Search results for: dual phase 590 steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6757

Search results for: dual phase 590 steel

3337 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation

Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen

Abstract:

Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.

Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration

Procedia PDF Downloads 143
3336 Density functional (DFT), Study of the Structural and Phase Transition of ThC and ThN: LDA vs GGA Computational

Authors: Hamza Rekab Djabri, Salah Daoud

Abstract:

The present paper deals with the computational of structural and electronic properties of ThC and ThN compounds using density functional theory within generalized-gradient (GGA) apraximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4) , HCP (A3) βSn (A5) structures . The equilibrium lattice parameter, bulk modulus, and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results.

Keywords: DFT, GGA, LDA, properties structurales, ThC, ThN

Procedia PDF Downloads 104
3335 Evaluation of Different Waste Management Planning Strategies in an Industrial City

Authors: Leila H. Khiabani, Mohammadreza Vafaee, Farshad Hashemzadeh

Abstract:

Industrial waste management regulates different stages of production, storage, transfer, recycling and waste disposal. There are several common practices for industrial waste management. However, due to various local health, economic, social, environmental and aesthetic considerations, the most optimal principles and measures often vary at each specific industrial zone. In addition, waste management strategies are heavily impacted by local administrative, legal, and financial regulations. In this study, a hybrid qualitative and quantitative research methodology has been designed for waste management planning in an industrial city. Firstly, following a qualitative research methodology, the most relevant waste management strategies for the specific industrial city were identified through interviews with environmental planning and waste management experts. Forty experts participated in this study. Alborz industrial city in Iran, which hosts more than one thousand industrial units in nine hundred acres, was chosen as the sample industrial city in this study. The findings from the expert interviews at the first phase were then used to design a quantitative questionnaire for the second phase of the study. The aim of the questionnaire was to quantify the relative impact of different waste management strategies in the sample industrial city. Eight waste management strategies and three implementation policies were included in the questionnaire. The experts were asked to rank the relative effectiveness of each strategy for environmental planning of the sample industrial city. They were also asked to rank the relative effectiveness of each planning policy on each of the waste management strategies. In the end, the weighted average of all the responses was calculated to identify the most effective waste management strategy and planning policies for the sample industrial city. The results suggested that among the eight suggested waste management strategies, industrial composting is the most effective (31%) strategy based on the collective evaluation of the local expert. Additionally, the results suggested that the most effective policy (58%) in the city’s environmental planning is to reduce waste generation by prolonging the effective life of industrial products using higher quality and recyclable materials. These findings can provide useful expert guidelines for prioritization between different waste management strategies in the city’s overall environmental planning roadmap. The findings may also be applicable to similar industrial cities. In addition, a similar methodology can be utilized in the environmental planning of other industrial cities.

Keywords: environmental planning, industrial city, quantitative research, waste management

Procedia PDF Downloads 137
3334 Optimal Placement of the Unified Power Controller to Improve the Power System Restoration

Authors: Mohammad Reza Esmaili

Abstract:

One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used.

Keywords: UPFC, SPA, water cycle algorithm, multi-objective problem, pareto

Procedia PDF Downloads 72
3333 Analysis and Performance of European Geostationary Navigation Overlay Service System in North of Algeria for GPS Single Point Positioning

Authors: Tabti Lahouaria, Kahlouche Salem, Benadda Belkacem, Beldjilali Bilal

Abstract:

The European Geostationary Navigation Overlay Service (EGNOS) provides an augmentation signal to GPS (Global Positioning System) single point positioning. Presently EGNOS provides data correction and integrity information using the GPS L1 (1575.42 MHz) frequency band. The main objective of this system is to provide a better real-time positioning precision than using GPS only. They are expected to be used with single-frequency code observations. EGNOS offers navigation performance for an open service (OS), in terms of precision and availability this performance gradually degrades as moving away from the service area. For accurate system performance, the service will become less and less available as the user moves away from the EGNOS service. The improvement in position solution is investigated using the two collocated dual frequency GPS, where no EGNOS Ranging and Integrity Monitoring Station (RIMS) exists. One of the pseudo-range was kept as GPS stand-alone and the other was corrected by EGNOS to estimate the planimetric and altimetric precision for different dates. It is found that precision in position improved significantly in the second due to EGNOS correction. The performance of EGNOS system in the north of Algeria is also investigated in terms of integrity. The results show that the horizontal protection level (HPL) value is below 18.25 meters (95%) and the vertical protection level (VPL) is below 42.22 meters (95 %). These results represent good integrity information transmitted by EGNOS for APV I service. This service is thus compliant with the aviation requirements for Approaches with Vertical Guidance (APV-I), which is characterised by 40 m HAL (horizontal alarm limit) and 50 m VAL (vertical alarm limit).

Keywords: EGNOS, GPS, positioning, integrity, protection level

Procedia PDF Downloads 227
3332 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education

Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim

Abstract:

The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.

Keywords: corona discharge, Tesla coil, high voltage application, high voltage education

Procedia PDF Downloads 332
3331 Development of High Strength Filler Consumables by Means of Calculations and Microstructural Characterization

Authors: S. Holly, R. Schnitzer, P. Haslberger, D. Zügner

Abstract:

The development of new filler consumables necessitates a high effort regarding samples and experiments to achieve the required mechanical properties and chemistry. In the scope of the development of a metal-cored wire with the target tensile strength of 1150 MPa and acceptable impact toughness, thermodynamic and kinetic calculations via MatCalc were used to reduce the experimental work and the resources required. Micro alloying elements were used to reach the high strength as an alternative approach compared to the conventional solid solution hardening. In order to understand the influence of different micro alloying elements in more detail, the influence of different elements on the precipitation behavior in the weld metal was evaluated. Investigations of the microstructure were made via atom probe and EBSD to understand the effect of micro alloying elements. The calculated results are in accordance with the results obtained by experiments and can be explained by the microstructural investigations. On the example of aluminium, the approach is exemplified and clarifies the efficient way of development.

Keywords: alloy development, high strength steel, MatCalc, metal-cored wire

Procedia PDF Downloads 238
3330 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 365
3329 Rare Earth Doped Alkali Halide Crystals for Thermoluminescence Dosimetry Application

Authors: Pooja Seth, Shruti Aggarwal

Abstract:

The Europium (Eu) doped (0.02-0.1 wt %) lithium fluoride (LiF) crystal in the form of multicrystalline sheet was gown by the edge defined film fed growth (EFG) technique. Crystals were grown in argon gas atmosphere using graphite crucible and stainless steel die. The systematic incorporation of Eu inside the host LiF lattice was confirmed by X-ray diffractometry. Thermoluminescence (TL) glow curve was recorded on annealed (AN) crystals after irradiation with a gamma dose of 15 Gy. The effect of different concentration of Eu in enhancing the thermoluminescence (TL) intensity of LiF was studied. The normalized peak height of the Eu-doped LiF crystal was nearly 12 times that of the LiF crystals. The optimized concentration of Eu in LiF was found to be 0.05wt% at which maximum TL intensity was observed with main TL peak positioned at 185 °C. At higher concentration TL intensity decreases due to the formation of precipitates in the form of clusters or aggregates. The nature of the energy traps in Eu doped LiF was analysed through glow curve deconvolution. The trap depth was found to be in the range of 0.2 – 0.5 eV. These results showed that doping with Eu enhances the TL intensity by creating more defect sites for capturing of electron and holes during irradiation which might be useful for dosimetry application.

Keywords: thermoluminescence, defects, gamma radiation, crystals

Procedia PDF Downloads 333
3328 Feasibility of Two Positive-Energy Schools in a Hot-Humid Tropical Climate: A Methodological Approach

Authors: Shashwat, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg

Abstract:

Achieving zero-energy targets in existing buildings is known to be a difficult task, hence targets are addressed at new buildings almost exclusively. Although these ultra-efficient case-studies remain essential to develop future technologies and drive the concepts of Zero-energy, the immediate need to cut the consumption of the existing building stock remains unaddressed. This work aims to present a reliable and straightforward methodology for assessing the potential of energy-efficient upgrading in existing buildings. Public Singaporean school buildings, characterized by low energy use intensity and large roof areas, were identified as potential objects for conversion to highly-efficient buildings with a positive energy balance. A first study phase included the development of a detailed energy model for two case studies (a primary and a secondary school), based on the architectural drawings provided, site-visits and calibrated using measured end-use power consumption of different spaces. The energy model was used to demonstrate compliances or predict energy consumption of proposed changes in the two buildings. As complete energy monitoring is difficult and substantially time-consuming, short-term energy data was collected in the schools by taking spot measurements of power, voltage, and current for all the blocks of school. The figures revealed that the bulk of the consumption is attributed in decreasing order of magnitude to air-conditioning, plug loads, and lighting. In a second study-phase, a number of energy-efficient technologies and strategies were evaluated through energy-modeling to identify the alternatives giving the highest energy saving potential, achieving a reduction in energy use intensity down to 19.71 kWh/m²/y and 28.46 kWh/m²/y for the primary and the secondary schools respectively. This exercise of field evaluation and computer simulation of energy saving potential aims at a preliminary assessment of the positive-energy feasibility enabling future implementation of the technologies on the buildings studied, in anticipation of a broader and more widespread adoption in Singaporean schools.

Keywords: energy simulation, school building, tropical climate, zero energy buildings, positive energy

Procedia PDF Downloads 152
3327 Graphene Based Materials as Novel Membranes for Water Desalination and Boron Separation

Authors: Francesca Risplendi, Li-Chiang Lin, Jeffrey C. Grossman, Giancarlo Cicero

Abstract:

Desalination is one of the most employed approaches to supply water in the context of a rapidly growing global water shortage. However, the most popular water filtration method available is the reverse osmosis (RO) technique, still suffers from important drawbacks, such as a large energy demands and high process costs. In addition some serious limitations have been recently discovered, among them, the boron problem seems to have a critical meaning. Boron has been found to have a dual effect on the living systems on Earth and the difference between boron deficiency and boron toxicity levels is quite small. The aim of this project is to develop a new generation of RO membranes based on porous graphene or reduced graphene oxide (rGO) able to remove salts from seawater and to reduce boron concentrations in the permeate to the level that meets the drinking or process water requirements, by means of a theoretical approach based on density functional theory and classical molecular dynamics. Computer simulations have been employed to investigate the relationship between the atomic structure of nanoporous graphene or rGO monolayer and its membrane properties in RO applications (i.e. water permeability and resilience at RO pressures). In addition, an emphasis has been given to multilayer nanoporous rGO and rGO flakes based membranes. By means of non-equilibrium MD simulations, we investigated the water transport mechanism permeating through such multilayer membrane focusing on the effect of slit widths and sheet geometries. These simulations allowed us to establish the implications of these graphene based materials as promising membrane properties for desalination plants and as boron filtration.

Keywords: boron filtration, desalination, graphene membrane, reduced graphene oxide membrane

Procedia PDF Downloads 303
3326 Welcome to 'Almanya': Effects of Displacement among Refugee Women

Authors: Carmen Nechita

Abstract:

This research explores the world of Syrian refugee women living in Dresden and their efforts to reconstruct their lives in the state of Saxony in Germany. The focus is on the initial period of adjustment and understanding how refugee women use culture, family ties, and tradition to contest and rebuild new relationships with the host country. Faced with a new status as “the refugee”, women have to re-imagine their ethno-cultural identity in order to cope with life in Diaspora. In order to understand the coping mechanism and the displacement effects on Syrian women, interviews with twelve refugee women were conducted. Traumatic experiences of loss and oppression are at the core of their confessions. While gender violence, abuse and patriarchal framework shape their narratives, this research argues that there is a need to look at this from a cultural perspective and try to distance ourselves from the western paradigm. The way Syrian women refute and rebuild their national and ethno-cultural identity in order to negotiate for themselves new space within German borders is explored. Two discourses are bridged: one of multiculturalism and one of tradition in order to explain how Syrian women experience western notions of family, womanhood and spousal dynamics. The process is painful, traumatic and marked by feelings of low self-worth, but in the end, new codes emerge and these women come out more empowered. The paper includes the migration experience and explores the ways in which Syrian refugee women tend to tell their complex stories, and how they reconstruct their identity in a new territory while faced with a different culture that discriminates against them. During the research, four distinct phases in the acculturation period were identified: “the survival”, “the honeymoon period”, “the isolation period” and “the anger period”. Each phase is analyzed in order to understand what triggers them, how women migrate from one phase to another and what can be done to make the process easier. This paper contributes to the field of refugee studies by offering a thorough understanding of the initial phases of the acculturation process in the case of Syrian refugee women. The study examines the fleeing and settlement experience in order to understand the complex ways that refugee women cope with the traumatic experience of settlement in another country and in a different culture. *Almanya: The Arabic word for Germany.

Keywords: displacement, migration, refugee women, Syria

Procedia PDF Downloads 260
3325 Enhancing Reused Lubricating Oil Performance Using Novel Ionic Liquids Based on Imidazolium Derivatives

Authors: Mohamed Deyab

Abstract:

The global lubricant additives market size was USD 14.35 billion in 2015. The industry is characterized by increasing additive usage in base oil blending for longer service life and performance. These additives improve the viscosity of oil, act as detergents, defoamers, antioxidants, and antiwear agents. Since additives play a significant role in base oil blending and subsequent formulations as they are critical materials in improving specification and performance of oils. Herein, we report on the synthesis and characterization of three imidazolium derivatives and their application as antioxidants, detergents and antiwear agents. The molecular structure and characterizations of these ionic liquids were confirmed by elemental analysis, FTIR, X-Ray Diffraction (XRD) and 1HNMR spectroscopy. Thermo gravimetric analysis (TGA), is used to study the degradation and thermal stability of the studied base stock samples. It was found that all the prepared ionic liquids additives have excellent power of dispersion and detergency. The ionic liquids as additives to engine oil reduced the friction (38%) and wear volume (76%) of steel balls. The obtained results show that the ionic liquids have an oxidation inhibitor up to 95%.

Keywords: reused lubricating oil, waste, petroleum, ionic liquids

Procedia PDF Downloads 142
3324 Meta-Magnetic Properties of LaFe₁₂B₆ Type Compounds

Authors: Baptiste Vallet-Simond, Léopold V. B. Diop, Olivier Isnard

Abstract:

The antiferromagnetic itinerant-electron compound LaFe₁₂B₆ occupies a special place among rare-earth iron-rich intermetallic; it presents exotic magnetic and physical properties. The unusual amplitude-modulated spin configuration defined by a propagation vector k = (¼, ¼, ¼), remarkably weak Fe magnetic moment (0.43 μB) in the antiferromagnetic ground state, especially low magnetic ordering temperature TN = 36 K for an Fe-rich phase, a multicritical point in the complex magnetic phase diagram, both normal and inverse magnetocaloric effects, and huge hydrostatic pressure effects can be highlighted as the most relevant. Both antiferromagnetic (AFM) and paramagnetic (PM) states can be transformed into the ferromagnetic (FM) state via a field-induced first-order metamagnetic transition. Of particular interest is the low-temperature magnetization process. This process is discontinuous and evolves unexpected huge metamagnetic transitions consisting of a succession of steep magnetization jumps separated by plateaus, giving rise to an unusual avalanche-like behavior. The metamagnetic transition is accompanied by giant magnetoresistance and large magnetostriction. In the present work, we report on the intrinsic magnetic properties of the La₁₋ₓPrₓFe₁₂B₆ series of compounds exhibiting sharp metamagnetic transitions. The study of the structural, magnetic, magneto-transport, and magnetostrictive properties of the La₁₋ₓPrₓFe₁₂B₆ system was performed by combining a wide variety of measurement techniques. Magnetic measurements were performed up to µ0H = 10 T. It was found that the proportion of Pr had a strong influence on the magnetic properties of this series of compounds. At x=0.05, the ground state at 2K is that of an antiferromagnet, but the critical transition field Hc has been lowered from Hc = 6T at x = 0 to Hc = 2.5 Tat x=0.05. And starting from x=0.10, the ground state of this series of compounds is a coexistence of AFM and FM parts. At x=0.30, the AFM order has completely vanished, and only the FM part is left. However, we still observe meta-magnetic transitions at higher temperatures (above 100 K for x=0.30) from the paramagnetic (P) state to a forced FM state. And, of course, such transitions are accompanied by strong magneto-caloric, magnetostrictive, and magnetoresistance effects. The Curie temperatures for the probed compositions going from x=0.05 to x=0.30 were spread over the temperature range of 40 K up to 100 K.

Keywords: metamagnetism, RMB intermetallic, magneto-transport effect, metamagnetic transitions

Procedia PDF Downloads 74
3323 Enhanced Dielectric Properties of La Substituted CoFe2O4 Magnetic Nanoparticles

Authors: M. Vadivel, R. Ramesh Babu

Abstract:

Spinel ferrite magnetic nanomaterials have received a great deal of attention in recent years due to their wide range of potential applications in various fields such as magnetic data storage and microwave device applications. Among the family of spinel ferrites, cobalt ferrite (CoFe2O4) has been widely used in the field of high-frequency applications because of its remarkable material qualities such as moderate saturation magnetization, high coercivity, large permeability at higher frequency and high electrical resistivity. For aforementioned applications, the materials should have an improved electrical property, especially enhancement in the dielectric properties. It is well known that the substitution of rare earth metal cations in Fe3+ site of CoFe2O4 nanoparticles leads to structural distortion and thus significantly influences the structural and morphological properties whereas greatly modifies the electrical and magnetic properties of a material. In the present investigation, we report on the influence of lanthanum (La3+) ion substitution on the structural, morphological, dielectric and magnetic properties of CoFe2O4 magnetic nanoparticles prepared by co-precipitation method. Powder X-ray diffraction patterns reveal the formation of inverse cubic spinel structure with the signature of LaFeO3 phase at higher La3+ ion concentrations. Raman and Fourier transform infrared spectral analysis also confirms the formation of inverse cubic spinel structure and Fe-O symmetrical stretching vibrations of CoFe2O4 nanoparticles, respectively. Transmission electron microscopy study reveals that the size of the particles gradually increases with increasing La3+ ion concentrations whereas the agglomeration gets slightly reduced for La3+ ion substituted CoFe2O4 nanoparticles than that of undoped CoFe2O4 nanoparticles. Dielectric properties such as dielectric constant and dielectric loss were recorded as a function of frequency and temperature which reveals that the dielectric constant gradually increases with increasing temperatures as well as La3+ ion concentrations. The increased dielectric constant might be the reason that the formation of LaFeO3 secondary phase at higher La3+ ion concentrations. Magnetic measurement demonstrates that the saturation magnetization gradually decreases from 61.45 to 25.13 emu/g with increasing La3+ ion concentrations which is due to the nonmagnetic nature of La3+ ions substitution.

Keywords: cobalt ferrite, co-precipitation, dielectric properties, saturation magnetization

Procedia PDF Downloads 320
3322 Sharp Estimates of Oscillatory Singular Integrals with Rough Kernels

Authors: H. Al-Qassem, L. Cheng, Y. Pan

Abstract:

In this paper, we establish sharp bounds for oscillatory singular integrals with an arbitrary real polynomial phase P. Our kernels are allowed to be rough both on the unit sphere and in the radial direction. We show that the bounds grow no faster than log (deg(P)), which is optimal and was first obtained by Parissis and Papadimitrakis for kernels without any radial roughness. Our results substantially improve many previously known results. Among key ingredients of our methods are an L¹→L² sharp estimate and using extrapolation.

Keywords: oscillatory singular integral, rough kernel, singular integral, orlicz spaces, block spaces, extrapolation, L^{p} boundedness

Procedia PDF Downloads 461
3321 Prevalence of the Double Burden of Malnutrition in Women of Childbearing Age in Morocco: Coexistence of Iron Deficiency Anemia and Overweight

Authors: Fall Abdourahmane, Lazrak Meryem, El Hsaini Houda, El Ammari Laila, Gamih Hasnae, Yahyane Abdelhakim, Benjouad Abdelaziz, Aguenaou Hassan, El Kari Khalid

Abstract:

Introduction: The double burden of malnutrition (DBM), characterized by the coexistence of undernutrition and overnutrition, is a significant health challenge, particularly in low- and middle-income countries. In Morocco, 61.3% of women of reproductive age (WRA) are overweight or obese, including 30.4% who were obese, while 34.4% were anaemic, and 49.7% have iron deficiency anaemia. Objective: This study aims to determine the prevalence of DBM at the individual level among Moroccan WRA, defined by the coexistence of iron deficiency anaemia and overweight/obesity. Methods: a cross-sectional national survey was conducted among a representative sample of 2090 Moroccan WRA. Data collected included socio-economic parameters, anthropometric measurements, and blood samples. Haemoglobin levels were measured photometrically using Hemocue, while ferritin and CRP were assessed through immunoturbudimetry. Results: The prevalence of overweight/obesity, iron deficiency, anaemia and iron deficiency anaemia among WRA in Morocco were 60.2%, 30.6%, 34.4% and 50.0% respectively. The coexistence of overweight/obesity with anaemia and iron deficiency was observed in 19.2% and 16.3% of women, respectively. Among overweight/obese women, 32.5% were anaemic, 28.4% were iron deficient, and 47.6% had iron deficiency anaemia. the prevalence of DBM was higher in urban areas compared to rural settings. Conclusion: The coexistence of undernutrition and overnutrition among WRA highlights the urgent need for integrated public health interventions addressing both anaemia and obesity simultaneously. Tailored strategies should consider the specific socio-economic and geographical contexts to effectively combat this dual burden.

Keywords: the double burden of malnutrition, iron deficiency anaemia, overweight, obesity

Procedia PDF Downloads 43
3320 The Effect of Geographical Differentials of Epidemiological Transition on Health-Seeking Behavior in India

Authors: Sumit Kumar Das, Laishram Ladusingh

Abstract:

Aim: The aim of the study is to examine the differential of epidemiological transition across fifteen agro-climatic zones of India and its effect on health-seeking behavior. Data and Methods: Unit level data on consumption expenditure on health of India from three decadal rounds conducted by National Sample Survey Organization are used for the analysis. These three rounds are 52nd (1995-96), 60th (2004-05) and 71st (2014-15). The age-adjusted prevalence rate for communicable diseases and non-communicable diseases are estimated for fifteen agro-climatic zones of India for three time periods. Bivariate analysis is used to find out determinants of health-seeking behavior. Multilevel logistic regression is used to examine factors effecting on household health-seeking behavior. Result: The prevalence of communicable diseases is increasing in most of the zones of India. Every South Indian zones, Gujarat plains, and lower Gangetic plain are facing the severe attack of dual burden of diseases. Demand for medical advice has increased in southern zones, and east zones, reliance on private healthcare facilities are increasing in most of the zone. Demographic characteristics of the household head have a significant impact on health-seeking behavior. Conclusion: Proper program implementation is required considering the disease prevalence and differential in the pattern of health seeking behavior. Along with initiation and strengthening of programs for non-communicable, existing programs for communicable diseases need to monitor and supervised strictly.

Keywords: agro-climatic zone, epidemiological transition, health-seeking behavior, multilevel regression

Procedia PDF Downloads 185
3319 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces

Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava

Abstract:

Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.

Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection

Procedia PDF Downloads 232
3318 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, reinforced concrete slab, smeared reinforcements

Procedia PDF Downloads 207
3317 Strength Properties of Cement Mortar with Dark Glass Waste Powder as a Partial Sand Replacement

Authors: Ng Wei Yan, Lim Jee Hock, Lee Foo Wei, Mo Kim Hung, Yip Chun Chieh

Abstract:

The burgeoning accumulation of glass waste in Malaysia, particularly from the food and beverage industry, has become a prominent environmental concern, with disposal sites reaching saturation. This study introduces a distinct approach to addressing the twin challenges of landfill scarcity and natural resource conservation by repurposing discarded glass bottle waste into a viable construction material. The research presents a comprehensive evaluation of the strength characteristics of cement mortar when dark glass waste powder is used as a partial sand replacement. The experimental investigation probes the density, flow spread diameter, and key strength parameters—including compressive, splitting tensile, and flexural strengths—of the modified cement mortar. Remarkably, results indicate that a full replacement of sand with glass waste powder significantly improves the material's strength attributes. A specific mixture with a cement/sand/water ratio of 1:5:1.24 was found to be optimal, yielding an impressive compressive strength of 7 MPa at the 28-day mark, accompanied by a favourable 200 mm spread diameter in flow table tests. The findings of this study underscore the dual benefits of utilizing glass waste powder in cement mortar: mitigating Malaysia's glass waste dilemma and enhancing the performance of construction materials such as bricks and concrete products. Consequently, the research validates the premise that increasing the incorporation of glass waste as a sand substitute promotes not only environmental sustainability but also material innovation in the construction industry.

Keywords: glass waste, strength properties, cement mortar, environmental friendly

Procedia PDF Downloads 65
3316 Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain

Authors: Nizar Chaira

Abstract:

Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain.

Keywords: date palm, fermentation, molasses, Saccharomyces, syrup

Procedia PDF Downloads 325
3315 Life Cycle Cost Evaluation of Structures with Hysteretic Dampers

Authors: Jinkoo Kim, Hyungoo Kang, Hyungjun Shin

Abstract:

In this study, a hybrid energy dissipation device is developed by combining a steel slit plate and friction pads to be used for seismic retrofit of structures, and its effectiveness is investigated by comparing the life cycle costs of the structure before and after the retrofit. The seismic energy dissipation capability of the dampers is confirmed by cyclic loading tests. The probabilities of reaching various damage states are obtained by fragility analysis, and the life cycle costs of the model structures are computed using the PACT (Performance Assessment Calculation Tool) program based on FEMA P-58 methodology. The fragility analysis shows that the probabilities of reaching limit states are minimized by the seismic retrofit with hybrid dampers and increasing column size. The seismic retrofit with increasing column size and hybrid dampers results in the lowest repair cost and shortest repair time.

Keywords: slit dampers, friction dampers, seismic retrofit, life cycle cost, FEMA P-58, PACT

Procedia PDF Downloads 329
3314 Finite Element Modelling of Log Wall Corner Joints

Authors: Reza Kalantari, Ghazanfarah Hafeez

Abstract:

The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. 8% variability is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.

Keywords: dovetail joint, finite element modelling, log shear walls, standard joint

Procedia PDF Downloads 221
3313 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application

Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas

Abstract:

The development of electric vehicle batteries has resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a flat plate loop heat pipe (FPLHP) performance as a heat exchanger in the thermal management system of the lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces the thermal resistance of 0.22 W/°C with 50 °C evaporator temperature at heat flux load of 1.61 W/cm2.

Keywords: electric vehicle, flat-plate loop heat pipe, lithium-ion battery, thermal management system

Procedia PDF Downloads 355
3312 Self-Weight Reduction of Tall Structures by Taper Cladding System

Authors: Divya Dharshini Omprakash, Anjali Subramani

Abstract:

Most of the tall structures are constructed using shear walls and tube systems in the recent decades. This makes the structure heavy and less resistant to lateral effects as the height of the structure goes up. This paper aims in the reduction of self-weight in tall structures by the use of Taper Cladding System (TCS) and also enumerates the construction techniques used in TCS. TCS has a tapering clad either fixed at the top or bottom of the structural core at the tapered end. This system eliminates the use of RC structural elements on the exterior of the structure and uses fewer columns only on the interior part to take up the gravity loads in order to reduce the self-weight of the structure. The self-weight reduction by TCS is 50% more compared to the present structural systems. The lateral loads on the hull will be taken care of by the tapered steel frame. Analysis were done to study the structural behaviour of taper cladded buildings subjected to lateral loads. TCS has a great impact in the construction of tall structures in seismic and dense urban areas. An effective construction management can be done by the use of Taper Cladding System. In this paper, sustainability, design considerations and implications of the system has also been discussed.

Keywords: Lateral Loads Resistance, reduction of self-weight, sustainable, taper clads

Procedia PDF Downloads 293
3311 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 441
3310 Arabic Handwriting Recognition Using Local Approach

Authors: Mohammed Arif, Abdessalam Kifouche

Abstract:

Optical character recognition (OCR) has a main role in the present time. It's capable to solve many serious problems and simplify human activities. The OCR yields to 70's, since many solutions has been proposed, but unfortunately, it was supportive to nothing but Latin languages. This work proposes a system of recognition of an off-line Arabic handwriting. This system is based on a structural segmentation method and uses support vector machines (SVM) in the classification phase. We have presented a state of art of the characters segmentation methods, after that a view of the OCR area, also we will address the normalization problems we went through. After a comparison between the Arabic handwritten characters & the segmentation methods, we had introduced a contribution through a segmentation algorithm.

Keywords: OCR, segmentation, Arabic characters, PAW, post-processing, SVM

Procedia PDF Downloads 79
3309 Structural Monitoring of Externally Confined RC Columns with Inadequate Lap-Splices, Using Fibre-Bragg-Grating Sensors

Authors: Petros M. Chronopoulos, Evangelos Z. Astreinidis

Abstract:

A major issue of the structural assessment and rehabilitation of existing RC structures is the inadequate lap-splicing of the longitudinal reinforcement. Although prohibited by modern Design Codes, the practice of arranging lap-splices inside the critical regions of RC elements was commonly applied in the past. Today this practice is still the rule, at least for conventional new buildings. Therefore, a lot of relevant research is ongoing in many earthquake prone countries. The rehabilitation of deficient lap-splices of RC elements by means of external confinement is widely accepted as the most efficient technique. If correctly applied, this versatile technique offers a limited increase of flexural capacity and a considerable increase of local ductility and of axial and shear capacities. Moreover, this intervention does not affect the stiffness of the elements and does not affect the dynamic characteristics of the structure. This technique has been extensively discussed and researched contributing to vast accumulation of technical and scientific knowledge that has been reported in relevant books, reports and papers, and included in recent Design Codes and Guides. These references are mostly dealing with modeling and redesign, covering both the enhanced (axial and) shear capacity (due to the additional external closed hoops or jackets) and the increased ductility (due to the confining action, preventing the unzipping of lap-splices and the buckling of continuous reinforcement). An analytical and experimental program devoted to RC members with lap-splices is completed in the Lab. of RC/NTU of Athens/GR. This program aims at the proposal of a rational and safe theoretical model and the calibration of the relevant Design Codes’ provisions. Tests, on forty two (42) full scale specimens, covering mostly beams and columns (not walls), strengthened or not, with adequate or inadequate lap-splices, have been already performed and evaluated. In this paper, the results of twelve (12) specimens under fully reversed cyclic actions are presented and discussed. In eight (8) specimens the lap-splices were inadequate (splicing length of 20 or 30 bar diameters) and they were retrofitted before testing by means of additional external confinement. The two (2) most commonly applied confining materials were used in this study, namely steel and FRPs. More specifically, jackets made of CFRP wraps or light cages made of mild steel were applied. The main parameters of these tests were (i) the degree of confinement (internal and external), and (ii) the length of lap-splices, equal to 20, 30 or 45 bar diameters. These tests were thoroughly instrumented and monitored, by means of conventional (LVDTs, strain gages, etc.) and innovative (optic fibre-Bragg-grating) sensors. This allowed for a thorough investigation of the most influencing design parameter, namely the hoop-stress developed in the confining material. Based on these test results and on comparisons with the provisions of modern Design Codes, it could be argued that shorter (than the normative) lap-splices, commonly found in old structures, could still be effective and safe (at least for lengths more than an absolute minimum), depending on the required ductility, if a properly arranged and adequately detailed external confinement is applied.

Keywords: concrete, fibre-Bragg-grating sensors, lap-splices, retrofitting / rehabilitation

Procedia PDF Downloads 252
3308 Comparative Study of Arch Bridges with Varying Rise to Span Ratio

Authors: Tauhidur Rahman, Arnab Kumar Sinha

Abstract:

This paper presents a comparative study of Arch bridges based on their varying rise to span ratio. The comparison is done between different steel Arch bridges which have variable span length and rise to span ratio keeping the same support condition. The aim of our present study is to select the optimum value of rise to span ratio of Arch bridge as the cost of the Arch bridge increases with the increasing of the rise. In order to fulfill the objective, several rise to span ratio have been considered for same span of Arch bridge and various structural parameters such as Bending moment, shear force etc have been calculated for different model. A comparative study has been done for several Arch bridges finally to select the optimum rise to span ratio of the Arch bridges. In the present study, Finite Element model for medium to long span, with different rise to span ratio have been modeled and are analyzed with the help of a Computational Software named MIDAS Civil to evaluate the results such as Bending moments, Shear force, displacements, Stresses, influence line diagrams, critical loads. In the present study, 60 models of Arch bridges for 80 to 120 m span with different rise to span ratio has been thoroughly investigated.

Keywords: arch bridge, analysis, comparative study, rise to span ratio

Procedia PDF Downloads 539