Search results for: dry chemical fire extinguisher inspection equipment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6623

Search results for: dry chemical fire extinguisher inspection equipment

3143 Biocompatibility and Sensing Ability of Highly Luminescent Synthesized Core-Shell Quantum Dots

Authors: Mohan Singh Mehata, R. K. Ratnesh

Abstract:

CdSe, CdSe/ZnS, and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm were developed by using chemical route and following successive ion layer adsorption and reaction (SILAR) methods. The prepared QDs have been examined by using X-ray diffraction, high-resolution electron microscopy and optical spectroscopy. The photoluminescence (PL) quantum yield (QY) of core-shell QDs increases with respect to the core, indicating that the radiative rate increases by the formation of shell around core, as evident by the measurement of PL lifetime. Further, the PL of bovine serum albumin is quenched strongly by the presence of core-shall QDs and follow the Stern-Volmer (S-V) relation, whereas the lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among all the QDs, the CdSe/ZnS QDs shows the least cytotoxicity hence most biocompatibility.

Keywords: biocompatibility, core-shell quantum dots, photoluminescence and lifetime, sensing ability

Procedia PDF Downloads 228
3142 Designing the Management Plan for Health Care (Medical) Wastes in the Cities of Semnan, Mahdishahr and Shahmirzad

Authors: Rasouli Divkalaee Zeinab, Kalteh Safa, Roudbari Aliakbar

Abstract:

Introduction: Medical waste can lead to the generation and transmission of many infectious and contagious diseases due to the presence of pathogenic agents, thereby necessitating the need for special management to collect, decontaminate, and finally dispose of such products. This study aimed to design a centralized health care (medical) waste management program for the cities of Semnan, Mahdishahr, and Shahmirzad. Methods: This descriptive-analytical study was conducted for six months in the cities of Semnan, Mahdishahr, and Shahmirzad. In this study, the quantitative and qualitative characteristics of the generated wastes were determined by taking samples from all medical waste production centers. Then, the equipment, devices, and machines required for separate collection of the waste from the production centers and for their subsequent decontamination were estimated. Next, the investment costs, current costs, and working capital required for collection, decontamination, and final disposal of the wastes were determined. Finally, the payment for proper waste management of each category of medical waste-producing centers was determined. Results: 1021 kilograms of medical waste are produced daily in the cities of Semnan, Mahdishahr, and Shahmirzad. It was estimated that a 1000-liter autoclave, a machine for collecting medical waste, four 60-liter bins, four 120-liter bins, and four 1200-liter bins were required for implementing the study plan. Also, the estimated total annual medical waste management costs for Semnan City were determined (23,283,903,720 Iranian Rials). Conclusion: The study results showed that establishing a proper management system for medical wastes generated in the three studied cities will cost between 334,280 and 1,253,715 Iranian Rials in fees for the medical centers. The findings of this study provided comprehensive data regarding medical wastes from the generation point to the landfill site, which is vital for the government and the private sector.

Keywords: clinics, decontamination, management, medical waste

Procedia PDF Downloads 70
3141 Obtaining Composite Cotton Fabric by Cyclodextrin Grafting

Authors: U. K. Sahin, N. Erdumlu, C. Saricam, I. Gocek, M. H. Arslan, H. Acikgoz-Tufan, B. Kalav

Abstract:

Finishing is an important part of fabric processing with which a wide range of features are imparted to greige or colored fabrics for various end-uses. Especially, by the addition or impartation of nano-scaled particles to the fabric structure composite fabrics, a kind of composite materials can be acquired. Composite materials, generally shortened as composites or in other words composition materials, are engineered or naturally occurring materials made from two or more component materials with significantly different physical, mechanical or chemical characteristics remaining separate and distinctive at the macroscopic or microscopic scale within the end product structure. Therefore, the technique finishing which is one of the fundamental methods to be applied on fabrics for obtainment of composite fabrics with many functionalities was used in the current study with the same purpose. However, regardless of the finishing materials applied, the efficient life of finished product on offering desired feature is low, since the durability of finishes on the material is limited. Any increase in durability of these finishes on textiles would enhance the life of use for textiles, which will result in happier users. Therefore, in this study, since higher durability was desired for the finishing materials fixed on the fabrics, nano-scaled hollow structured cyclodextrins were chemically imparted by grafting to the structure of conventional cotton fabrics by the help of finishing technique in order to be fixed permanently. By this way, a processed and functionalized base fabric having potential to be treated in the subsequent processes with many different finishing agents and nanomaterials could be obtained. Henceforth, this fabric can be used as a multi-functional fabric due to the encapturing ability of cyclodextrins to molecules/particles via physical/chemical means. In this study, scoured and rinsed woven bleached plain weave 100% cotton fabrics were utilized because textiles made of cotton are the most demanded textile products in the textile market by the textile consumers in daily life. Cotton fabric samples were immersed in treating baths containing β-cyclodextrin and 1,2,3,4-butanetetracarboxylic acid and to reduce the curing temperature the catalyst sodium hypophosphite monohydrate was used. All impregnated fabric samples were pre-dried. The reaction of grafting was performed in dry state. The treated and cured fabric samples were rinsed with warm distilled water and dried. The samples were dried for 4 h and weighed before and after finishing and rinsing. Stability and durability of β-cyclodextrins on fabric surface against external factors such as washing as well as strength of functionalized fabric in terms of tensile and tear strength were tested. Presence and homogeneity of distribution of β-cyclodextrins on fabric surface were characterized.

Keywords: cotton fabric, cyclodextrine, improved durability, multifunctional composite textile

Procedia PDF Downloads 284
3140 Contribution to the Study of the Use of Pesticides in the Regions of Tizi Ouzou

Authors: Ramdane Gaouir

Abstract:

Farmers in the two regions of Tizi-Ouzou, DBK and Tadmait, face different crop pests, namely, fungal diseases, insect attack as well as different types of deficiencies. To fight against all these threats, they resort to the use of a wide variety of chemicals. Our survey carried out in these two regions, aims to identify the different types of pesticides used, the method of management of the packaging generated by these phytosanitary products as well as the evaluation of the effect of these products on the farmers' health and the environment. The results obtained highlighted the use of two types of pesticides with a very wide application, namely fungicides and insecticides. The two most widely identified chemical families are neonicotoids and organophosphates, which are among the most toxic and persistent pesticides in the environment. The management method of packaging and the application of products by spraying reflect the lack of training and the unawareness of farmers vis-à-vis the impact of pesticides on their health and on the environment.

Keywords: farmers, crops, pesticides, fungicides, neonicotinoids, organochlorines

Procedia PDF Downloads 78
3139 Studies on the Physicochemical Properties of Biolubricants Obtained from Vegetable Oils and Their Oxidative Stability

Authors: Expedito J. S. Parente Jr., Italo C. Rios, Joao Paulo C. Marques, Rosana M. A. Saboya, F. Murilo T. Luna, Célio L. Cavalcante Jr.

Abstract:

Increasing constraints of environmental regulation around the world have led to higher demand for biodegradable products. Vegetable oils present some properties that may favor their use as biolubricants; however, there are others, such as resistance to oxidation and pour point, which affect possible commercial applications. In this study, the physicochemical properties of biolubricants synthesized from different vegetable oils were evaluated and compared with petroleum-based lubricant and pure vegetable oil. Chemical modifications applied to the original vegetable oil improved their oxidative stability and pour point significantly. The addition of commercial antioxidants to the bio-based lubricants was evaluated, yielding values of oxidative stability close to those of mineral basestock oil.

Keywords: biolubricant, vegetable oil, oxidative stability, pour point, antioxidants

Procedia PDF Downloads 304
3138 Trace Metals in Natural Bottled Water on Montenegrin Market and Comaparison with Tap Water in Podgorica

Authors: Katarina Živković, Ivana Joksimović

Abstract:

Many different chemicals may occur in drinking water and cause significant human health risks after prolonged periods of exposure. In particular concern are contaminants that have cumulative toxic properties, such as heavy metals. This investigation was done to clarify concerns about chemical quality and safety of drinking tap water in Podgorica. For comparison, all available natural bottled water on Montenegrin market were bought. All samples (bottled water and tap water from Podgorica) were analyzed using ICP –OES on contents of Al, Cd, Pb, Cu, Zn,Cr, Fe, As and Mn. All results compared with the maximum concentration levels allowed by international standards and World Health Organization (WHO) guidelines. The results of analysis showed that all trace of heavy metals were very low and in same time below MCL according to WHO and International standard.

Keywords: inductively coupled plasma - optical emission spectrometry (ICP-OES), Montenegro (Podgorica), natural bottled water, tap water , trace of heavy metal

Procedia PDF Downloads 440
3137 Analytical and Statistical Study of the Parameters of Expansive Soil

Authors: A. Medjnoun, R. Bahar

Abstract:

The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.

Keywords: analysis, estimated model, parameter identification, swelling of clay

Procedia PDF Downloads 403
3136 Synthesis and Electromagnetic Property of Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄ Grafted with Polyaniline Fibers

Authors: Jintang Zhou, Zhengjun Yao, Tiantian Yao

Abstract:

Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄(LZFO) grafted with polyaniline (PANI) fibers was synthesized by in situ polymerization. FTIR, XRD, SEM, and vector network analyzer were used to investigate chemical composition, micro-morphology, electromagnetic properties and microwave absorbing properties of the composite. The results show that PANI fibers were grafted on the surfaces of LZFO particles. The reflection loss exceeds 10 dB in the frequency range from 2.5 to 5 GHz and from 15 to 17GHz, and the maximum reflection loss reaches -33 dB at 15.9GHz. The enhanced microwave absorption properties of LZFO/PANI-fiber composites are mainly ascribed to the combined effect of both dielectric loss and magnetic loss and the improved impedance matching.

Keywords: Li₀.₃₅Zn₀.₃Fe₂.₃₅O₄, polyaniline, electromagnetic properties, microwave absorbing properties

Procedia PDF Downloads 422
3135 Evaluation of Toxicity of Some Fungicides Against the Pathogen Fusarium sp.

Authors: M. Djekoun, H. Berrebah, M. R. Djebar

Abstract:

Fusarium wilt attacks the plants of major economic interest including wheat. This disease causes many problems for farmers and economic loss resulting are often very heavy. Chemical control is currently one of the most effective ways to fight against these diseases. In this study, the efficacy of three fungicides (tebuconazole, thiram and fludioxonil - difenoconazole mixture) was tested, in vitro, on the phytopathogenic Fusarium sp. isolated from seeds of wheat. The active ingredients were tested at different concentrations: 0.06, 1.39, 2.79, 5.58, and 11.16 mg/l for tebuconazole, 0.035, 0.052, 0.105, 0.21, and 0.42 mg/l for thiram and finally, for the mixture fludioxonil- difenoconazole 4 concentrations were tested : 0.05, 0.1, 0.5, and 1 mg/l. Toxicity responses were expressed as the effective concentration, which inhibits mycelial growth by 50%, (EC50). Of the three selected fungicides, thirame proved to be the most effective with EC50 value of the order of 0,15 mg/l followed by the mixture of fludioxonil- difenoconazole with 0,27 mg/l and finally tebuconazole with a value of 3.79 mg/l.

Keywords: Fusarium sp, thiram, tebuconazole, fludioxonil, difenoconazole, EC50

Procedia PDF Downloads 528
3134 A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives

Authors: Z. Bayat

Abstract:

A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method.

Keywords: DFT, adamantane, QSAR, Kovat

Procedia PDF Downloads 360
3133 Ficus Carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modelling and Optimization

Authors: Tizi Hayet, Berrama Tarek, Bounif Nadia

Abstract:

Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that considered as potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria produces annually 131000 tones of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of the statistical method for modeling and optimization of the conditions of the phenol (Ph) adsorption from agricultural by-product locally available (fig leaves). The best experimental performance of Ph elimination on the adsorbent was obtained with: Adsorbent concentration (X2) = 0.2 g L-1; Initial concentration (X3) = 150 mg L-1; Speed agitation (X1) = 300 rpm.

Keywords: low-cost adsorbents, fig leaves, full factorial design, phenol, biosorption

Procedia PDF Downloads 74
3132 Application of Ground Penetrating Radar and Light Falling Weight Deflectometer in Ballast Quality Assessment

Authors: S. Cafiso, B. Capace, A. Di Graziano, C. D’Agostino

Abstract:

Systematic monitoring of the trackbed is necessary to assure safety and quality of service in the railway system. Moreover, to produce effective management of the maintenance treatments, the assessment of bearing capacity of the railway trackbed must include ballast, sub-ballast and subgrade layers at different depths. Consequently, there is an increasing interest in obtaining a consistent measure of ballast bearing capacity with no destructive tests (NDTs) able to work in the physical and time restrictions of railway tracks in operation. Moreover, in the case of the local railway with reduced gauge, the use of the traditional high-speed track monitoring systems is not feasible. In that framework, this paper presents results from in site investigation carried out on ballast and sleepers with Ground Penetrating Radar (GPR) and Light Falling Weight Deflectometer (LWD). These equipment are currently used in road pavement maintenance where they have shown their reliability and effectiveness. Application of such Non-Destructive Tests in railway maintenance is promising but in the early stage of the investigation. More specifically, LWD was used to estimate the stiffness of ballast and sleeper support, as well. LWD, despite the limited load (6 kN in the trial test) applied directly on the sleeper, was able to detect defects in the bearing capacity at the Sleeper/Ballast interface. A dual frequency GPR was applied to detect the presence of layers’ discontinuities at different depths due to fouling phenomena that are the main causes of changing in the layer dielectric proprieties within the ballast thickness. The frequency of 2000Mhz provided high-resolution data to approximately 0.4m depth, while frequency of 600Mhz showed greater depth penetration up to 1.5 m. In the paper literature review and trial in site experience are used to identify Strengths, Weaknesses, Opportunities, and Threats (SWOT analysis) of the application of GPR and LWD for the assessment of bearing capacity of railway track-bed.

Keywords: bearing capacity, GPR, LWD, no destructive test, railway track

Procedia PDF Downloads 120
3131 Job Satisfaction and Associated factors of Urban Health Extension Professionals in Addis Ababa City, Ethiopia

Authors: Metkel Gebremedhin, Biruk Kebede, Guash Abay

Abstract:

Job satisfaction largely determines the productivity and efficiency of human resources for health. There is scanty evidence on factors influencing the job satisfaction of health extension professionals (HEPs) in Addis Ababa. The objective of this study was to determine the level of and factors influencing job satisfaction among extension health workers in Addis Ababa city. This was a cross-sectional study conducted in Addis Ababa, Ethiopia. Among all public health centers found in the Addis Ababa city administration health bureau that would be included in the study, a multistage sampling technique was employed. Then we selected the study health centers randomly and urban health extension professionals from the selected health centers. In-depth interview data collection methods were carried out for a comprehensive understanding of factors affecting job satisfaction among Health extension professionals (HEPs) in Addis Ababa. HEPs working in Addis Ababa areas are the primary study population. Multivariate logistic regression with 95% CI at P ≤ 0.05 was used to assess associated factors to job satisfaction. The overall satisfaction rate was 10.7% only, while 89.3%% were dissatisfied with their jobs. The findings revealed that variables such as marital status, staff relations, community support, supervision, and rewards have a significant influence on the level of job satisfaction. For those who were not satisfied, the working environment, job description, low salary, poor leadership and training opportunities were the major causes. Other factors influencing the level of satisfaction were lack of medical equipment, lack of transport facilities, lack of training opportunities, and poor support from woreda experts. Our study documented a very low level of overall satisfaction among health extension professionals in Addis Ababa city public health centers. Considering the factors responsible for this state of affairs, urgent and concrete strategies must be developed to address the concerns of extension health professionals as they represent a sensitive domain of the health system of Addis Ababa city. Improving the overall work environment, review of job descriptions and better salaries might bring about a positive change.

Keywords: job satisfaction, extension health professionals, Addis Ababa

Procedia PDF Downloads 63
3130 Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions

Authors: Abdullah Khan, Per Redelius, Nicole Kringos

Abstract:

The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation.

Keywords: bitumen emulsions, breaking and coalescence, cold mix asphalt, emulsifiers, relaxation, salts

Procedia PDF Downloads 329
3129 [Keynote Talk]: Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method

Authors: Vijay Kumar Kukreja, Ravneet Kaur

Abstract:

In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.

Keywords: Crank-Nicolson scheme, Lax-Richtmyer theorem, stability, consistency, Peclet number, Greschgorin circle

Procedia PDF Downloads 216
3128 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.

Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD

Procedia PDF Downloads 381
3127 Highly Transparent, Hydrophobic and Self-Cleaning ZnO-Durazane Based Hybrid Organic-Inorganic Coatings

Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne

Abstract:

In this report, we present a simple route to realize robust, hydrophobic, and highly transparent coatings using organic polysilazane (durazane) and zinc oxide nanoparticles (ZnO). These coatings were deposited by spraying the mixture solution on glass slides. Thus, the properties of the films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis-NIR spectrophotometer, and water contact angle method. This sprayable polymer mixed with ZnO nanoparticles shows high transparency for visible light > 90%, a hydrophobic character (CA > 90°), and good mechanical and chemical stability. The coating also demonstrates excellent self-cleaning properties, which makes it a promising candidate for commercial use.

Keywords: coatings, durability, hydrophobicity, organic polysilazane, self-cleaning, transparence, zinc oxide nanoparticles

Procedia PDF Downloads 155
3126 Experimental Investigation of Nucleate Pool Boiling Heat Transfer Characteristics on Copper Surface with Laser-Textured Stepped Microstructures

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

Due to the rapid advancement of integrated circuits and the increasing trend towards miniaturizing electronic devices, the amount of heat produced by electronic devices has consistently exceeded the maximum limit for heat dissipation. Currently, the two-phase cooling technique based on phase change pool boiling heat transfer has received a lot of attention because of its potential to fully utilize the latent heat of the fluid and produce a highly effective heat dissipation capacity while keeping the equipment's operating temperature within an acceptable range. There are numerous strategies available for the alteration of heating surfaces, but to find the best, simplest, and most dependable one remains a challenge. Lately, surface texturing via laser ablation has been used in a variety of investigations, demonstrating its significant potential for enhancing the pool boiling heat transfer performance. In this research, the nucleate pool boiling heat transfer performance of laser-textured copper surfaces of different patterns was investigated. The bare copper surface serves as a reference to compare the performance of laser-structured surfaces. It was observed that the heat transfer coefficients were increased with the increase of surface area ratio and the ratio of the peak-to-valley height of the microstructure. Laser machined grain structure produced extra nucleation sites, which ultimately caused the improved pool boiling performance. Due to an increase in nucleation site density and surface area, the enhanced nucleate boiling served as the primary heat transfer mechanism. The pool boiling performance of the laser-textured copper surfaces is superior to the bare copper surface in all aspects.

Keywords: heat transfer coefficient, laser texturing, micro structured surface, pool boiling

Procedia PDF Downloads 78
3125 Effect of Using Baffles Inside Spiral Micromixer

Authors: Delara Soltani, Sajad Alimohammadi, Tim Persoons

Abstract:

Microfluidic technology reveals a new area of research in drug delivery, biomedical diagnostics, and the food and chemical industries. Mixing is an essential part of microfluidic devices. There is a need for fast and homogeneous mixing in microfluidic devices. On the other hand, mixing is difficult to achieve in microfluidic devices because of the size and laminar flow in these devices. In this study, a hybrid passive micromixer of a curved channel with obstacles inside the channel is designed. The computational fluid dynamic method is employed to solve governing equations. The results show that using obstacles can improve mixing efficiency in spiral micromixers. the effects of Reynolds number, number, and position of baffles are investigated. In addition, the effect of baffles on pressure drop is presented. this novel micromixer has the potential to utilize in microfluidic devices.

Keywords: CFD, micromixer, microfluidics, spiral, reynolds number

Procedia PDF Downloads 75
3124 Effect of Impurities in the Chlorination Process of TiO2

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With the increasing interest on Ti alloys, the extraction process of Ti from its typical ore, TiO2, has long been and will be important issue. As an intermediate product for the production of pigment or titanium metal sponge, tetrachloride (TiCl4) is produced by fluidized bed using high TiO2 feedstock. The purity of TiCl4 after chlorination is subjected to the quality of the titanium feedstock. Since the impurities in the TiCl4 product are reported to final products, the purification process of the crude TiCl4 is required. The purification process includes fractional distillation and chemical treatment, which depends on the nature of the impurities present and the required quality of the final product. In this study, thermodynamic analysis on the impurity effect in the chlorination process, which is the first step of extraction of Ti from TiO2, has been conducted. All thermodynamic calculations were performed using the FactSage thermodynamical software.

Keywords: rutile, titanium, chlorination process, impurities, thermodynamic calculation, FactSage

Procedia PDF Downloads 294
3123 Factors Affecting Visual Environment in Mine Lighting

Authors: N. Lakshmipathy, Ch. S. N. Murthy, M. Aruna

Abstract:

The design of lighting systems for surface mines is not an easy task because of the unique environment and work procedures encountered in the mines. The primary objective of this paper is to identify the major problems encountered in mine lighting application and to provide guidance in the solution of these problems. In the surface mining reflectance of surrounding surfaces is one of the important factors, which improve the vision, in the night hours. But due to typical working nature in the mines it is very difficult to fulfill these requirements, and also the orientation of the light at work site is a challenging task. Due to this reason machine operator and other workers in a mine need to be able to orient themselves in a difficult visual environment. The haul roads always keep on changing to tune with the mining activity. Other critical area such as dumpyards, stackyards etc. also change their phase with time, and it is difficult to illuminate such areas. Mining is a hazardous occupation, with workers exposed to adverse conditions; apart from the need for hard physical labor, there is exposure to stress and environmental pollutants like dust, noise, heat, vibration, poor illumination, radiation, etc. Visibility is restricted when operating load haul dumper and Heavy Earth Moving Machinery (HEMM) vehicles resulting in a number of serious accidents. one of the leading causes of these accidents is the inability of the equipment operator to see clearly people, objects or hazards around the machine. Results indicate blind spots are caused primarily by posts, the back of the operator's cab, and by lights and light brackets. The careful designed and implemented, lighting systems provide mine workers improved visibility and contribute to improved safety, productivity and morale. Properly designed lighting systems can improve visibility and safety during working in the opencast mines.

Keywords: contrast, efficacy, illuminance, illumination, light, luminaire, luminance, reflectance, visibility

Procedia PDF Downloads 350
3122 International E-Learning for Assuring Ergonomic Working Conditions of Orthopaedic Surgeons: First Research Outcomes from Train4OrthoMIS

Authors: J. Bartnicka, J. A. Piedrabuena, R. Portilla, L. Moyano - Cuevas, J. B. Pagador, P. Augat, J. Tokarczyk, F. M. Sánchez Margallo

Abstract:

Orthopaedic surgeries are characterized by a high degree of complexity. This is reflected by four main groups of resources: 1) surgical team which is consisted of people with different competencies, educational backgrounds and positions; 2) information and knowledge about medical and technical aspects of surgery; 3) medical equipment including surgical tools and materials; 4) space infrastructure which is important from an operating room layout point of view. These all components must be integrated and build a homogeneous organism for achieving an efficient and ergonomically correct surgical workflow. Taking this as a background, there was formulated a concept of international project, called “Online Vocational Training course on ergonomics for orthopaedic Minimally Invasive” (Train4OrthoMIS), which aim is to develop an e-learning tool available in 4 languages (English, Spanish, Polish and German). In the article, there is presented the first project research outcomes focused on three aspects: 1) ergonomic needs of surgeons who work in hospitals around different European countries, 2) the concept of structure of e-learning course, 3) the definition of tools and methods for knowledge assessment adjusted to users’ expectation. The methodology was based on the expert panels and two types of surveys: 1) on training needs, 2) on evaluation and self-assessment preferences. The major findings of the study allowed describing the subjects of four training modules and learning sessions. According to peoples’ opinion there were defined most expected test methods which are single choice test and right after quizzes: “True or False” and “Link elements”. The first project outcomes confirmed the necessity of creating a universal training tool for orthopaedic surgeons regardless of the country in which they work. Because of limited time that surgeons have, the e-learning course should be strictly adjusted to their expectation in order to be useful.

Keywords: international e-learning, ergonomics, orthopaedic surgery, Train4OrthoMIS

Procedia PDF Downloads 171
3121 Monitoring and Evaluation of the Water Quality of Taal Lake, Talisay, Batangas, Philippines

Authors: Felipe B. Martinez, Imelda C. Galera

Abstract:

This paper presents an update on the physico-chemical properties of the Taal Lake for local government officials and representatives of non-government organizations by monitoring and evaluating a total of nine (9) water quality parameters. The study further shows that the Taal Lakes surface temperature, pH, total dissolved solids, total suspended solids, color, and dissolved oxygen content conform to the standards set by the Department of Environment and Natural resources (DENR); while phosphate, chlorine, and 5-Day 20°C BOD are below the standard. Likewise, the T-test result shows no significant difference in the overall average of the two sites at the Taal Lake (P > 0.05). Based on the data, the Lake is safe for primary contact recreation such as bathing, swimming and skin diving, and can be used for aqua culture purposes.

Keywords: cool dry season, hot dry season, rainy season, Taal Lake, water quality

Procedia PDF Downloads 291
3120 Drivers of Satisfaction and Dissatisfaction in Camping Tourism: A Case Study from Croatia

Authors: Darko Prebežac, Josip Mikulić, Maja Šerić, Damir Krešić

Abstract:

Camping tourism is recognized as a growing segment of the broader tourism industry, currently evolving from an inexpensive, temporary sojourn in a rural environment into a highly fragmented niche tourism sector. The trends among public-managed campgrounds seem to be moving away from rustic campgrounds that provide only a tent pad and a fire ring to more developed facilities that offer a range of different amenities, where campers still search for unique experiences that go above the opportunity to experience nature and social interaction. In addition, while camping styles and options changed significantly over the last years, coastal camping in particular became valorized as is it regarded with a heightened sense of nostalgia. Alongside this growing interest in the camping tourism, a demand for quality servicing infrastructure emerged in order to satisfy the wide variety of needs, wants, and expectations of an increasingly demanding traveling public. However, camping activity in general and quality of camping experience and campers’ satisfaction in particular remain an under-researched area of the tourism and consumption behavior literature. In this line, very few studies addressed the issue of quality product/service provision in satisfying nature based tourists and in driving their future behavior with respect to potential re-visitation and recommendation intention. The present study thus aims to investigate the drivers of positive and negative campsite experience using the case of Croatia. Due to the well-preserved nature and indented coastline, camping tourism has a long tradition in Croatia and represents one of the most important and most developed tourism products. During the last decade the number of tourist overnights in Croatian camps has increased by 26% amounting to 16.5 million in 2014. Moreover, according to Eurostat the market share of campsites in the EU is around 14%, indicating that the market share of Croatian campsites is almost double large compared to the EU average. Currently, there are a total of 250 camps in Croatia with approximately 75.8 thousands accommodation units. It is further noteworthy that Croatian camps have higher average occupancy rates and a higher average length of stay as compared to the national average of all types of accommodation. In order to explore the main drivers of positive and negative campsite experiences, this study uses principal components analysis (PCA) and an impact-asymmetry analysis (IAA). Using the PCA, first the main dimensions of the campsite experience are extracted in an exploratory manner. Using the IAA, the extracted factors are investigated for their potentials to create customer delight and/or frustration. The results provide valuable insight to both researchers and practitioners regarding the understanding of campsite satisfaction.

Keywords: Camping tourism, campsite, impact-asymmetry analysis, satisfaction

Procedia PDF Downloads 175
3119 Bioremediation of Phenol in Wastewater Using Polymer-Supported Bacteria

Authors: Areej K. Al-Jwaid, Dmitiry Berllio, Andrew Cundy, Irina Savina, Jonathan L. Caplin

Abstract:

Phenol is a toxic compound that is widely distributed in the environment including the atmosphere, water and soil, due to the release of effluents from the petrochemical and pharmaceutical industries, coking plants and oil refineries. Moreover, a range of daily products, using phenol as a raw material, may find their way into the environment without prior treatment. The toxicity of phenol effects both human and environment health, and various physio-chemical methods to remediate phenol contamination have been used. While these techniques are effective, their complexity and high cost had led to search for alternative strategies to reduce and eliminate high concentrations of phenolic compounds in the environment. Biological treatments are preferable because they are environmentally friendly and cheaper than physico-chemical approaches. Some microorganisms such as Pseudomonas sp., Rhodococus sp., Acinetobacter sp. and Bacillus sp. have shown a high ability to degrade phenolic compounds to provide a sole source of energy. Immobilisation process utilising various materials have been used to protect and enhance the viability of cells, and to provide structural support for the bacterial cells. The aim of this study is to develop a new approach to the bioremediation of phenol based on an immobilisation strategy that can be used in wastewater. In this study, two bacterial species known to be phenol degrading bacteria (Pseudomonas mendocina and Rhodococus koreensis) were purchased from National Collection of Industrial, Food and Marine Bacteria (NCIMB). The two species and mixture of them were immobilised to produce macro porous crosslinked cell cryogels samples by using four types of cross-linker polymer solutions in a cryogelation process. The samples were used in a batch culture to degrade phenol at an initial concentration of 50mg/L at pH 7.5±0.3 and a temperature of 30°C. The four types of polymer solution - i. glutaraldehyde (GA), ii. Polyvinyl alcohol with glutaraldehyde (PVA+GA), iii. Polyvinyl alcohol–aldehyde (PVA-al) and iv. Polyetheleneimine–aldehyde (PEI-al), were used at different concentrations, ranging from 0.5 to 1.5% to crosslink the cells. The results of SEM and rheology analysis indicated that cell-cryogel samples crosslinked with the four cross-linker polymers formed monolithic macro porous cryogels. The samples were evaluated for their ability to degrade phenol. Macro porous cell–cryogels crosslinked with GA and PVA+GA showed an ability to degrade phenol for only one week, while the other samples crosslinked with a combination of PVA-al + PEI-al at two different concentrations have shown higher stability and viability to reuse to degrade phenol at concentration (50 mg/L) for five weeks. The initial results of using crosslinked cell cryogel samples to degrade phenol indicate that is a promising tool for bioremediation strategies especially to eliminate and remove the high concentration of phenol in wastewater.

Keywords: bioremediation, crosslinked cells, immobilisation, phenol degradation

Procedia PDF Downloads 218
3118 Solar Electric Propulsion: The Future of Deep Space Exploration

Authors: Abhishek Sharma, Arnab Banerjee

Abstract:

The research is intended to study the solar electric propulsion (SEP) technology for planetary missions. The main benefits of using solar electric propulsion for such missions are shorter flight times, more frequent target accessibility and the use of a smaller launch vehicle than that required by a comparable chemical propulsion mission. Energized by electric power from on-board solar arrays, the electrically propelled system uses 10 times less propellant than conventional chemical propulsion system, yet the reduced fuel mass can provide vigorous power which is capable of propelling robotic and crewed missions beyond the Lower Earth Orbit (LEO). The various thrusters used in the SEP are gridded ion thrusters and the Hall Effect thrusters. The research is solely aimed to study the ion thrusters and investigate the complications related to it and what can be done to overcome the glitches. The ion thrusters are used because they are found to have a total lower propellant requirement and have substantially longer time. In the ion thrusters, the anode pushes or directs the incoming electrons from the cathode. But the anode is not maintained at a very high potential which leads to divergence. Divergence leads to the charges interacting against the surface of the thruster. Just as the charges ionize the xenon gases, they are capable of ionizing the surfaces and over time destroy the surface and hence contaminate it. Hence the lifetime of thruster gets limited. So a solution to this problem is using substances which are not easy to ionize as the surface material. Another approach can be to increase the potential of anode so that the electrons don’t deviate much or reduce the length of thruster such that the positive anode is more effective. The aim is to work on these aspects as to how constriction of the deviation of charges can be done by keeping the input power constant and hence increase the lifetime of the thruster. Predominantly ring cusp magnets are used in the ion thrusters. However, the study is also intended to observe the effect of using solenoid for producing micro-solenoidal magnetic field apart from using the ring cusp magnetic field which are used in the discharge chamber for prevention of interaction of electrons with the ionization walls. Another foremost area of interest is what are the ways by which power can be provided to the Solar Electric Propulsion Vehicle for lowering and boosting the orbit of the spacecraft and also provide substantial amount of power to the solenoid for producing stronger magnetic fields. This can be successfully achieved by using the concept of Electro-dynamic tether which will serve as a power source for powering both the vehicle and the solenoids in the ion thruster and hence eliminating the need for carrying extra propellant on the spacecraft which will reduce the weight and hence reduce the cost of space propulsion.

Keywords: electro-dynamic tether, ion thruster, lifetime of thruster, solar electric propulsion vehicle

Procedia PDF Downloads 200
3117 [Keynote Talk]: Wave-Tidal Integral Turbine Hybrid Generation Approach for Characterizing Performance of Surface Wave

Authors: Norshazmira Mat Azmi, Sayidal El Fatimah Masnan, Shatirah Akib

Abstract:

Boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy and chemical energy are covered and possessed by oceans. The hybrid system helps in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The objective and concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper reviews applications of using hybrid power generation system for remote area. It also highlights the future directions to investigate the impacts of surface waves on turbine design and performance. The importance of understanding the site-specific wave conditions could also been explored.

Keywords: hybrid, marine current energy, tidal turbine, wave turbine

Procedia PDF Downloads 347
3116 Characterization of Phenolic Compounds from Carménère Wines during Aging with Oak Wood (Staves, Chips and Barrels)

Authors: E. Obreque-Slier, J. Laqui-Estaña, A. Peña-Neira, M. Medel-Marabolí

Abstract:

Wine is an important source of polyphenols. Red wines show important concentrations of nonflavonoid (gallic acid, ellagic acid, caffeic acid and coumaric acid) and flavonoid compounds [(+)-catechin, (-)-epicatechin, (+)-gallocatechin and (-)-epigallocatechin]. However, a significant variability in the quantitative and qualitative distribution of chemical constituents in wine has to be expected depending on an array of important factors, such as the varietal differences of Vitis vinifera and cultural practices. It has observed that Carménère grapes present a differential composition and evolution of phenolic compounds when compared to other varieties and specifically with Cabernet Sauvignon grapes. Likewise, among the cultural practices, the aging in contact with oak wood is a high relevance factor. Then, the extraction of different polyphenolic compounds from oak wood into wine during its ageing process produces both qualitative and quantitative changes. Recently, many new techniques have been introduced in winemaking. One of these involves putting new pieces of wood (oak chips or inner staves) into inert containers. It offers some distinct and previously unavailable flavour advantages, as well as new options in wine handling. To our best knowledge, there is not information about the behaviour of Carménère wines (Chilean emblematic cultivar) in contact with oak wood. In addition, the effect of aging time and wood product (barrels, chips or staves) on the phenolic composition in Carménère wines has not been studied. This study aims at characterizing the condensed and hydrolyzable tannins from Carménère wines during the aging with staves, chips and barrels from French oak wood. The experimental design was completely randomized with two independent assays: aging time (0-12 month) and different formats of wood (barrel, chips and staves). The wines were characterized by spectrophotometric (total tannins and fractionation of proanthocyanidins into monomers, oligomers and polymers) and HPLC-DAD (ellagitannins) analysis. The wines in contact with different products of oak wood showed a similar content of total tannins during the study, while the control wine (without oak wood) presented a lower content of these compounds. In addition, it was observed that the polymeric proanthocyanidin fraction was the most abundant, while the monomeric fraction was the less abundant fraction in all treatments in two sample. However, significative differences in each fractions were observed between wines in contact from barrel, chips, and staves in two sample dates. Finally, the wine from barrels presented the highest content of the ellagitannins from the fourth to the last sample date. In conclusion, the use of alternative formats of oak wood affects the chemical composition of wines during aging, and these enological products are an interesting alternative to contribute with tannins to wine.

Keywords: enological inputs, oak wood aging, polyphenols, red wine

Procedia PDF Downloads 150
3115 Formation and Characterization of the Epoxy Resin-Porous Glass Interphases

Authors: Aleksander Ostrowski, Hugh J. Byrne, Roland Sanctuary

Abstract:

Investigation of the polymer interphases is an emerging field nowadays. In many cases interphases determine the functionality of a system. There is a great demand for exploration of fundamental understanding of the interphases and elucidation of their formation, dimensions dependent on various influencing factors, change of functional properties, etc. The epoxy applied on porous glass penetrates its pores with an extent dependent on the pore size, temperature and epoxy components mixing ratio. Developed over the recent time challenging sample preparation procedure allowed to produce very smooth epoxy-porous glass cross-sections. In this study, Raman spectroscopy was used to investigate the epoxy-porous glass interphases. It allowed for chemical differentiation between different regions at the cross-section and determination of the degree of cure of epoxy system in the porous glass.

Keywords: interphases, Raman spectroscopy, epoxy, porous glass

Procedia PDF Downloads 380
3114 Structural and Optical Characterization of Silica@PbS Core–Shell Nanoparticles

Authors: A. Pourahmad, Sh. Gharipour

Abstract:

The present work describes the preparation and characterization of nanosized SiO2@PbS core-shell particles by using a simple wet chemical route. This method utilizes silica spheres formation followed by successive ionic layer adsorption and reaction method assisted lead sulphide shell layer formation. The final product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis spectroscopic, infrared spectroscopy (IR) and transmission electron microscopy (TEM) experiments. The morphological studies revealed the uniformity in size distribution with core size of 250 nm and shell thickness of 18 nm. The electron microscopic images also indicate the irregular morphology of lead sulphide shell layer. The structural studies indicate the face-centered cubic system of PbS shell with no other trace for impurities in the crystal structure.

Keywords: core-shell, nanostructure, semiconductor, optical property, XRD

Procedia PDF Downloads 287