Search results for: systems of representation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10413

Search results for: systems of representation

6993 Relationship of Macro-Concepts in Educational Technologies

Authors: L. R. Valencia Pérez, A. Morita Alexander, Peña A. Juan Manuel, A. Lamadrid Álvarez

Abstract:

This research shows the reflection and identification of explanatory variables and their relationships between different variables that are involved with educational technology, all of them encompassed in macro-concepts which are: cognitive inequality, economy, food and language; These will give the guideline to have a more detailed knowledge of educational systems, the communication and equipment, the physical space and the teachers; All of them interacting with each other give rise to what is called educational technology management. These elements contribute to have a very specific knowledge of the equipment of communications, networks and computer equipment, systems and content repositories. This is intended to establish the importance of knowing a global environment in the transfer of knowledge in poor countries, so that it does not diminish the capacity to be authentic and preserve their cultures, their languages or dialects, their hierarchies and real needs; In short, to respect the customs of different towns, villages or cities that are intended to be reached through the use of internationally agreed professional educational technologies. The methodology used in this research is the analytical - descriptive, which allows to explain each of the variables, which in our opinion must be taken into account, in order to achieve an optimal incorporation of the educational technology in a model that gives results in a medium term. The idea is that in an encompassing way the concepts will be integrated to others with greater coverage until reaching macro concepts that are of national coverage in the countries and that are elements of conciliation in the different federal and international reforms. At the center of the model is the educational technology which is directly related to the concepts that are contained in factors such as the educational system, communication and equipment, spaces and teachers, which are globally immersed in macro concepts Cognitive inequality, economics, food and language. One of the major contributions of this article is to leave this idea under an algorithm that allows to be as unbiased as possible when evaluating this indicator, since other indicators that are to be taken from international preference entities like the OECD in the area of education systems studied, so that they are not influenced by particular political or interest pressures. This work opens the way for a relationship between involved entities, both conceptual, procedural and human activity, to clearly identify the convergence of their impact on the problem of education and how the relationship can contribute to an improvement, but also shows possibilities of being able to reach a comprehensive education reform for all.

Keywords: relationships macro-concepts, cognitive inequality, economics, alimentation and language

Procedia PDF Downloads 199
6992 Coastal Foodscapes as Nature-Based Coastal Regeneration Systems

Authors: Gulce Kanturer Yasar, Hayriye Esbah Tuncay

Abstract:

Cultivated food production systems have coexisted harmoniously with nature for thousands of years through ancient techniques. Based on this experience, experimentation, and discovery, these culturally embedded methods have evolved to sustain food production, restore ecosystems, and harmoniously adapt to nature. In this era, as we seek solutions to food security challenges, enhancing and repairing our food production systems is crucial, making them more resilient to future disasters without harming the ecosystem. Instead of unsustainable conventional systems with ongoing destructive effects, we must investigate innovative and restorative production systems that integrate ancient wisdom and technology. Whether we consider agricultural fields, pastures, forests, coastal wetland ecosystems, or lagoons, it is crucial to harness the potential of these natural resources in addressing future global challenges, fostering both socio-economic resilience and ecological sustainability through strategic organization for food production. When thoughtfully designed and managed, marine-based food production has the potential to function as a living infrastructure system that addresses social and environmental challenges despite its known adverse impacts on the environment and local economies. These areas are also stages of daily life, vibrant hubs where local culture is produced and shared, contributing to the distinctive rural character of coastal settlements and exhibiting numerous spatial expressions of public nature. When we consider the history of humanity, indigenous communities have engaged in these sustainable production practices that provide goods for food, trade, culture, and the environment for many ages. Ecosystem restoration and socio-economic resilience can be achieved by combining production techniques based on ecological knowledge developed by indigenous societies with modern technologies. Coastal lagoons are highly productive coastal features that provide various natural services and societal values. They are especially vulnerable to severe physical, ecological, and social impacts of changing, challenging global conditions because of their placement within the coastal landscape. Coastal lagoons are crucial in sustaining fisheries productivity, providing storm protection, supporting tourism, and offering other natural services that hold significant value for society. Although there is considerable literature on the physical and ecological dimensions of lagoons, much less literature focuses on their economic and social values. This study will discuss the possibilities of coastal lagoons to achieve both ecologically sustainable and socio-economically resilient while maintaining their productivity by combining local techniques and modern technologies. The case study will present Turkey’s traditional aquaculture method, "Dalyans," predominantly operated by small-scale farmers in coastal lagoons. Due to human, ecological, and economic factors, dalyans are losing their landscape characteristics and efficiency. These 1000-year-old ancient techniques, rooted in centuries of traditional and agroecological knowledge, are under threat of tourism, urbanization, and unsustainable agricultural practices. Thus, Dalyans have diminished from 29 to approximately 4-5 active Dalyans. To deal with the adverse socio-economic and ecological consequences on Turkey's coastal areas, conserving Dalyans by protecting their indigenous practices while incorporating contemporary methods is essential. This study seeks to generate scenarios that envision the potential ways protection and development can manifest within case study areas.

Keywords: coastal foodscape, lagoon aquaculture, regenerative food systems, watershed food networks

Procedia PDF Downloads 75
6991 Proteomic Evaluation of Sex Differences in the Plasma of Non-human Primates Exposed to Ionizing Radiation for Biomarker Discovery

Authors: Christina Williams, Mehari Weldemariam, Ann M. Farese, Thomas J. MacVittie, Maureen A. Kane

Abstract:

Radiation exposure results in dose-dependent and time-dependent multi-organ damage. Drug development of medical countermeasures (MCM) for radiation-induced injury occurs under the FDA Animal Rule because human efficacy studies are not ethical or feasible. The FDA Animal Rule requires the representation of both sexes and describes several uses for biomarkers in MCM drug development studies. Currently, MCMs are limited and there is no FDA-approved biomarker for any radiation injury. Sex as a variable is essential to identifying biomarkers and developing effective MCMs for acute radiation exposure (ARS) and delayed effects of acute radiation exposure (DEARE). These studies aim to address the death of information on sex differences that have not been determined by studies that included only male, single-sex cohorts. Studies have reported differences in radiosensitivity according to sex. As such, biomarker discovery for radiation-induced damage must consider sex as a variable. This study evaluated the plasma proteomic profile of Rhesus macaque non-human primates after different exposures and doses, as well as time points after radiation. Exposures and doses included total body irradiation between 5-7.5 Gy and partial body irradiation with 5% bone marrow sparing at 9, 9.5 and 10 Gy. Timepoints after irradiation included days 1, 3, 60, and 180, which encompassed both acute radiation syndromes and delayed effects of acute radiation exposure. Bottom-up proteomic analyses of plasma included equal numbers of males and females. In the control animals, few proteomic differences are observed between the sexes. In the irradiated animals, there are a few sex differences, with changes mostly consisting of proteins upregulated in the female animals. Multiple canonical pathways were upregulated in irradiated animals relative to the control animals when subjected to pathway analysis, but differential responses between the sexes are limited. These data provide critical baseline differences according to sex and establish sex differences in non-human primate models relevant to drug development of MCM under the FDA Animal Rule.

Keywords: ionizing radiation, sex differences, plasma proteomics, biomarker discovery

Procedia PDF Downloads 90
6990 Improving Carbon Dioxide Mass Transfer in Open Pond Raceway Systems for Improved Algal Productivity

Authors: William Middleton, Nodumo Zulu, Sue Harrison

Abstract:

Open raceway ponds are currently the most used system for the commercial cultivation of algal biomass, as it is a cost-effective means of production. However, raceway ponds suffer from lower algal productivity when compared to closed photobioreactors. This is due to poor gas exchange between the fluid and the atmosphere. Carbon dioxide (CO₂) mass transfer is a large concern in the production of algae in raceway pond systems. The utilization of atmospheric CO₂ does not support maximal growth; however, CO₂ supplementation in the form of flue gas or concentrated CO₂ is not cost-effective. The introduction of slopes into the raceway system presents a possible improvement to the mass transfer from the air, as seen in previous work conducted at CeBER. Slopes improve turbulence (decreasing the concentration gradient of dissolved CO₂) and can cause air entrainment (allowing for greater surface area and contact time between the air and water). This project tests the findings of previous studies conducted in an indoor lab-scale raceway on a larger scale under outdoor conditions. The addition of slopes resulted in slightly increased CO₂ mass transfer as well as algal growth rate and productivity. However, there were reductions in energy consumption and average fluid velocity in the system. These results indicate a potential to improve the economic feasibility of algal biomass production, but further economic assessment would need to be carried out.

Keywords: algae, raceway ponds, mass transfer, algal culture, biotechnology, reactor design

Procedia PDF Downloads 99
6989 Coordinated Interference Canceling Algorithm for Uplink Massive Multiple Input Multiple Output Systems

Authors: Messaoud Eljamai, Sami Hidouri

Abstract:

Massive multiple-input multiple-output (MIMO) is an emerging technology for new cellular networks such as 5G systems. Its principle is to use many antennas per cell in order to maximize the network's spectral efficiency. Inter-cellular interference remains a fundamental problem. The use of massive MIMO will not derogate from the rule. It improves performances only when the number of antennas is significantly greater than the number of users. This, considerably, limits the networks spectral efficiency. In this paper, a coordinated detector for an uplink massive MIMO system is proposed in order to mitigate the inter-cellular interference. The proposed scheme combines the coordinated multipoint technique with an interference-cancelling algorithm. It requires the serving cell to send their received symbols, after processing, decision and error detection, to the interfered cells via a backhaul link. Each interfered cell is capable of eliminating intercellular interferences by generating and subtracting the user’s contribution from the received signal. The resulting signal is more reliable than the original received signal. This allows the uplink massive MIMO system to improve their performances dramatically. Simulation results show that the proposed detector improves system spectral efficiency compared to classical linear detectors.

Keywords: massive MIMO, COMP, interference canceling algorithm, spectral efficiency

Procedia PDF Downloads 147
6988 Energy Content and Spectral Energy Representation of Wave Propagation in a Granular Chain

Authors: Rohit Shrivastava, Stefan Luding

Abstract:

A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder. For obtaining macroscopic/continuum properties, ensemble averaging has been used. Interpreting information from a Total Energy signal turned out to be much easier in comparison to displacement, velocity or acceleration signals of the wave, hence, indicating a better analysis method for wave propagation through granular materials. Increasing disorder leads to faster attenuation of the signal and decreases the Energy of higher frequency signals transmitted, but at the same time the energy of spatially localized high frequencies also increases. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits diffusive like propagation, which eventually becomes localized at long periods of time.

Keywords: discrete elements, energy attenuation, mass disorder, granular chain, spectral energy, wave propagation

Procedia PDF Downloads 290
6987 Experimental Characterisation of Composite Panels for Railway Flooring

Authors: F. Pedro, S. Dias, A. Tadeu, J. António, Ó. López, A. Coelho

Abstract:

Railway transportation is considered the most economical and sustainable way to travel. However, future mobility brings important challenges to railway operators. The main target is to develop solutions that stimulate sustainable mobility. The research and innovation goals for this domain are efficient solutions, ensuring an increased level of safety and reliability, improved resource efficiency, high availability of the means (train), and satisfied passengers with the travel comfort level. These requirements are in line with the European Strategic Agenda for the 2020 rail sector, promoted by the European Rail Research Advisory Council (ERRAC). All these aspects involve redesigning current equipment and, in particular, the interior of the carriages. Recent studies have shown that two of the most important requirements for passengers are reasonable ticket prices and comfortable interiors. Passengers tend to use their travel time to rest or to work, so train interiors and their systems need to incorporate features that meet these requirements. Among the various systems that integrate train interiors, the flooring system is one of the systems with the greatest impact on passenger safety and comfort. It is also one of the systems that takes more time to install on the train, and which contributes seriously to the weight (mass) of all interior systems. Additionally, it presents a strong impact on manufacturing costs. The design of railway floor, in the development phase, is usually made relying on a design software that allows to draw and calculate several solutions in a short period of time. After obtaining the best solution, considering the goals previously defined, experimental data is always necessary and required. This experimental phase has such great significance, that its outcome can provoke the revision of the designed solution. This paper presents the methodology and some of the results of an experimental characterisation of composite panels for railway application. The mechanical tests were made for unaged specimens and for specimens that suffered some type of aging, i.e. heat, cold and humidity cycles or freezing/thawing cycles. These conditionings aim to simulate not only the time effect, but also the impact of severe environmental conditions. Both full solutions and separated components/materials were tested. For the full solution, (panel) these were: four-point bending tests, tensile shear strength, tensile strength perpendicular to the plane, determination of the spreading of water, and impact tests. For individual characterisation of the components, more specifically for the covering, the following tests were made: determination of the tensile stress-strain properties, determination of flexibility, determination of tear strength, peel test, tensile shear strength test, adhesion resistance test and dimensional stability. The main conclusions were that experimental characterisation brings a huge contribution to understand the behaviour of the materials both individually and assembled. This knowledge contributes to the increase the quality and improvements of premium solutions. This research work was framed within the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through the COMPETE 2020.

Keywords: durability, experimental characterization, mechanical tests, railway flooring system

Procedia PDF Downloads 155
6986 Self-Healing Coatings and Electrospun Fibers

Authors: M. Grandcolas, N. Rival, H. Bu, S. Jahren, R. Schmid, H. Johnsen

Abstract:

The concept of an autonomic self-healing material, where initiation of repair is integrated to the material, is now being considered for engineering applications and is a hot topic in the literature. Among several concepts/techniques, two are most interesting: i) Capsules: Integration of microcapsules in or at the surface of coatings or fibre-like structures has recently gained much attention. Upon damage-induced cracking, the microcapsules are broken by the propagating crack fronts resulting in a release of an active chemical (healing agent) by capillary action, subsequently repairing and avoiding further crack growth. ii) Self-healing polymers: Interestingly, the introduction of dynamic covalent bonds into polymer networks has also recently been used as a powerful approach towards the design of various intrinsically self-healing polymer systems. The idea behind this is to reconnect the chemical crosslinks which are broken when a material fractures, restoring the integrity of the material and thereby prolonging its lifetime. We propose here to integrate both self-healing concepts (capsules, self-healing polymers) in electrospun fibres and coatings. Different capsule preparation approaches have been investigated in SINTEF. The most advanced method to produce capsules is based on emulsification to create a water-in-oil emulsion before polymerisation. The healing agent is a polyurethane-based dispersion that was encapsulated in shell materials consisting of urea-benzaldehyde resins. Results showed the successful preparation of microcapsules and release of the agent when capsules break. Since capsules are produced in water-in-oil systems we mainly investigated organic solvent based coatings while a major challenge resides in the incorporation of capsules into water-based coatings. We also focused on developing more robust microcapsules to prevent premature rupture of the capsules. The capsules have been characterized in terms of size, and encapsulation and release might be visualized by incorporating fluorescent dyes and examine the capsules by microscopy techniques. Alternatively, electrospinning is an innovative technique that has attracted enormous attention due to unique properties of the produced nano-to-micro fibers, ease of fabrication and functionalization, and versatility in controlling parameters. Especially roll-to-roll electrospinning is a unique method which has been used in industry to produce nanofibers continuously. Electrospun nanofibers can usually reach a diameter down to 100 nm, depending on the polymer used, which is of interest for the concept with self-healing polymer systems. In this work, we proved the feasibility of fabrication of POSS-based (POSS: polyhedral oligomeric silsesquioxanes, tradename FunzioNano™) nanofibers via electrospinning. Two different formulations based on aqueous or organic solvents have shown nanofibres with a diameter between 200 – 450nm with low defects. The addition of FunzioNano™ in the polymer blend also showed enhanced properties in term of wettability, promising for e.g. membrane technology. The self-healing polymer systems developed are here POSS-based materials synthesized to develop dynamic soft brushes.

Keywords: capsules, coatings, electrospinning, fibers

Procedia PDF Downloads 261
6985 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System

Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi

Abstract:

Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.

Keywords: channel estimation, OFDM, pilot-assist, VLC

Procedia PDF Downloads 180
6984 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem

Authors: Brandon Foggo, Nanpeng Yu

Abstract:

Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.

Keywords: distribution network, machine learning, network topology, phase identification, smart grid

Procedia PDF Downloads 299
6983 Fast Transient Workflow for External Automotive Aerodynamic Simulations

Authors: Christina Peristeri, Tobias Berg, Domenico Caridi, Paul Hutcheson, Robert Winstanley

Abstract:

In recent years the demand for rapid innovations in the automotive industry has led to the need for accelerated simulation procedures while retaining a detailed representation of the simulated phenomena. The project’s aim is to create a fast transient workflow for external aerodynamic CFD simulations of road vehicles. The geometry used was the SAE Notchback Closed Cooling DrivAer model, and the simulation results were compared with data from wind tunnel tests. The meshes generated for this study were of two types. One was a mix of polyhedral cells near the surface and hexahedral cells away from the surface. The other was an octree hex mesh with a rapid method of fitting to the surface. Three different grid refinement levels were used for each mesh type, with the biggest total cell count for the octree mesh being close to 1 billion. A series of steady-state solutions were obtained on three different grid levels using a pseudo-transient coupled solver and a k-omega-based RANS turbulence model. A mesh-independent solution was found in all cases with a medium level of refinement with 200 million cells. Stress-Blended Eddy Simulation (SBES) was chosen for the transient simulations, which uses a shielding function to explicitly switch between RANS and LES mode. A converged pseudo-transient steady-state solution was used to initialize the transient SBES run that was set up with the SIMPLEC pressure-velocity coupling scheme to reach the fastest solution (on both CPU & GPU solvers). An important part of this project was the use of FLUENT’s Multi-GPU solver. Tesla A100 GPU has been shown to be 8x faster than an Intel 48-core Sky Lake CPU system, leading to significant simulation speed-up compared to the traditional CPU solver. The current study used 4 Tesla A100 GPUs and 192 CPU cores. The combination of rapid octree meshing and GPU computing shows significant promise in reducing time and hardware costs for industrial strength aerodynamic simulations.

Keywords: CFD, DrivAer, LES, Multi-GPU solver, octree mesh, RANS

Procedia PDF Downloads 116
6982 Patient Service Improvement in Public Emergency Department Using Discrete Event Simulation

Authors: Dana Mohammed, Fatemah Abdullah, Hawraa Ali, Najat Al-Shaer, Rawan Al-Awadhi, , Magdy Helal

Abstract:

We study the patient service performance at the emergency department of a major Kuwaiti public hospital, using discrete simulation and lean concepts. In addition to the common problems in such health care systems (over crowdedness, facilities planning and usage, scheduling and staffing, capacity planning) the emergency department suffered from several cultural and patient behavioural issues. Those contributed significantly to the system problems and constituted major obstacles in maintaining the performance in control. This led to overly long waiting times and the potential of delaying providing help to critical cases. We utilized the visual management tools to mitigate the impact of the patients’ behaviours and attitudes and improve the logistics inside the system. In addition a proposal is made to automate the date collection and communication within the department using RFID-based barcoding system. Discrete event simulation models were developed as decision support systems; to study the operational problems and assess achieved improvements. The simulation analysis resulted in cutting the patient delays to about 35% of their current values by reallocating and rescheduling the medical staff. Combined with the application of the visual management concepts, this provided the basis to improving patient service without any major investments.

Keywords: simulation, visual management, health care system, patient

Procedia PDF Downloads 475
6981 Energy Consumption Statistic of Gas-Solid Fluidized Beds through Computational Fluid Dynamics-Discrete Element Method Simulations

Authors: Lei Bi, Yunpeng Jiao, Chunjiang Liu, Jianhua Chen, Wei Ge

Abstract:

Two energy paths are proposed from thermodynamic viewpoints. Energy consumption means total power input to the specific system, and it can be decomposed into energy retention and energy dissipation. Energy retention is the variation of accumulated mechanical energy in the system, and energy dissipation is the energy converted to heat by irreversible processes. Based on the Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) framework, different energy terms are quantified from the specific flow elements of fluid cells and particles as well as their interactions with the wall. Direct energy consumption statistics are carried out for both cold and hot flow in gas-solid fluidization systems. To clarify the statistic method, it is necessary to identify which system is studied: the particle-fluid system or the particle sub-system. For the cold flow, the total energy consumption of the particle sub-system can predict the onset of bubbling and turbulent fluidization, while the trends of local energy consumption can reflect the dynamic evolution of mesoscale structures. For the hot flow, different heat transfer mechanisms are analyzed, and the original solver is modified to reproduce the experimental results. The influence of the heat transfer mechanisms and heat source on energy consumption is also investigated. The proposed statistic method has proven to be energy-conservative and easy to conduct, and it is hopeful to be applied to other multiphase flow systems.

Keywords: energy consumption statistic, gas-solid fluidization, CFD-DEM, regime transition, heat transfer mechanism

Procedia PDF Downloads 68
6980 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)

Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton

Abstract:

Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.

Keywords: cold-start learning, expectation propagation, multi-armed bandits, Thompson Sampling, variational inference

Procedia PDF Downloads 108
6979 Configuration as a Service in Multi-Tenant Enterprise Resource Planning System

Authors: Mona Misfer Alshardan, Djamal Ziani

Abstract:

Enterprise resource planning (ERP) systems are the organizations tickets to the global market. With the implementation of ERP, organizations can manage and coordinate all functions, processes, resources and data from different departments by a single software. However, many organizations consider the cost of traditional ERP to be expensive and look for alternative affordable solutions within their budget. One of these alternative solutions is providing ERP over a software as a service (SaaS) model. This alternative could be considered as a cost effective solution compared to the traditional ERP system. A key feature of any SaaS system is the multi-tenancy architecture where multiple customers (tenants) share the system software. However, different organizations have different requirements. Thus, the SaaS developers accommodate each tenant’s unique requirements by allowing tenant-level customization or configuration. While customization requires source code changes and in most cases a programming experience, the configuration process allows users to change many features within a predefined scope in an easy and controlled manner. The literature provides many techniques to accomplish the configuration process in different SaaS systems. However, the nature and complexity of SaaS ERP needs more attention to the details regarding the configuration process which is merely described in previous researches. Thus, this research is built on strong knowledge regarding the configuration in SaaS to define specifically the configuration borders in SaaS ERP and to design a configuration service with the consideration of the different configuration aspects. The proposed architecture will ensure the easiness of the configuration process by using wizard technology. Also, the privacy and performance are guaranteed by adopting the databases isolation technique.

Keywords: configuration, software as a service, multi-tenancy, ERP

Procedia PDF Downloads 393
6978 Little Girls and Big Stories: A Thematic Analysis of Gender Representations in Selected Asian Room to Read Storybooks

Authors: Cheeno Marlo Sayuno

Abstract:

Room to Read is an international nonprofit organization aimed at empowering young readers through literature and literacy education. In particular, the organization is focused on girls’ education in schools and bettering their social status through crafting stories and making sure that these stories are accessible to them. In 2019, Room to Read visited the Philippines and partnered with Philippine children’s literature publishers Adarna House, Lampara Books, Anvil Publishing, and OMF-Hiyas with the goal of producing contextualized stories that Filipino children can read. The result is a set of 20 storybooks developed by Filipino writers and illustrators, the author of this paper included. The project led to narratives of experiences in storybook production from conceptualization to publication, towards translations and reimagining in online repository, storytelling, and audiobook formats. During the production process, we were particularly reminded of gender representations, child’s rights, and telling stories that can empower the children in vulnerable communities, who are the beneficiaries of the project. The storybooks, along with many others produced in Asia and the world, are available online through the literacycloud.org website of Room to Read. In this study, the goal is to survey the stories produced in Asia and look at how gender is represented in the storybooks. By analyzing both the texts and the illustrations of the storybooks produced across Asian countries, themes of portrayals of young boys and girls, their characteristics and narratives, and how they are empowered in the stories are identified, with the goal of mapping how Room to Read is able to address the problem of access to literacy among young girls and ensuring them that they can do anything, the way they are portrayed in the stories. The paper hopes to determine how gender is represented in Asian storybooks produced by the international nonprofit organization Room to Read. Thematic textual analysis was used as methodology, where the storybooks are analyzed qualitatively to identify arising themes of gender representation. This study will shed light on the importance of responsible portrayal of gender in storybooks and how it can impact and empower children. The results of the study can also aid writers and illustrators in developing gender-sensitive storybooks.

Keywords: room to read, asian storybooks, young girls, thematic analysis, child empowerment, literacy, education

Procedia PDF Downloads 79
6977 Photovoltaic Performance of AgInSe2-Conjugated Polymer Hybrid Systems

Authors: Dinesh Pathaka, Tomas Wagnera, J. M. Nunzib

Abstract:

We investigated blends of MdPVV.PCBM.AIS for photovoltaic application. AgInSe2 powder was synthesized by sealing and heating the stoichiometric constituents in evacuated quartz tube ampule. Fine grinded AIS powder was dispersed in MD-MOPVV and PCBM with and without surfactant. Different concentrations of these particles were suspended in the polymer solutions and spin casted onto ITO glass. Morphological studies have been performed by atomic force microscopy and optical microscopy. The blend layers were also investigated by various techniques like XRD, UV-VIS optical spectroscopy, AFM, PL, after a series of various optimizations with polymers/concentration/deposition/ suspension/surfactants etc. XRD investigation of blend layers shows clear evidence of AIS dispersion in polymers. Diode behavior and cell parameters also revealed it. Bulk heterojunction hybrid photovoltaic device Ag/MoO3/MdPVV.PCBM.AIS/ZnO/ITO was fabricated and tested with standard solar simulator and device characterization system. The best performance and photovoltaic parameters we obtained was an open-circuit voltage of about Voc 0.54 V and a photocurrent of Isc 117 micro A and an efficiency of 0.2 percent using a white light illumination intensity of 23 mW/cm2. Our results are encouraging for further research on the fourth generation inorganic organic hybrid bulk heterojunction photovoltaics for energy. More optimization with spinning rate/thickness/solvents/deposition rates for active layers etc. need to be explored for improved photovoltaic response of these bulk heterojunction devices.

Keywords: thin films, photovoltaic, hybrid systems, heterojunction

Procedia PDF Downloads 276
6976 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village

Authors: Corinna Barraco, Ornella Salimbene

Abstract:

This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.

Keywords: drinking water, Ethiopia, treatments, water pumping

Procedia PDF Downloads 156
6975 Microwave Dielectric Properties and Microstructures of Nd(Ti₀.₅W₀.₅)O₄ Ceramics for Application in Wireless Gas Sensors

Authors: Yih-Chien Chen, Yue-Xuan Du, Min-Zhe Weng

Abstract:

Carbon monoxide is a substance produced by the incomplete combustion. It is toxic even at concentrations of less than 100ppm. Since it is colorless and odorless, it is difficult to detect. CO sensors have been developed using a variety of physical mechanisms, including semiconductor oxides, solid electrolytes, and organic semiconductors. Many works have focused on using semiconducting sensors composed of sensitive layers such as ZnO, TiO₂, and NiO with high sensitivity for gases. However, these sensors working at high temperatures increased their power consumption. On the other hand, the dielectric resonator (DR) is attractive for gas detection due to its large surface area and sensitivity for external environments. Materials that are to be employed in sensing devices must have a high-quality factor. Numerous researches into the fergusonite-type structure and related ceramic systems have explored. Extensive research into RENbO₄ ceramics has explored their potential application in resonators, filters, and antennas in modern communication systems, which are operated at microwave frequencies. Nd(Ti₀.₅W₀.₅)O₄ ceramics were synthesized herein using the conventional mixed-oxide method. The Nd(Ti₀.₅W₀.₅)O₄ ceramics were prepared using the conventional solid-state method. Dielectric constants (εᵣ) of 15.4-19.4 and quality factor (Q×f) of 3,600-11,100 GHz were obtained at sintering temperatures in the range 1425-1525°C for 4 h. The dielectric properties of the Nd(Ti₀.₅W₀.₅)O₄ ceramics at microwave frequencies were found to vary with the sintering temperature. For a further understanding of these microwave dielectric properties, they were analyzed by densification, X-ray diffraction (XRD), and by making microstructural observations.

Keywords: dielectric constant, dielectric resonators, sensors, quality factor

Procedia PDF Downloads 260
6974 Hand Gesture Interface for PC Control and SMS Notification Using MEMS Sensors

Authors: Keerthana E., Lohithya S., Harshavardhini K. S., Saranya G., Suganthi S.

Abstract:

In an epoch of expanding human-machine interaction, the development of innovative interfaces that bridge the gap between physical gestures and digital control has gained significant momentum. This study introduces a distinct solution that leverages a combination of MEMS (Micro-Electro-Mechanical Systems) sensors, an Arduino Mega microcontroller, and a PC to create a hand gesture interface for PC control and SMS notification. The core of the system is an ADXL335 MEMS accelerometer sensor integrated with an Arduino Mega, which communicates with a PC via a USB cable. The ADXL335 provides real-time acceleration data, which is processed by the Arduino to detect specific hand gestures. These gestures, such as left, right, up, down, or custom patterns, are interpreted by the Arduino, and corresponding actions are triggered. In the context of SMS notifications, when a gesture indicative of a new SMS is recognized, the Arduino relays this information to the PC through the serial connection. The PC application, designed to monitor the Arduino's serial port, displays these SMS notifications in the serial monitor. This study offers an engaging and interactive means of interfacing with a PC by translating hand gestures into meaningful actions, opening up opportunities for intuitive computer control. Furthermore, the integration of SMS notifications adds a practical dimension to the system, notifying users of incoming messages as they interact with their computers. The use of MEMS sensors, Arduino, and serial communication serves as a promising foundation for expanding the capabilities of gesture-based control systems.

Keywords: hand gestures, multiple cables, serial communication, sms notification

Procedia PDF Downloads 69
6973 Managing Uncertainty in Unmanned Aircraft System Safety Performance Requirements Compliance Process

Authors: Achim Washington, Reece Clothier, Jose Silva

Abstract:

System Safety Regulations (SSR) are a central component to the airworthiness certification of Unmanned Aircraft Systems (UAS). There is significant debate on the setting of appropriate SSR for UAS. Putting this debate aside, the challenge lies in how to apply the system safety process to UAS, which lacks the data and operational heritage of conventionally piloted aircraft. The limited knowledge and lack of operational data result in uncertainty in the system safety assessment of UAS. This uncertainty can lead to incorrect compliance findings and the potential certification and operation of UAS that do not meet minimum safety performance requirements. The existing system safety assessment and compliance processes, as used for conventional piloted aviation, do not adequately account for the uncertainty, limiting the suitability of its application to UAS. This paper discusses the challenges of undertaking system safety assessments for UAS and presents current and envisaged research towards addressing these challenges. It aims to highlight the main advantages associated with adopting a risk based framework to the System Safety Performance Requirement (SSPR) compliance process that is capable of taking the uncertainty associated with each of the outputs of the system safety assessment process into consideration. Based on this study, it is made clear that developing a framework tailored to UAS, would allow for a more rational, transparent and systematic approach to decision making. This would reduce the need for conservative assumptions and take the risk posed by each UAS into consideration while determining its state of compliance to the SSR.

Keywords: Part 1309 regulations, risk models, uncertainty, unmanned aircraft systems

Procedia PDF Downloads 187
6972 Development of Multilayer Capillary Copper Wick Structure using Microsecond CO₂ Pulsed Laser

Authors: Talha Khan, Surendhar Kumaran, Rajeev Nair

Abstract:

The development of economical, efficient, and reliable next-generation thermal and water management systems to provide efficient cooling and water management technologies is being pursued application in compact and lightweight spacecraft. The elimination of liquid-vapor phase change-based thermal and water management systems is being done due to issues with the reliability and robustness of this technology. To achieve the motive of implementing the principle of using an innovative evaporator and condenser design utilizing bimodal wicks manufactured using a microsecond pulsed CO₂ laser has been proposed in this study. Cylin drical, multilayered capillary copper wicks with a substrate diameter of 39 mm are additively manufactured using a pulsed laser. The copper particles used for layer-by-layer addition on the substrate measure in a diameter range of 225 to 450 micrometers. The primary objective is to develop a novel, high-quality, fast turnaround, laser-based additive manufacturing process that will eliminate the current technical challenges involved with the traditional manufacturing processes for nano/micro-sized powders, like particle agglomeration. Raster-scanned, pulsed-laser sintering process has been developed to manufacture 3D wicks with controlled porosity and permeability.

Keywords: liquid-vapor phase change, bimodal wicks, multilayered, capillary, raster-scanned, porosity, permeability

Procedia PDF Downloads 191
6971 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
6970 Assessment of Conventional Drinking Water Treatment Plants as Removal Systems of Virulent Microsporidia

Authors: M. A. Gad, A. Z. Al-Herrawy

Abstract:

Microsporidia comprises various pathogenic species can infect humans by means of water. Moreover, chlorine disinfection of drinking-water has limitations against this protozoan pathogen. A total of 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow sand filter and rapid sand filter) during one year period. Samples were collected from inlet and outlet of each plant. Samples were separately filtrated through nitrocellulose membrane (142 mm, 0.45 µm), then eluted and centrifuged. The obtained pellet from each sample was subjected to DNA extraction, then, amplification using genus-specific primer for microsporidia. Each microsporidia-PCR positive sample was performed by two species specific primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis. The results of the present study showed that the percentage of removal for microsporidia through different treatment processes reached its highest rate in the station using slow sand filters (100%), while the removal by rapid sand filter system was 81.8%. Statistically, the two different drinking water treatment plants (slow and rapid) had significant effect for removal of microsporidia. Molecular identification of microsporidia-PCR positive samples using two different primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis showed the presence of the two pervious species in the inlet water of the two stations, while Encephalitozoon intestinalis was detected in the outlet water only. In conclusion, the appearance of virulent microsporidia in treated drinking water may cause potential health threat.

Keywords: removal, efficacy, microsporidia, drinking water treatment plants, PCR

Procedia PDF Downloads 211
6969 Business and Psychological Principles Integrated into Automated Capital Investment Systems through Mathematical Algorithms

Authors: Cristian Pauna

Abstract:

With few steps away from the 2020, investments in financial markets is a common activity nowadays. In the electronic trading environment, the automated investment software has become a major part in the business intelligence system of any modern financial company. The investment decisions are assisted and/or made automatically by computers using mathematical algorithms today. The complexity of these algorithms requires computer assistance in the investment process. This paper will present several investment strategies that can be automated with algorithmic trading for Deutscher Aktienindex DAX30. It was found that, based on several price action mathematical models used for high-frequency trading some investment strategies can be optimized and improved for automated investments with good results. This paper will present the way to automate these investment decisions. Automated signals will be built using all of these strategies. Three major types of investment strategies were found in this study. The types are separated by the target length and by the exit strategy used. The exit decisions will be also automated and the paper will present the specificity for each investment type. A comparative study will be also included in this paper in order to reveal the differences between strategies. Based on these results, the profit and the capital exposure will be compared and analyzed in order to qualify the investment methodologies presented and to compare them with any other investment system. As conclusion, some major investment strategies will be revealed and compared in order to be considered for inclusion in any automated investment system.

Keywords: Algorithmic trading, automated investment systems, limit conditions, trading principles, trading strategies

Procedia PDF Downloads 194
6968 Advancements in Dielectric Materials: A Comprehensive Study on Properties, Synthesis, and Applications

Authors: M. Mesrar, T. Lamcharfi, Nor-S. Echatoui, F. Abdi

Abstract:

The solid-state reaction method was used to synthesize ferroelectric systems with lead-free properties, specifically (1-x-y)(Na₀.₅Bi₀.₅)TiO₃-xBaTiO₃-y(K₀.₅ Bi₀.₅)TiO₃. To achieve a pure perovskite phase, the optimal calcination temperature was determined to be 1000°C for 4 hours. X-ray diffraction (XRD) analysis identified the presence of the morphotropic phase boundary (MPB) in the (1-x-y)NBT xBT-yKBT ceramics for specific molar compositions, namely (0.95NBT-0.05BT, 0.84NBT-0.16KBT, and 0.79NBT-0.05BT-0.16KBT). To enhance densification, the sintering temperature was set at 1100°C for 4 hours. Scanning electron microscopy (SEM) images exhibited homogeneous distribution and dense packing of the grains in the ceramics, indicating a uniform microstructure. These materials exhibited favorable characteristics, including high dielectric permittivity, low dielectric loss, and diffused phase transition behavior. The ceramics composed of 0.79NBT-0.05BT-0.16KBT exhibited the highest piezoelectric constant (d33=148 pC/N) and electromechanical coupling factor (kp = 0.292) among all compositions studied. This enhancement in piezoelectric properties can be attributed to the presence of the morphotropic phase boundary (MPB) in the material. This study presents a comprehensive approach to improving the performance of lead-free ferroelectric systems of composition 0.79(Na₀.₅Bi₀.₅)Ti O₃-0.05BaTiO₃-0.16(K₀.₅Bi₀.₅)TiO₃.

Keywords: solid-state method, (1-x-y)NBT-xBT-yKBT, morphotropic phase boundary, Raman spectroscopy, dielectric properties

Procedia PDF Downloads 52
6967 An Evaluation of Renewable Energy Sources in Green Building Systems for the Residential Sector in the Metropolis, Kolkata, India

Authors: Tirthankar Chakraborty, Indranil Mukherjee

Abstract:

The environmental aspect had a major effect on industrial decisions after the deteriorating condition of our surroundings dsince the industrial activities became apparent. Green buildings have been seen as a possible solution to reduce the carbon emissions from construction projects and the housing industry in general. Though this has been established in several areas, with many commercial buildings being designed green, the scope for expansion is still significant and further information on the importance and advantages of green buildings is necessary. Several commercial green building projects have come up and the green buildings are mainly implemented in the residential sector when the residential projects are constructed to furnish amenities to a large population. But, residential buildings, even those of medium sizes, can be designed to incorporate elements of sustainable design. In this context, this paper attempts to give a theoretical appraisal of the use of renewable energy systems in residential buildings of different sizes considering the weather conditions (solar insolation and wind speed) of the metropolis, Kolkata, India. Three cases are taken; one with solar power, one with wind power and one with a combination of the two. All the cases are considered in conjunction with conventional energy, and the efficiency of each in fulfilling the total energy demand is verified. The optimum combination for reducing the carbon footprint of the residential building is thus established. In addition, an assessment of the amount of money saved due to green buildings in metered water supply and price of coal is also mentioned.

Keywords: renewable energy, green buildings, solar power, wind power, energy hybridization, residential sector

Procedia PDF Downloads 390
6966 The Implementation of an E-Government System in Developing Countries: A Case of Taita Taveta County, Kenya

Authors: Tabitha Mberi, Tirus Wanyoike, Joseph Sevilla

Abstract:

The use of Information and Communication Technology (ICT) in Government is gradually becoming a major requirement to transform delivery of services to its stakeholders by improving quality of service and efficiency. In Kenya, the devolvement of government from local authorities to county governments has resulted in many counties adopting online revenue collection systems which can be easily accessed by its stakeholders. Strathmore Research and Consortium Centre (SRCC) implemented a revenue collection system in Taita Taveta, a County in coastal Kenya. It consisted of two systems that are integrated; an online system dubbed “CountyPro” for processing county services such as Business Permit applications, General Billing, Property Rates Payments and any other revenue streams from the county. The second part was a Point of Sale(PoS) system used by the county revenue collectors to charge for market fees and vehicle parking fees. This study assesses the success and challenges in adoption of the integrated system. Qualitative and quantitative data collection methods were used to collect data on the adoption of the system with the researcher using focus groups, interviews, and questionnaires to collect data from various users of the system An analysis was carried out and revealed that 87% of the county revenue officers who are situated in county offices describe the system as efficient and has made their work easier in terms of processing of transactions for customers.

Keywords: e-government, counties, information technology, online system, point of sale

Procedia PDF Downloads 247
6965 Cognitive Radio in Aeronautic: Comparison of Some Spectrum Sensing Technics

Authors: Abdelkhalek Bouchikhi, Elyes Benmokhtar, Sebastien Saletzki

Abstract:

The aeronautical field is experiencing issues with RF spectrum congestion due to the constant increase in the number of flights, aircrafts and telecom systems on board. In addition, these systems are bulky in size, weight and energy consumption. The cognitive radio helps particularly solving the spectrum congestion issue by its capacity to detect idle frequency channels then, allowing an opportunistic exploitation of the RF spectrum. The present work aims to propose a new use case for aeronautical spectrum sharing and to study the performances of three different detection techniques: energy detector, matched filter and cyclostationary detector within the aeronautical use case. The spectrum in the proposed cognitive radio is allocated dynamically where each cognitive radio follows a cognitive cycle. The spectrum sensing is a crucial step. The goal of the sensing is gathering data about the surrounding environment. Cognitive radio can use different sensors: antennas, cameras, accelerometer, thermometer, etc. In IEEE 802.22 standard, for example, a primary user (PU) has always the priority to communicate. When a frequency channel witch used by the primary user is idle, the secondary user (SU) is allowed to transmit in this channel. The Distance Measuring Equipment (DME) is composed of a UHF transmitter/receiver (interrogator) in the aircraft and a UHF receiver/transmitter on the ground. While the future cognitive radio will be used jointly to alleviate the spectrum congestion issue in the aeronautical field. LDACS, for example, is a good candidate; it provides two isolated data-links: ground-to-air and air-to-ground data-links. The first contribution of the present work is a strategy allowing sharing the L-band. The adopted spectrum sharing strategy is as follow: the DME will play the role of PU which is the licensed user and the LDACS1 systems will be the SUs. The SUs could use the L-band channels opportunely as long as they do not causing harmful interference signals which affect the QoS of the DME system. Although the spectrum sensing is a key step, it helps detecting holes by determining whether the primary signal is present or not in a given frequency channel. A missing detection on primary user presence creates interference between PU and SU and will affect seriously the QoS of the legacy radio. In this study, first brief definitions, concepts and the state of the art of cognitive radio will be presented. Then, a study of three communication channel detection algorithms in a cognitive radio context is carried out. The study is made from the point of view of functions, material requirements and signal detection capability in the aeronautical field. Then, we presented a modeling of the detection problem by three different methods (energy, adapted filter, and cyclostationary) as well as an algorithmic description of these detectors is done. Then, we study and compare the performance of the algorithms. Simulations were carried out using MATLAB software. We analyzed the results based on ROCs curves for SNR between -10dB and 20dB. The three detectors have been tested with a synthetics and real world signals.

Keywords: aeronautic, communication, navigation, surveillance systems, cognitive radio, spectrum sensing, software defined radio

Procedia PDF Downloads 175
6964 Spinoza, Law and Gender Equality in Politics

Authors: Debora Caetano Dahas

Abstract:

In ‘Ethics’ and in ‘A Political Treatise’ Spinoza presents his very influential take on natural law and the principles that guide his philosophical work and observations. Spinoza’s ideas about rationalization, God, and ethical behavior are undeniably relevant to many debates in the field of legal theory. In addition, it is important to note that Spinoza's takes on body, mind, and imagination played an important role in building a certain way of understanding the female figure in western societies and of their differences in regards to the male figure. It is important to emphasize that the constant and insistent presentation of women as inferior and irrational beings corroborates the institutionalization of discriminatory public policies and practices legitimized by the legal system that cooperates with the aggravation of gender inequalities. Therefore, his arguments in relation to women and their nature have been highly criticized, especially by feminist theorists during the second half of the 21st century. The questioning of this traditional philosophy –often phallocentric– and its way of describing women as irrational and less capable than men, as well as the attempt to reformulate postulates and concepts, takes place in such a way as to create a deconstruction of classical concepts. Some of the arguments developed by Spinoza, however, can serve as a basis for elucidating in what way and to what extent the social and political construction of the feminine identity served as a basis for gender inequality. Thus, based on to the observations elaborated by Moira Gantes, the present research addresses the relationship between Spinoza and the feminist demands in the juridical and political spheres, elaborating arguments that corroborate the convergence between his philosophy and feminist critical theory. Finally, this research aims to discuss how the feminists' critics of Spinoza’s writings have deconstructed and rehabilitated his principles and, in doing so, can further help to illustrate the importance of his philosophy –and, consequently, of his notes on Natural Law– in understanding gender equality as a vital part of the effective implementation of democratic debate and inclusive political participation and representation. In doing so, philosophical and legal arguments based on the feminist re-reading of Spinoza’s principles are presented and then used to explain the controversial political reform in Brazil, especially in regards to the applicability of the legislative act known as Law n. 9.504/1997 which establishes that at least 30% of legislative seats must be occupied by women.

Keywords: natural law, feminism, politics, gender equality

Procedia PDF Downloads 180