don’t have contact in this field before. Coding is hard. If a user wants to learn bash code with bash prompt, it will be harder because if we look at the bash prompt, we will find that it is just an empty box and waiting for a user to tell the computer what we want to do, if we don’t refer to the internet, we will not know what we can do with the prompt. From here, we can conclude that the bash prompt is not user-friendly for new users who are learning bash code. Our goal in writing this paper is to give an idea to implement a user-friendly Bash prompt in Ubuntu OS using Artificial Intelligent (AI) to lower the threshold of learning in Bash code, to make the user use their own words and concept to write and learn Bash code.Keywords: user-friendly, bash code, artificial intelligence, threshold, semantic similarity, lexical similarity
Procedia PDF Downloads 14212588 Enhancing Student Learning Outcomes Using Engineering Design Process: Case Study in Physics Course
Authors: Thien Van Ngo
Abstract:
The engineering design process is a systematic approach to solving problems. It involves identifying a problem, brainstorming solutions, prototyping and testing solutions, and evaluating the results. The engineering design process can be used to teach students how to solve problems in a creative and innovative way. The research aim of this study was to investigate the effectiveness of using the engineering design process to enhance student learning outcomes in a physics course. A mixed research method was used in this study. The quantitative data were collected using a pretest-posttest control group design. The qualitative data were collected using semi-structured interviews. The sample was 150 first-year students in the Department of Mechanical Engineering Technology at Cao Thang Technical College in Vietnam in the 2022-2023 school year. The quantitative data were collected using a pretest-posttest control group design. The pretest was administered to both groups at the beginning of the study. The posttest was administered to both groups at the end of the study. The qualitative data were collected using semi-structured interviews with a sample of eight students in the experimental group. The interviews were conducted after the posttest. The quantitative data were analyzed using independent sample T-tests. The qualitative data were analyzed using thematic analysis. The quantitative data showed that students in the experimental group, who were taught using the engineering design process, had significantly higher post-test scores on physics problem-solving than students in the control group, who were taught using the conventional method. The qualitative data showed that students in the experimental group were more motivated and engaged in the learning process than students in the control group. Students in the experimental group also reported that they found the engineering design process to be a more effective way of learning physics. The findings of this study suggest that the engineering design process can be an effective way of enhancing student learning outcomes in physics courses. The engineering design process engages students in the learning process and helps them to develop problem-solving skills.Keywords: engineering design process, problem-solving, learning outcome of physics, students’ physics competencies, deep learning
Procedia PDF Downloads 6512587 Music Training as an Innovative Approach to the Treatment of Language Disabilities
Authors: Jonathan Bolduc
Abstract:
Studies have demonstrated the effectiveness of music training approaches to help children with language disabilities. Because music is closely associated with a number of cognitive functions, including language, it has been hypothesized that musical skills transfer to other domains. Research suggests that music training strengthens basic auditory processing skills in dyslexic children and may ameliorate phonological deficits. Furthermore, music instruction has the particular advantage of being non-literacy-based, thus removing the frustrations that can be associated with reading and writing activities among children with specific learning disabilities. In this study, we assessed the effect of implementing an intensive music program on the development of language skills (phonological and reading) in 4- to 9-year-old children. Seventeen children (N=17) participated in the study. The experiment took place over 6 weeks in a controlled environment. Eighteen lessons of 40 minutes were offered during this period by two music specialists. The Dalcroze, Orff, and Kodaly approaches were used. A series of qualitative measures were implemented to document the contribution of music training to this population. Currently, the data is being analyzed. The first results show that learning music seems to significantly improve verbal memory. We already know that language disabilities are considered one of the main causes of school dropout as well as later professional and social failure. We aim to corroborate that an integrated music education program can provide children with language disabilities with the same opportunities to develop and succeed in school as their classmates. Scientifically, the results will contribute to advance the knowledge by identifying the more effective music education strategies to improve the overall development of children worldwide.Keywords: music education, music, art education, language diasabilities
Procedia PDF Downloads 23112586 The Impact of Digitalization and Sustainability on Professionals’ Performance in the Built Environment in Nigeria
Authors: Taiwo, Richard Oluseyi, Morakinyo, Kolawole O., Oyeniran, Demilade O.
Abstract:
This study examines the effects of digitalization and sustainability on professionals' performance within the built environment. By examining the interplay between these two transformative forces, the study seeks to unravel the complexities and opportunities presented by digital technologies in fostering sustainable practices across various professional disciplines. Through an extensive analysis of literature and expert interviews, this research explores how digitalization can enhance professionals' abilities to incorporate sustainability principles, optimize resource utilization, and promote resilient and inclusive built environments. Furthermore, it examines the challenges and barriers professionals face in adapting to and harnessing the potential of digital tools and processes. The findings will contribute to a greater comprehension of the beneficial interactions between digitalization and sustainable development and provide valuable insights for policymakers, practitioners, and educators in fostering an ecosystem that supports professionals' capacity building, collaboration, and innovation toward achieving sustainable goals in the built environment.Keywords: digitisation, sustainability, professional performance, built environment
Procedia PDF Downloads 3112585 Buddhism and Education for Children: Cultivating Wisdom and Compassion
Authors: Harry Einhorn
Abstract:
This paper aims to explore the integration of Buddhism into educational settings with the goal of fostering the holistic development of children. By incorporating Buddhist principles and practices, educators can create a nurturing environment that cultivates wisdom, compassion, and ethical values in children. The teachings of Buddhism provide valuable insights into mindfulness, compassion, and critical thinking, which can be adapted and applied to educational curricula to enhance children's intellectual, emotional, and moral growth. One of the fundamental aspects of Buddhist philosophy that is particularly relevant to education is the concept of mindfulness. By introducing mindfulness practices, such as meditation and breathing exercises, children can learn to cultivate present-moment awareness, develop emotional resilience, and enhance their ability to concentrate and focus. These skills are essential for effective learning and can contribute to reducing stress and promoting overall well-being in children. Mindfulness practices can also teach children how to manage their emotions and thoughts, promoting self-regulation and creating a positive classroom environment. In addition to mindfulness, Buddhism emphasizes the cultivation of compassion and empathy toward all living beings. Integrating teachings on kindness, empathy, and ethical behavior into the educational framework can help children develop a deep sense of interconnectedness and social responsibility. By engaging children in activities that promote empathy and encourage acts of kindness, such as community service projects and cooperative learning, educators can foster the development of compassionate individuals who are actively engaged in creating a more harmonious and compassionate society. Moreover, Buddhist teachings encourage critical thinking and inquiry, which are crucial skills for intellectual development. By introducing children to fundamental Buddhist concepts such as impermanence, interdependence, and the nature of suffering, educators can engage them in philosophical reflections and broaden their perspectives on life. These teachings promote open-mindedness, curiosity, and a deeper understanding of the interconnectedness of all things. Through the exploration of these concepts, children can develop critical thinking skills and gain insights into the complexities of the world, enabling them to navigate challenges with wisdom and discernment. While integrating Buddhism into education requires sensitivity, cultural awareness, and respect for diverse beliefs and backgrounds, it holds great potential for nurturing the holistic development of children. By incorporating mindfulness practices, fostering compassion and empathy, and promoting critical thinking, Buddhism can contribute to the creation of a more compassionate, inclusive, and harmonious educational environment. This integration can shape well-rounded individuals who are equipped with the necessary skills and qualities to navigate the complexities of the modern world with wisdom, compassion, and resilience. In conclusion, the integration of Buddhism into education offers a valuable framework for cultivating wisdom, compassion, and ethical values in children. By incorporating mindfulness, compassion, and critical thinking into educational practices, educators can create a supportive environment that promotes children's holistic development. By nurturing these qualities, Buddhism can help shape individuals who are not only academically proficient but also morally and ethically responsible, contributing to a more compassionate and harmonious society.Keywords: Buddhism, education, children, mindfulness
Procedia PDF Downloads 6312584 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach
Procedia PDF Downloads 9712583 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 20412582 Software Cloning and Agile Environment
Authors: Ravi Kumar, Dhrubajit Barman, Nomi Baruah
Abstract:
Software Cloning has grown an active area in software engineering research community yielding numerous techniques, various tools and other methods for clone detection and removal. The copying, modifying a block of code is identified as cloning as it is the most basic means of software reuse. Agile Software Development is an approach which is currently being used in various software projects, so that it helps to respond the unpredictability of building software through incremental, iterative, work cadences. Software Cloning has been introduced to Agile Environment and many Agile Software Development approaches are using the concept of Software Cloning. This paper discusses the various Agile Software Development approaches. It also discusses the degree to which the Software Cloning concept is being introduced in the Agile Software Development approaches.Keywords: agile environment, refactoring, reuse, software cloning
Procedia PDF Downloads 53112581 Cultural Awareness, Intercultural Communication Competence and Academic Performance of Foreign Students Towards an Education ASEAN Integration in Global Education
Authors: Rizalito B. Javier
Abstract:
Research has shown that foreign students with higher levels of cultural awareness and intercultural communication competence tend to have better academic performance outcomes. This study aimed to find out the cultural awareness, intercultural communication competence, and academic performance of foreign students and its relationships among variables. Methods used were descriptive-comparative and correlational research design, quota purposive sampling technique while frequency counts and percentages, mean and standard deviation, T, and F-test and chi-square were utilized to analyze the data. The results revealed that the majority of the respondents were under the age bracket of 21-25 years old, mostly males, all single, and mostly citizens of Papua New Guinea, Angolan, Vanuatu, Tanzanian, Nigerian, Korean, Rwanda, and Myanmar. Most language spoken was English, many of them were born again Christians, the majority took BS business management degree program, their studies mainly supported by their parents, they had stayed in the Philippines for 3-4 years, and most of them attended five to six times of cultural awareness/competence workshop-seminars, majority of their parent’s occupations were family own business, and had been earning a family monthly income of P61,0000 and above. The respondents were highly aware of their culture in terms of clients’ issues. The intercultural communication competence of the respondents was slightly aware in terms of intercultural awareness, while the foreign students performed good remarks in their average academic performance. However, the profiles of the participants in terms of age, gender, civil status, nationality, course/degree program taken, support to the study, length of stay, workshop attended, and parents’ occupation have significant differences in the academic performance except for the type of family, language spoken, religion and family monthly income. Moreover, cultural awareness was significantly related to intercultural communication competence, and both were not related to academic performance. It is recommended that foreign students be provided with cultural orientation programs, offered language support services, promoted intercultural exchange activities, and implemented inclusive teaching practices to allow students to effectively navigate and interact with people from different cultural backgrounds, fostering a more inclusive and collaborative learning environment.Keywords: cultural competence, communication competence, intercultural competence, and culture-academic performance.
Procedia PDF Downloads 1912580 Students’ Post COVID-19 Experiences with E-Learning Platforms among Undergraduate Students of Public Universities in the Ashanti Region, Ghana
Authors: Michael Oppong, Stephanie Owusu Ansah, Daniel Ofori
Abstract:
The study investigated students’ post-covid-19 experiences with e-learning platforms among undergraduate students of public universities in the Ashanti region of Ghana. The study respectively drew 289 respondents from two public universities, i.e., Kwame Nkrumah University of Science and Technology (KNUST) Business School and the Kumasi Technical University (KsTU) Business School in Ghana. Given that the population from the two public universities was fairly high, sampling had to be done. The overall population of the study was 480 students randomly sampled from the two public universities using the sampling ratio given by Alreck and Settle (2004). The population constituted 360 students from the Kwame Nkrumah University of Science and Technology (KNUST) Business School and 120 from the Kumasi Technical University Business School (KsTU). The study employed questionnaires as a data collection tool. The data gathered were 289 responses out of 480 questionnaires administered, representing 60.2%. The data was analyzed using pie charts, bar charts, percentages, and line graphs. Findings revealed that the e-learning platforms were still useful. However, the students used it on a weekly basis post-COVID-19, unlike in the COVID-19 era, where it was used daily. All other academic activities, with the exception of examinations, are still undertaken on the e-learning platforms; however, it is underutilized in the post-COVID-19 experience. The study recommends that universities should invest in infrastructure development to enable all academic activities, most especially examinations, to be undertaken using the e-learning platforms to curtail future challenges.Keywords: e-learning platform, undergraduate students, post-COVID-19 experience, public universities
Procedia PDF Downloads 9912579 The Education Quality Management by the Participation of the Community in Northern Part of Thailand
Authors: Preecha Pongpeng
Abstract:
This research aims to study the education quality management to solve the problem of teachers shortage by the communities participation. This research is action research by using the tools is questionnaire to collect the data whit, students and community representatives and final will interview to ask the opinions of people in the community to help and support instruction in problems in teaching. Results found that people in the community are aware and working together to solve the lack the of teachers by collaboration between school personnel and community members by finding people who are knowledgeable, organized into local wisdom in the community, compound money to donate and hire someone in the community to teaching between classroom with people in the community. In addition, researcher discovered this research project contributes to cooperation between the school and community and there was a problem including administrative expenses and the school's academic quality management.Keywords: education quality management, local wisdom, northern part of Thailand, participation of the community
Procedia PDF Downloads 29312578 Role of Special Training Centers (STC) in Right to Education Act Challenges And Remedies
Authors: Anshu Radha Aggarwal
Abstract:
As per the Right to Education Act (RTE), 2009, every child in the age group of 6-14 years shall be admitted in a neighborhood school. All the Out of School Children identified have to be enrolled / mainstreamed in to age appropriate class and there-after be provided special training. This paper addresses issues emerging from provisions in the RTE Act that specifically refer to the enrolment of out-of school children into age appropriate classes and the requirement to provide special trainings that will enable this to take place. In the context of RTE Act, the Out-of-School Children are first enrolled in the formal school and then they are provided with Special Training through NRSTCs (Long Term / Short term basis). These centers are functioning in formal school campus itself. This paper specifies the role of special training centers (STC). It presents a re-envisioning of assessment that recognizes two principal functions of assessment, assessment for learning and assessment of learning, instead of the more familiar categories of formative, diagnostic, summative, and evaluative assessment. The use of these two functions of assessment highlights and emphasizes the role of special training centers (STC) to assess their level for giving them appropriate special training and to evaluate their improvement in learning level. Challenge of problem faced by teachers to do diagnostic assessment, including its place in the sequence of assessment procedures appropriate in identifying and addressing individual children’s learning difficulties are solved by special training centers (STC). It is important that assessment is used to identify children with learning difficulties at the earliest possible stage so that appropriate support and intervention can be put in place. So appropriate challenges with tools are presented here for their assessment at entry level and at completion level of primary children by special training centers (STC).Keywords: right to education, assessment, challenges, out of school children
Procedia PDF Downloads 461