Search results for: blood glucose concentration
3985 Extraction of Cellulose Nanocrystals from Soy Pods
Authors: Maycon dos Santos, Marivane Turim Koschevic, Karina Sayuri Ueda, Marcello Lima Bertuci, Farayde Matta Fackhouri, Silvia Maria Martelli
Abstract:
The use of cellulose nanocrystals as reinforcing agents in polymer nanocomposites is promising. In this study, we tested four different methods of mercerization were divided into two stages. The sample was treated in 5% NaOH solution for 30 minutes at 50 ° C in the first stage and 30vol H2O2 for 2 hours at 50 ° C in the second step, which showed better results. For the extraction of the sample obtained nanocrystals positive result was that the solution was treated with H2SO4 60% (w / w) for 1 hour at 50 ° C. The results were positive and showed that it is possible to extract CNC at low temperatures.Keywords: soy pods, cellulose nanocrystals, temperature, acid concentration
Procedia PDF Downloads 2993984 Enhanced Functional Production of a Crucial Biomolecule Human Serum Albumin in Escherichia coli
Authors: Ashima Sharma
Abstract:
Human Serum Albumin (HSA)- one of the most demanded therapeutic proteins with immense biotechnological applications- is a large multidomain protein containing 17 disulfide bonds. The current source of HSA is human blood plasma which is a limited and unsafe source. Thus, there exists an indispensable need to promote non-animal derived recombinant HSA (rHSA) production. Escherichia coli is one of the most convenient hosts which had contributed to the production of more than 30% of the FDA approved recombinant pharmaceuticals. It grows rapidly and reaches high cell density using inexpensive and simple substrates. E. coli derived recombinant products have more economic potential as fermentation processes are cheaper compared to the other expression hosts. The major bottleneck in exploiting E. coli as a host for a disulfide-rich multidomain protein is the formation of aggregates of overexpressed protein. The majority of the expressed HSA forms inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA from inclusion bodies is not preferred because it is difficult to obtain a large multidomain disulfide bond rich protein like rHSA in its functional native form. Purification is tedious, time-consuming, laborious and expensive. Because of such limitations, the E. coli host system was neglected for rHSA production for the past few decades despite its numerous advantages. In the present work, we have exploited the capabilities of E. coli as a host for the enhanced functional production of rHSA (~60% of the total expressed rHSA in the soluble fraction). Parameters like intracellular environment, temperature, induction type, duration of induction, cell lysis conditions etc. which play an important role in enhancing the level of production of the desired protein in its native form in vivo have been optimized. We have studied the effect of assistance of different types of exogenously employed chaperone systems on the functional expression of rHSA in the E. coli host system. Different aspects of cell growth parameters during the production of rHSA in presence and absence of molecular chaperones in E. coli have also been studied. Upon overcoming the difficulties to produce functional rHSA in E. coli, it has been possible to produce significant levels of functional protein through engineering the biological system of protein folding in the cell, the E. coli-derived rHSA has been purified to homogeneity. Its detailed physicochemical characterization has been performed by monitoring its conformational properties, secondary and tertiary structure elements, surface properties, ligand binding properties, stability issues etc. These parameters of the recombinant protein have been compared with the naturally occurring protein from the human source. The outcome of the comparison reveals that the recombinant protein resembles exactly the same as the natural one. Hence, we propose that the E. coli-derived rHSA is an ideal biosimilar for human blood plasma-derived serum albumin. Therefore, in the present study, we have introduced and promoted the E. coli- derived rHSA as an alternative to the preparation from a human source, pHSA.Keywords: recombinant human serum albumin, Escherichia coli, biosimilar, chaperone assisted protein folding
Procedia PDF Downloads 2143983 Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser
Authors: Mitchell J. Baum, Badin Gibbes, Greg Collecutt
Abstract:
This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions.Keywords: computational fluid dynamics, desalination, field-scale simulation, multiport brine diffuser, negatively buoyant jet
Procedia PDF Downloads 2163982 Application of Laser Spectroscopy for Detection of Actinides and Lanthanides in Solutions
Authors: Igor Izosimov
Abstract:
This work is devoted to applications of the Time-resolved laser-induced luminescence (TRLIF) spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for detection of lanthanides and actinides. Results of the experiments on Eu, Sm, U, and Pu detection in solutions are presented. The limit of uranyl detection (LOD) in urine in our TRLIF experiments was up to 5 pg/ml. In blood plasma LOD was 0.1 ng/ml and after mineralization was up to 8pg/ml – 10pg/ml. In pure solution, the limit of detection of europium was 0.005ng/ml and samarium, 0.07ng/ml. After addition urine, the limit of detection of europium was 0.015 ng/ml and samarium, 0.2 ng/ml. Pu, Np, and some U compounds do not produce direct luminescence in solutions, but when excited by laser radiation, they can induce chemiluminescence of some chemiluminogen (luminol in our experiments). It is shown that multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanides/actinides in solutions.Keywords: actinides/lanthanides detection, laser spectroscopy with time resolution, luminescence/chemiluminescence, solutions
Procedia PDF Downloads 3403981 Bio-Remediation of Lead-Contaminated Water Using Adsorbent Derived from Papaya Peel
Authors: Sahar Abbaszadeh, Sharifah Rafidah Wan Alwi, Colin Webb, Nahid Ghasemi, Ida Idayu Muhamad
Abstract:
Toxic heavy metal discharges into environment due to rapid industrialization is a serious pollution problem that has drawn global attention towards their adverse impacts on both the structure of ecological systems as well as human health. Lead as toxic and bio-accumulating elements through the food chain, is regularly entering to water bodies from discharges of industries such as plating, mining activities, battery manufacture, paint manufacture, etc. The application of conventional methods to degrease and remove Pb(II) ion from wastewater is often restricted due to technical and economic constrains. Therefore, the use of various agro-wastes as low-cost bioadsorbent is found to be attractive since they are abundantly available and cheap. In this study, activated carbon of papaya peel (AC-PP) (as locally available agricultural waste) was employed to evaluate its Pb(II) uptake capacity from single-solute solutions in sets of batch mode experiments. To assess the surface characteristics of the adsorbents, the scanning electron microscope (SEM) coupled with energy disperse X-ray (EDX), and Fourier transform infrared spectroscopy (FT-IR) analysis were utilized. The removal amount of Pb(II) was determined by atomic adsorption spectrometry (AAS). The effects of pH, contact time, the initial concentration of Pb(II) and adsorbent dosage were investigated. The pH value = 5 was observed as optimum solution pH. The optimum initial concentration of Pb(II) in the solution for AC-PP was found to be 200 mg/l where the amount of Pb(II) removed was 36.42 mg/g. At the agitating time of 2 h, the adsorption processes using 100 mg dosage of AC-PP reached equilibrium. The experimental results exhibit high capability and metal affinity of modified papaya peel waste with removal efficiency of 93.22 %. The evaluation results show that the equilibrium adsorption of Pb(II) was best expressed by Freundlich isotherm model (R2 > 0.93). The experimental results confirmed that AC-PP potentially can be employed as an alternative adsorbent for Pb(II) uptake from industrial wastewater for the design of an environmentally friendly yet economical wastewater treatment process.Keywords: activated carbon, bioadsorption, lead removal, papaya peel, wastewater treatment
Procedia PDF Downloads 2883980 Effects of Sublethal Concentrations of Parkia biglobosa Pod on Weight Gain in the African Catfish, Clarias gariepinus Juveniles
Authors: M. I. Oshimagye, V. O. Ayuba, P. A. Annune
Abstract:
The effect of Sublethal Concentrations of Parkia biglobosa pod extract on the growth and survival of Clarias gariepinus juveniles (mean weight 32.73g ± 0.0) were investigated under laboratory conditions for 8 weeks using the static renewal and continuous aeration system. Statistical analysis showed that fish exposed to various concentrations had significantly lower (P<0.05) growth rate than the control groups. The reduction in growth was observed to be directly proportional to increase in concentration. However, at 50 mg/L no significant depression in weight was observed.Keywords: Clarias gariepinus, Parkia biglobosa, pod, weight
Procedia PDF Downloads 5023979 Biochar-induced Metals Immobilization in the Soil as Affected by Citric Acid
Authors: Md. Shoffikul Islam, Hongqing Hu
Abstract:
Reducing trace elements' mobility and bioavailability through amendment addition, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to stabilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study explored the impact of BC derived from rice husk and citric acid (CA) and the combination of BC and CA on the redistribution of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the CA attack were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The 2, 5, 10, and 20 mM kg-1 (w/v) of CA were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC and CA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. Compared to CK, the application of BC, low level of CA (2 mM kg-1 soil) (CA2), and BC plus the low concentration of CA (BC-CA2) considerably declined the acid-soluble Cd, Pb, and Zn in which BC-CA2 was found to be the most effective treatment. The reversed trends were observed concerning the high levels of CA (>5-20 mM kg-1 soil) and the BC plus high concentrations of CA treatments. BC-CA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual forms with time. The most increased electronegative charges of BC-CA2 indicate its (BC-CA2) highest Cd, Pb, and Zn immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite in the case of Cd, Pb, and Zn immobilization, respectively. The findings depicted that the low concentration of CA increased metals' stabilization, whereas the high levels of CA enhanced their mobilization. The BC-CA2 emerged as the best amendment among treatments for metals stabilization in contaminated soils.Keywords: Biochar, citric acid, immobilization, trace elements contaminated soil
Procedia PDF Downloads 873978 Plasma-Assisted Decomposition of Cyclohexane in a Dielectric Barrier Discharge Reactor
Authors: Usman Dahiru, Faisal Saleem, Kui Zhang, Adam Harvey
Abstract:
Volatile organic compounds (VOCs) are atmospheric contaminants predominantly derived from petroleum spills, solvent usage, agricultural processes, automobile, and chemical processing industries, which can be detrimental to the environment and human health. Environmental problems such as the formation of photochemical smog, organic aerosols, and global warming are associated with VOC emissions. Research showed a clear relationship between VOC emissions and cancer. In recent years, stricter emission regulations, especially in industrialized countries, have been put in place around the world to restrict VOC emissions. Non-thermal plasmas (NTPs) are a promising technology for reducing VOC emissions by converting them into less toxic/environmentally friendly species. The dielectric barrier discharge (DBD) plasma is of interest due to its flexibility, moderate capital cost, and ease of operation under ambient conditions. In this study, a dielectric barrier discharge (DBD) reactor has been developed for the decomposition of cyclohexane (as a VOC model compound) using nitrogen, dry, and humidified air carrier gases. The effect of specific input energy (1.2-3.0 kJ/L), residence time (1.2-2.3 s) and concentration (220-520 ppm) were investigated. It was demonstrated that the removal efficiency of cyclohexane increased with increasing plasma power and residence time. The removal of cyclohexane decreased with increasing cyclohexane inlet concentration at fixed plasma power and residence time. The decomposition products included H₂, CO₂, H₂O, lower hydrocarbons (C₁-C₅) and solid residue. The highest removal efficiency (98.2%) was observed at specific input energy of 3.0 kJ/L and a residence time of 2.3 s in humidified air plasma. The effect of humidity was investigated to determine whether it could reduce the formation of solid residue in the DBD reactor. It was observed that the solid residue completely disappeared in humidified air plasma. Furthermore, the presence of OH radicals due to humidification not only increased the removal efficiency of cyclohexane but also improves product selectivity. This work demonstrates that cyclohexane can be converted to smaller molecules by a dielectric barrier discharge (DBD) non-thermal plasma reactor by varying plasma power (SIE), residence time, reactor configuration, and carrier gas.Keywords: cyclohexane, dielectric barrier discharge reactor, non-thermal plasma, removal efficiency
Procedia PDF Downloads 1393977 One-Pot Synthesis of 5-Hydroxymethylfurfural from Hexose Sugar over Chromium Impregnated Zeolite Based Catalyst, Cr/H-ZSM-5
Authors: Samuel K. Degife, Kamal K. Pant, Sapna Jain
Abstract:
The world´s population and industrialization of countries continued to grow in an alarming rate irrespective of the security for food, energy supply, and pure water availability. As a result, the global energy consumption is observed to increase significantly. Fossil energy resources that mainly comprised of crude oil, coal, and natural gas have been used by mankind as the main energy source for almost two centuries. However, sufficient evidences are revealing that the consumption of fossil resource as transportation fuel emits environmental pollutants such as CO2, NOx, and SOx. These resources are dwindling rapidly besides enormous amount of problems associated such as fluctuation of oil price and instability of oil-rich regions. Biomass is a promising renewable energy candidate to replace fossil-based transportation fuel and chemical production. The present study aims at valorization of hexose sugars (glucose and fructose) using zeolite based catalysts in imidazolium based ionic liquid (1-butyl-3-methylimidazolium chloride, [BMIM] Cl) reaction media. The catalytic effect chromium impregnated H-ZSM-5 (Cr/H-ZSM-5) was studied for dehydration of hexose sugars. The wet impregnation method was used to prepare Cr/H-ZSM-5 catalyst. The characterization of the prepared catalyst was performed using techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), Temperature-programmed desorption of ammonia (NH3-TPD) and BET-surface area analysis. The dehydration product, 5-hydroxymethylfurfural (5-HMF), was analyzed using high-performance liquid chromatography (HPLC). Cr/H-ZSM-5 was effective in dehydrating fructose with 87% conversion and 55% yield 5-HMF at 180 oC for 30 min of reaction time compared with H-ZSM-5 catalyst which yielded only 31% of 5-HMF at identical reaction condition.Keywords: chromium, hexose, ionic liquid, , zeolite
Procedia PDF Downloads 1793976 Study of the Adsorption of Metal Ions Ag+ Mg2+, Ni2+ by the Chemical and Electrochemical Polydibenzoether Crown
Authors: Dalila Chouder, Djaafer Benachour
Abstract:
This work concerns the study of the adsorption of metal ions Ag +, Mg +, and Ni2+ in aqueous medium by polydibenzoether-ROWN based on three factors: Temperature, time and concentration. The polydibenzoether crown was synthesized by two means: Chemical and electrochemical. The behavior of the two polymers has been different, and turns out very interesting for chemical polydibenzoether crown has identified conditions. Chemical and électronique polydibenzoether crown have different extraction screw vi property of adsoption of ions fifférents, this study also shows that plyméres doped may have an advantageous electrical conductivity.Keywords: polymerization, electrochemical, conductivity, complexing metal ions
Procedia PDF Downloads 2703975 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses
Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal
Abstract:
Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.Keywords: heavy metal, municipal sewage sludge, sustainable agriculture, soil fertility and quality
Procedia PDF Downloads 2903974 Effects of Polymer Adsorption and Desorption on Polymer Flooding in Waterflooded Reservoir
Authors: Sukruthai Sapniwat, Falan Srisuriyachai
Abstract:
Polymer Flooding is one of the most well-known methods in Enhanced Oil Recovery (EOR) technology which can be implemented after either primary or secondary recovery, resulting in favorable conditions for the displacement mechanism in order to lower the residual oil in the reservoir. Polymer substances can lower the mobility ratio of the whole process by increasing the viscosity of injected water. Therefore, polymer flooding can increase volumetric sweep efficiency, which leads to a better recovery factor. Moreover, polymer adsorption onto rock surface can help decrease reservoir permeability contrast with high heterogeneity. Due to the reduction of the absolute permeability, effective permeability to water, representing flow ability of the injected fluid, is also reduced. Once polymer is adsorbed onto rock surface, polymer molecule can be desorbed when different fluids are injected. This study is performed to evaluate the effects of the adsorption and desorption process of polymer solutions to yield benefits on the oil recovery mechanism. A reservoir model is constructed by reservoir simulation program called STAR® commercialized by the Computer Modeling Group (CMG). Various polymer concentrations, starting times of polymer flooding process and polymer injection rates were evaluated with selected values of polymer desorption degrees including 0, 25, 50, 75 and 100%. The higher the value, the more adsorbed polymer molecules to return back to flowing fluid. According to the results, polymer desorption lowers polymer consumption, especially at low concentrations. Furthermore, starting time of polymer flooding and injection rate affect the oil production. The results show that waterflooding followed by earlier polymer flooding can increase the oil recovery factor while the higher injection rate also enhances the recovery. Polymer concentration is related to polymer consumption due to the two main benefits of polymer flooding control described above. Therefore, polymer slug size should be optimized based on polymer concentration. Polymer desorption causes polymer re-employment that is previously adsorbed onto rock surface, resulting in an increase of sweep efficiency in the further period of polymer flooding process. Even though waterflooding supports polymer injectivity, water cut at the producer can prematurely terminate the oil production. The injection rate decreases polymer adsorption due to decreased retention time of polymer flooding process.Keywords: enhanced oil recovery technology, polymer adsorption and desorption, polymer flooding, reservoir simulation
Procedia PDF Downloads 3363973 Screening of Congenital Heart Diseases with Fetal Phonocardiography
Authors: F. Kovács, K. Kádár, G. Hosszú, Á. T. Balogh, T. Zsedrovits, N. Kersner, A. Nagy, Gy. Jeney
Abstract:
The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases.Keywords: cardiac murmurs, fetal phonocardiography, screening of CHDs, telemedicine system
Procedia PDF Downloads 3333972 Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application
Authors: Juree Hong, Sanggeun Lee, Jungmok Seo, Taeyoon Lee
Abstract:
We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2.Keywords: metal nanoparticle, galvanic displacement reaction, graphene, hydrogen sensor
Procedia PDF Downloads 4303971 Effect of the Experimental Conditions on the Adsorption Capacities in the Removal of Pb2+ from Aqueous Solutions by the Hydroxyapatite Nanopowders
Authors: Oral Lacin, Turan Calban, Fatih Sevim, Taner Celik
Abstract:
In this study, Pb2+ uptake by the hydroxyapatite nanopowders (n-Hap) from aqueous solutions was investigated by using batch adsorption techniques. The adsorption equilibrium studies were carried out as a function of contact time, adsorbent dosage, pH, temperature, and initial Pb2+ concentration. The results showed that the equilibrium time of adsorption was achieved within 60 min, and the effective pH was selected to be 5 (natural pH). The maximum adsorption capacity of Pb2+ on n-Hap was found as 565 mg.g-1. It is believed that the results obtained for adsorption may provide a background for the detailed mechanism investigations and the pilot and industrial scale applications.Keywords: nanopowders, hydroxyapatite, heavy metals, adsorption
Procedia PDF Downloads 2973970 Influence of Cyperus Rotundus Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus Indicus against White Spot Syndrome Virus Infection
Authors: Thavasimuthu Citarasu, Mariavincent Michaelbabu, Vikram Vakharia
Abstract:
The rhizome of Java grass, Cyperus rotundus was extracted different organic polar and non-polar solvents and performed the in vitro antiviral and immunostimulant activities against White Spot Syndrome Virus (WSSV) and Vibrio harveyi respectively. Based on the initial screening the ethyl acetate extract of C. rotundus was strong activities and further it was purified through silica column chromatography and the fractions were screened again for antiviral and immunostimulant activity. Among the different fractions screened against the WSSV and V. harveyi, the fractions, F-III to FV had strong activities. In order to study the in vivo influence of C. rotundus, the fractions (F-III to FV) were pooled and delivered to the F. indicus through artificial feed for 30 days. After the feeding trail the experimental and control diet fed F. indicus were challenged with virulent WSSV and studied the survival, molecular diagnosis, biochemical, haematological and immunological parameters. Surprisingly, the pooled fractions (F-III to FV) incorporated diets helped to significantly (P < 0.01) suppressed viral multiplication, showed significant (P < 0.01) differences in protein and glucose levels, improved total haemocyte count (THC), coagulase activity, significantly increased (P < =0.001) prophenol oxidase and intracellular superoxide anion production compared to the control shrimps. Based on the results, C. rotundus extracts effectively suppressed WSSV multiplication and improve the immune system in F. indicus against WSSV infection and this knowledge will helps to develop novel drugs from C. rotundus against WSSV.Keywords: antiviral drugs, cyperus rotundus, fenneropenaeus indicus, WSSV
Procedia PDF Downloads 4593969 In-situ Phytoremediation Of Polluted Soils By Micropollutants From Artisanal Gold Mining Processes In Burkina Faso
Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien
Abstract:
Artisanal gold mining has seen a resurgence in recent years in Burkina Faso with its corollary of soil and water pollution. Indeed, in addition to visible impacts, it generates discharges rich in trace metal elements and acids. This pollution has significant environmental consequences, making these lands unusable while the population depends on the natural environment for its survival. The goal of this study is to assess the decontamination potential of Chrysopogon zizanioides on two artisanal gold processing sites in Burkina Faso. The cyanidation sites of Nebia (1Ha) and Nimbrogo (2Ha) located respectively in the Central West and Central South regions were selected. The soils were characterized to determine the initial pollution levels before the implementation of phytoremediation. After development of the site, parallel trenches equidistant 6 m apart, 30 cm deep, 40 cm wide and opposite to the water flow direction were dug and filled with earth amended with manure. The Chrysopogon zizanioides plants were transplanted 5 cm equidistant into the trenches. The mere fact that Chrysopogon zizanioides grew in the polluted soil is an indication that this plant tolerates and resists the toxicity of trace elements present on the site. The characterization shows sites very polluted with free cyanide 900 times higher than the national standard, the level of Hg in the soil is 5 times more than the limit value, iron and Zn are respectively 1000 times and 200 more than the tolerated environmental value. At time T1 (6 months) and T2 (12 months) of culture, Chrysopogon zizanioides showed less development on the Nimbrogo site than that of the Nebia site. Plant shoots and associated soil samples were collected and analyzed for total As, Hg, Fe and Zn concentration. The trace element content of the soil, the bioaccumulation factor and the hyper accumulation thresholds were also determined to assess the remediation potential. The concentration of As and Hg in the soil was below international risk thresholds, while that of Fe and Zn was well above these thresholds. The CN removal efficiency at the Nebia site is respectively 29.90% and 68.62% compared to 6.6% and 60.8% at Nimbrogo at time T1 and T2.Keywords: chrysopogon zizanioides, in-situ phytoremediation, polluted soils, micropollutants
Procedia PDF Downloads 843968 Comparison of the Effectiveness between Exosomes from Different Origins in Reversing Skin Aging
Authors: Iannello G., Coppa F., Pennisi S., Giuffrida G., Lo Faro R., Cartelli S., Ferruggia G., Brundo M. V.
Abstract:
Skin is the largest multifunctional human organ and possesses a complex, multilayered structure with the ability to regenerate and renew. The key role in skin regeneration is played by fibroblasts, which also occupy an important role in the wound healing process. Different methods, including dynamic light scattering, scanning electron microscopy, ELISA, and MTT assay, were employed to evaluate on fibroblasts the in vitro effects of plant-derived nanovesicles and cord blood stem cells‐derived exosomes. We compared the results with those of cells exposed to a technology called AMPLEX PLUS, containing a mixture of 20 different biologically active factors (GF20) and exosomes isolated and purified from bovine colostrum. AMPLEX PLUS was able to significantly enhance the cell proliferation status of cells at both 24 and 48 hours compared to untreated cells (control). The obtained results suggest how AMPLEX PLUS could be potentially effective in treating skin rejuvenation.Keywords: AMPLEX PLUS, cell vitality, colostrum, nanovesicles
Procedia PDF Downloads 453967 Hepatitis B Vaccination Status and Its Determinants among Primary Health Care Workers in Northwest Pakistan
Authors: Mohammad Tahir Yousafzai, Rubina Qasim
Abstract:
We assessed Hepatitis B vaccination and its determinants among health care workers (HCW) in Northwest Pakistan. HCWs from both public and private clinics were interviewed about hepatitis B vaccination, socio-demographic, hepatitis B virus transmission modes, disease threat and benefits of vaccination. Logistic regression was performed. Hepatitis B vaccination was 40% (Qualified Physicians: 86% and non-qualified Dispensers:16%). Being Qualified Physician (Adj. OR 26.6; 95%CI 9.3-73.2), Non-qualified Physician (Adj.OR 1.9; 95%CI 0.8-4.6), qualified Dispensers (Adj. OR 3.6; 95%CI 1.3-9.5) compared to non-qualified Dispensers, working in public clinics (Adj. OR 2.5; 95%CI 1.1-5.7) compared to private, perceived disease threat after exposure to blood and body fluids (Adj. OR 1.1; 95%CI 1.1-1.2) and perceived benefits of vaccination (Adj. OR 1.1; 95%CI 1.1-1.2) were significant predictors of hepatitis B vaccination. Improved perception of disease threat and benefits of vaccination and qualification of HCWs are associated with hepatitis B vaccination.Keywords: Hepatitis B vaccine, immunization, healthcare workers, primary health
Procedia PDF Downloads 3223966 Exploration Study of Civet Coffee: Amino Acids Composition and Cup Quality
Authors: Murna Muzaifa, Dian Hasni, Febriani, Anshar Patria, Amhar Abubakar
Abstract:
Coffee flavour is influenced by many factors such as processing techniques. Civet coffee is known as one of premium coffee due to its unique processing technique and its superior cupping quality. The desirable aroma of coffee is foremost formed during roasting step at a high temperature from precursors that are present in the green bean. Sugars, proteins, acids and trigonelline are the principal flavor precursors compounds in green coffee bean. It is now widely accepted that amino acids act as precursors of the Maillard reaction during which the colour and aroma are formed. To investigate amino acids on civet coffee, concentration of 20 amino acids (L-Isoleucine, L-Valine, L-Proline, L-Phenylalanine, L-Arginine, L-Asparagine, L-Threonine, L-Tryptophan, L-Leucine, L-Serine, L-Glutamine, L-Methionine, L-Histidine, Aspartic acid, L-Tyrosine, L-Lysine, L-Glutamic acid, and L-Cysteine, L-Alanine and Glycine) were determined in green and roasted bean of civet coffee by LCMS analysis. The cup quality of civet coffee performed using professional Q-grader followed SCAA standard method. The measured parameters were fragrance/aroma, flavor, acidity, body, uniformity, clean up, aftertaste, balance, sweetness and overall. The work has been done by collecting samples of civet coffee from six locations in Gayo Higland, Aceh-Indonesia. The results showed that 18 amino acids were detected in green bean of civet coffee (L-Isoleucine, L-Valine, L-Proline, L-Phenylalanine, L-Arginine, L-Asparagine, L-Threonine, L-Tryptophan, L-Leucine, L-Serine, L-Glutamine, L-Methionine, L-Histidine, Aspartic acid, L-Tyrosine, L-Lysine, L-Glutamic acid, and L-Cysteine) and 2 amino acids were not detected (L-Alanine and Glycine). On the other hand, L-Tyrosine and Glycine were not detected in roasted been of civet coffee. Glutamic acid is the amino acid with highest concentration in both green and roasted bean (21,02 mg/g and 24,60 mg/g), followed by L- Valine (19,98 mg/g and 20,22 mg/g) and Aspartic acid (14,93 mg/g and 18,58 mg/g). Civet coffee has a fairly high cupping value (cup quality), ranging from 83.75 to 84.75, categorized as speciality coffee. Moreover, civet coffee noted to have nutty, chocolaty, fishy, herby and watery.Keywords: amino acids, civet coffee, cupping quality, luwak
Procedia PDF Downloads 1913965 A One Dimensional Particle in Cell Model for Excimer Lamps
Authors: W. Benstaali, A. Belasri
Abstract:
In this work we study a planar lamp filled with neon-xenon gas. We use a one-dimensional particle in a cell with Monte Carlo simulation (PIC-MCC) to investigate the effect xenon concentration on the energy deposited on excitation, ionization and ions. A Xe-Ne discharge is studied for a gas pressure of 400 torr. The results show an efficient Xe20-Ne mixture with an applied voltage of 1.2KV; the xenon excitation energy represents 65% form total energy dissipated in the discharge. We have also studied electrical properties and the energy balance a discharge for Xe50-Ne which needs a voltage of 2kv; the xenon energy is than more important.Keywords: dielectric barrier discharge, efficiency, excitation, lamps
Procedia PDF Downloads 1703964 The Conflict Between the Current International Copyright Regime and the Islamic Social Justice Theory
Authors: Abdelrahman Mohamed
Abstract:
Copyright law is a branch of the Intellectual Property Law that gives authors exclusive rights to copy, display, perform, and distribute copyrightable works. In theory, copyright law aims to promote the welfare of society by granting exclusive rights to the creators in exchange for the works that these creators produce for society. Thus, there are two different types of rights that a just regime should balance between them which are owners' rights and users' rights. The paper argues that there is a conflict between the current international copyright regime and the Islamic Social Justice Theory. This regime is unjust from the Islamic Social Justice Theory's perspective regarding access to educational materials because this regime was unjustly established by the colonizers to protect their interests, starting from the Berne Convention for the Protection of Literary and Artistic Works 1886 and reaching to the Trade-Related Aspects of Intellectual Property Rights 1994. Consequently, the injustice of this regime was reflected in the regulations of these agreements and led to an imbalance between the owners' rights and the users' rights in favor of the former at the expense of the latter. As a result, copyright has become a barrier to access to knowledge and educational materials. The paper starts by illustrating the concept of justice in Islamic sources such as the Quran, Sunnah, and El-Maslha-Elmorsalah. Then, social justice is discussed by focusing on the importance of access to knowledge and the right to education. The theory assumes that the right to education and access to educational materials are necessities; thus, to achieve justice in this regime, the users' rights should be granted regardless of their region, color, and financial situation. Then, the paper discusses the history of authorship protection under the Islamic Sharia and to what extent this right was recognized even before the existence of copyright law. According to this theory, the authors' rights should be protected, however, this protection should not be at the expense of the human's rights to education and the right to access to educational materials. Moreover, the Islamic Social Justice Theory prohibits the concentration of wealth among a few numbers of people, 'the minority'. Thus, if knowledge is considered an asset or a good, the concentration of knowledge is prohibited from the Islamic perspective, which is the current situation of the copyright regime where a few countries control knowledge production and distribution. Finally, recommendations will be discussed to mitigate the injustice of the current international copyright regime and to fill the gap between the current international copyright regime and the Islamic Social Justice Theory.Keywords: colonization, copyright, intellectual property, Islamic sharia, social justice
Procedia PDF Downloads 303963 Upflow Anaerobic Sludge Blanket Reactor Followed by Dissolved Air Flotation Treating Municipal Sewage
Authors: Priscila Ribeiro dos Santos, Luiz Antonio Daniel
Abstract:
Inadequate access to clean water and sanitation has become one of the most widespread problems affecting people throughout the developing world, leading to an unceasing need for low-cost and sustainable wastewater treatment systems. The UASB technology has been widely employed as a suitable and economical option for the treatment of sewage in developing countries, which involves low initial investment, low energy requirements, low operation and maintenance costs, high loading capacity, short hydraulic retention times, long solids retention times and low sludge production. Whereas dissolved air flotation process is a good option for the post-treatment of anaerobic effluents, being capable of producing high quality effluents in terms of total suspended solids, chemical oxygen demand, phosphorus, and even pathogens. This work presents an evaluation and monitoring, over a period of 6 months, of one compact full-scale system with this configuration, UASB reactors followed by dissolved air flotation units (DAF), operating in Brazil. It was verified as a successful treatment system, and an issue of relevance since dissolved air flotation process treating UASB reactor effluents is not widely encompassed in the literature. The study covered the removal and behavior of several variables, such as turbidity, total suspend solids (TSS), chemical oxygen demand (COD), Escherichia coli, total coliforms and Clostridium perfringens. The physicochemical variables were analyzed according to the protocols established by the Standard Methods for Examination of Water and Wastewater. For microbiological variables, such as Escherichia coli and total coliforms, it was used the “pour plate” technique with Chromocult Coliform Agar (Merk Cat. No.1.10426) serving as the culture medium, while the microorganism Clostridium perfringens was analyzed through the filtering membrane technique, with the Ágar m-CP (Oxoid Ltda, England) serving as the culture medium. Approximately 74% of total COD was removed in the UASB reactor, and the complementary removal done during the flotation process resulted in 88% of COD removal from the raw sewage, thus the initial concentration of COD of 729 mg.L-1 decreased to 87 mg.L-1. Whereas, in terms of particulate COD, the overall removal efficiency for the whole system was about 94%, decreasing from 375 mg.L-1 in raw sewage to 29 mg.L-1 in final effluent. The UASB reactor removed on average 77% of the TSS from raw sewage. While the dissolved air flotation process did not work as expected, removing only 30% of TSS from the anaerobic effluent. The final effluent presented an average concentration of 38 mg.L-1 of TSS. The turbidity was significantly reduced, leading to an overall efficiency removal of 80% and a final turbidity of 28 NTU.The treated effluent still presented a high concentration of fecal pollution indicators (E. coli, total coliforms, and Clostridium perfringens), showing that the system did not present a good performance in removing pathogens. Clostridium perfringens was the organism which suffered the higher removal by the treatment system. The results can be considered satisfactory for the physicochemical variables, taking into account the simplicity of the system, besides that, it is necessary a post-treatment to improve the microbiological quality of the final effluent.Keywords: dissolved air flotation, municipal sewage, UASB reactor, treatment
Procedia PDF Downloads 3343962 Repeatable Surface Enhanced Raman Spectroscopy Substrates from SERSitive for Wide Range of Chemical and Biological Substances
Authors: Monika Ksiezopolska-Gocalska, Pawel Albrycht, Robert Holyst
Abstract:
Surface Enhanced Raman Spectroscopy (SERS) is a technique used to analyze very low concentrations of substances in solutions, even in aqueous solutions - which is its advantage over IR. This technique can be used in the pharmacy (to check the purity of products); forensics (whether at a crime scene there were any illegal substances); or medicine (serving as a medical test) and lots more. Due to the high potential of this technique, its increasing popularity in analytical laboratories, and simultaneously - the absence of appropriate platforms enhancing the SERS signal (crucial to observe the Raman effect at low analyte concentration in solutions (1 ppm)), we decided to invent our own SERS platforms. As an enhancing layer, we have chosen gold and silver nanoparticles, because these two have the best SERS properties, and each has an affinity for the other kind of particles, which increases the range of research capabilities. The next step was to commercialize them, which resulted in the creation of the company ‘SERSitive.eu’ focusing on production of highly sensitive (Ef = 10⁵ – 10⁶), homogeneous and reproducible (70 - 80%) substrates. SERStive SERS substrates are made using the electrodeposition of silver or silver-gold nanoparticles technique. Thanks to a very detailed analysis of data based on studies optimizing such parameters as deposition time, temperature of the reaction solution, applied potential, used reducer, or reagent concentrations using a standardized compound - p-mercaptobenzoic acid (PMBA) at a concentration of 10⁻⁶ M, we have developed a high-performance process for depositing precious metal nanoparticles on the surface of ITO glass. In order to check a quality of the SERSitive platforms, we examined the wide range of the chemical compounds and the biological substances. Apart from analytes that have great affinity to the metal surfaces (e.g. PMBA) we obtained very good results for those fitting less the SERS measurements. Successfully we received intensive, and what’s more important - very repetitive spectra for; amino acids (phenyloalanine, 10⁻³ M), drugs (amphetamine, 10⁻⁴ M), designer drugs (cathinone derivatives, 10⁻³ M), medicines and ending with bacteria (Listeria, Salmonella, Escherichia coli) and fungi.Keywords: nanoparticles, Raman spectroscopy, SERS, SERS applications, SERS substrates, SERSitive
Procedia PDF Downloads 1563961 Geochemical and Petrological Survey in Northern Ethiopia Basement Rocks for Investigation of Gold and Base Metal Mineral Potential in Finarwa, Southeast Tigray, Ethiopia
Authors: Siraj Beyan Mohamed, Woldia University
Abstract:
The study is accompanied in northern Ethiopian basement rocks, Finarwa area, and its surrounding areas, south eastern Tigray. From the field observations, the geology of the area haven been described and mapped based on mineral composition, texture, structure, and colour of both fresh and weather rocks. Inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) have conducted to analysis gold and base metal mineralization. The ore mineral under microscope are commonly base metal sulphides pyrrhotite, Chalcopyrite, pentilanditeoccurring in variable proportions. Galena, chalcopyrite, pyrite, and gold mineral are hosted in quartz vein. Pyrite occurs both in quartz vein and enclosing rocks as a primary mineral. The base metal sulfides occur as disseminated, vein filling, and replacement. Geochemical analyses result determination of the threshold of geochemical anomalies is directly related to the identification of mineralization information. From samples, stream sediment samples and the soil samples indicated that the most promising mineralization occur in the prospect area are gold(Au), copper (Cu), and zinc (Zn). This is also supported by the abundance of chalcopyrite and sphalerite in some highly altered samples. The stream sediment geochemical survey data shows relatively higher values for zinc compared to Pb and Cu. The moderate concentration of the base metals in some of the samples indicates availability base metal mineralization in the study area requiring further investigation. The rock and soil geochemistry shows the significant concentration of gold with maximum value of 0.33ppm and 0.97 ppm in the south western part of the study area. In Finarwa, artisanal gold mining has become an increasingly widespread economic activity of the local people undertaken by socially differentiated groups with a wide range of education levels and economic backgrounds incorporating a wide variety of ‘labour intensive activities without mechanisation.Keywords: gold, base metal, anomaly, threshold
Procedia PDF Downloads 1343960 Effects of Vegetable Oils Supplementation on in Vitro Rumen Fermentation and Methane Production in Buffaloes
Authors: Avijit Dey, Shyam S. Paul, Satbir S. Dahiya, Balbir S. Punia, Luciano A. Gonzalez
Abstract:
Methane emitted from ruminant livestock not only reduces the efficiency of feed energy utilization but also contributes to global warming. Vegetable oils, a source of poly unsaturated fatty acids, have potential to reduce methane production and increase conjugated linoleic acid in the rumen. However, characteristics of oils, level of inclusion and composition of basal diet influences their efficacy. Therefore, this study was aimed to investigate the effects of sunflower (SFL) and cottonseed (CSL) oils on methanogenesis, volatile fatty acids composition and feed fermentation pattern by in vitro gas production (IVGP) test. Four concentrations (0, 0.1, 0.2 and 0.4ml /30ml buffered rumen fluid) of each oil were used. Fresh rumen fluid was collected before morning feeding from two rumen cannulated buffalo steers fed a mixed ration. In vitro incubation was carried out with sorghum hay (200 ± 5 mg) as substrate in 100 ml calibrated glass syringes following standard IVGP protocol. After 24h incubation, gas production was recorded by displacement of piston. Methane in the gas phase and volatile fatty acids in the fermentation medium were estimated by gas chromatography. Addition of oils resulted in increase (p<0.05) in total gas production and decrease (p<0.05) in methane production, irrespective of type and concentration. Although the increase in gas production was similar, methane production (ml/g DM) and its concentration (%) in head space gas was lower (p< 0.01) in CSL than in SFL at corresponding doses. Linear decrease (p<0.001) in degradability of DM was evident with increasing doses of oils (0.2ml onwards). However, these effects were more pronounced with SFL. Acetate production tended to decrease but propionate and butyrate production increased (p<0.05) with addition of oils, irrespective of type and doses. The ratio of acetate to propionate was reduced (p<0.01) with addition of oils but no difference between the oils was noted. It is concluded that both the oils can reduce methane production. However, feed degradability was also affected with higher doses. Cotton seed oil in small dose (0.1ml/30 ml buffered rumen fluid) exerted greater inhibitory effects on methane production without impeding dry matter degradability. Further in vivo studies need to be carried out for their practical application in animal ration.Keywords: buffalo, methanogenesis, rumen fermentation, vegetable oils
Procedia PDF Downloads 4123959 Computed Tomography Brain and Inpatient Falls: An Audit Evaluating the Indications and Outcomes
Authors: Zain Khan, Steve Ahn, Kathy Monypenny, James Fink
Abstract:
In Australian public hospitals, there were approximately 34,000 reported inpatient falls between 2015 to 2016. The gold standard for diagnosing intracranial injury is non-contrast enhanced brain computed tomography (CTB). Over a three-month timeframe, a total of one hundred and eighty (180) falls were documented between the hours of 4pm and 8am at a large metro hospital. Only three (3) of these scans demonstrated a positive intra-cranial finding. The rationale for scanning varied. The common indications included a fall with head strike, the presence of blood thinning medication, loss of consciousness, reduced Glasgow Coma Scale (GCS), vomiting and new neurological findings. There are several validated tools to aid in decision-making around ordering CTB scans in the acute setting, but no such accepted tool exists for the inpatient space. With further data collection, spanning a greater length of time and through involving multiple centres, work can be done towards generating such a tool that can be utilized for inpatient falls.Keywords: computed tomography, falls, inpatient, intracranial hemorrhage
Procedia PDF Downloads 1783958 Chemical Leaching of Metals from Landfill’s Fine Fraction
Authors: E. Balkauskaitė, A. Bučinskas, R. Ivanauskas, M. Kriipsalu, G. Denafas
Abstract:
Leaching of heavy metals (chromium, zinc, copper) from the fine fraction of the Torma landfill (Estonia) was investigated. The leaching kinetics studies have determined the dependence of some metal’s concentration on the leaching time. Metals were leached with Aqua Regia, distilled water and EDTA (Ethylenediaminetetraacetic acid); process was most intensive 2 hours after the start of the experiment, except for copper with EDTA (0.5 h) and lead with EDTA (4 h). During leaching, steady concentrations of Fe, Mn, Cd and Pb were fully stabilized after 8 h; however concentrations of Cu and Ni were not stabilized after 10 h.Keywords: fine fraction, landfills, leached metals, leaching kinetics
Procedia PDF Downloads 1403957 Prevalence and Risk Factors of Cardiovascular Diseases among Bangladeshi Adults: Findings from a Cross Sectional Study
Authors: Fouzia Khanam, Belal Hossain, Kaosar Afsana, Mahfuzar Rahman
Abstract:
Aim: Although cardiovascular diseases (CVD) has already been recognized as a major cause of death in developed countries, its prevalence is rising in developing countries as well, and engendering a challenge for the health sector. Bangladesh has experienced an epidemiological transition from communicable to non-communicable diseases over the last few decades. So, the rising prevalence of CVD and its risk factors are imposing a major problem for the country. We aimed to examine the prevalence of CVDs and socioeconomic and lifestyle factors related to it from a population-based survey. Methods: The data used for this study were collected as a part of a large-scale cross-sectional study conducted to explore the overall health status of children, mothers and senior citizens of Bangladesh. Multistage cluster random sampling procedure was applied by considering unions as clusters and households as the primary sampling unit to select a total of 11,428 households for the base survey. Present analysis encompassed 12338 respondents of ≥ 35 years, selected from both rural areas and urban slums of the country. Socio-economic, demographic and lifestyle information were obtained through individual by a face-to-face interview which was noted in ODK platform. And height, weight, blood pressure and glycosuria were measured using standardized methods. Chi-square test, Univariate modified Poisson regression model, and multivariate modified Poisson regression model were done using STATA software (version 13.0) for analysis. Results: Overall, the prevalence of CVD was 4.51%, of which 1.78% had stroke and 3.17% suffered from heart diseases. Male had higher prevalence of stroke (2.20%) than their counterparts (1.37%). Notably, thirty percent of respondents had high blood pressure and 5% population had diabetes and more than half of the population was pre-hypertensive. Additionally, 20% were overweight, 77% were smoker or consumed smokeless tobacco and 28% of respondents were physically inactive. Eighty-two percent of respondents took extra salt while eating and 29% of respondents had deprived sleep. Furthermore, the prevalence of risk factor of CVD varied according to gender. Women had a higher prevalence of overweight, obesity and diabetes. Women were also less physically active compared to men and took more extra salt. Smoking was lower in women compared to men. Moreover, women slept less compared to their counterpart. After adjusting confounders in modified Poisson regression model, age, gender, occupation, wealth quintile, BMI, extra salt intake, daily sleep, tiredness, diabetes, and hypertension remained as risk factors for CVD. Conclusion: The prevalence of CVD is significant in Bangladesh, and there is an evidence of rising trend for its risk factors such as hypertension, diabetes especially in older population, women and high-income groups. Therefore, in this current epidemiological transition, immediate public health intervention is warranted to address the overwhelming CVD risk.Keywords: cardiovascular diseases, diabetes, hypertension, stroke
Procedia PDF Downloads 3853956 Positioning Food Safety in Halal Assurance
Authors: Marin Neio Demirci, Jan Mei Soon, Carol A. Wallace
Abstract:
Muslims follow the religion of Islam and the food they eat should be Halal, meaning lawful or permissible. Muslims are allowed to eat halal and wholesome food that has been provided for them. However, some of the main prohibitions are swine flesh, blood, carrion, animals not slaughtered according to Islamic laws and alcoholic drinks. At present Halal assurance is in a complicated state, with various Halal standards differing from each other without gaining mutual acceptance. The world is starting to understand the need for an influential globally accepted standard that would open doors to global markets and gain consumer confidence. This paper discusses issues mainly related to food safety in Halal assurance. The aim was to discover and describe the approach to food safety requirements in Halal food provision and how this is incorporated in the Halal assurance systems. The position of food safety regulation within Halal requirements or Halal standards’ requirements for food safety is still unclear. This review also considers whether current Halal standards include criteria in common with internationally accepted food hygiene standards and emphasizes the potential of using the HACCP system for Halal assurance.Keywords: certification, GHP, HACCP, Halal standard
Procedia PDF Downloads 354