Search results for: active and passive renewable energy systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18867

Search results for: active and passive renewable energy systems

15447 Adaptive Energy-Aware Routing (AEAR) for Optimized Performance in Resource-Constrained Wireless Sensor Networks

Authors: Innocent Uzougbo Onwuegbuzie

Abstract:

Wireless Sensor Networks (WSNs) are crucial for numerous applications, yet they face significant challenges due to resource constraints such as limited power and memory. Traditional routing algorithms like Dijkstra, Ad hoc On-Demand Distance Vector (AODV), and Bellman-Ford, while effective in path establishment and discovery, are not optimized for the unique demands of WSNs due to their large memory footprint and power consumption. This paper introduces the Adaptive Energy-Aware Routing (AEAR) model, a solution designed to address these limitations. AEAR integrates reactive route discovery, localized decision-making using geographic information, energy-aware metrics, and dynamic adaptation to provide a robust and efficient routing strategy. We present a detailed comparative analysis using a dataset of 50 sensor nodes, evaluating power consumption, memory footprint, and path cost across AEAR, Dijkstra, AODV, and Bellman-Ford algorithms. Our results demonstrate that AEAR significantly reduces power consumption and memory usage while optimizing path weight. This improvement is achieved through adaptive mechanisms that balance energy efficiency and link quality, ensuring prolonged network lifespan and reliable communication. The AEAR model's superior performance underlines its potential as a viable routing solution for energy-constrained WSN environments, paving the way for more sustainable and resilient sensor network deployments.

Keywords: wireless sensor networks (WSNs), adaptive energy-aware routing (AEAR), routing algorithms, energy, efficiency, network lifespan

Procedia PDF Downloads 14
15446 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations

Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta

Abstract:

The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).

Keywords: absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle

Procedia PDF Downloads 97
15445 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 95
15444 Periurban Landscape as an Opportunity Field to Solve Ecological Urban Conflicts

Authors: Cristina Galiana Carballo, Ibon Doval Martínez

Abstract:

Urban boundaries often result in a controversial limit between countryside and city in Europe. This territory is normally defined by the very limited land uses and the abundance of open space. The dimension and dynamics of peri-urbanization in the last decades have increased this land stock, which has influenced/impacted in several factors in terms of economic costs (maintenance, transport), ecological disturbances of the territory and changes in inhabitant´s behaviour. In an increasingly urbanised world and a growing urban population, cities also face challenges such as Climate Change. In this context, new near-future corrective trends including circular economies for local food supply or decentralised waste management became key strategies towards more sustainable urban models. Those new solutions need to be planned and implemented considering the potential conflict with current land uses. The city of Vitoria-Gasteiz (Basque Country, Spain) has triplicated land consumption per habitant in 10 years, resulting in a vast extension of low-density urban type confronting rural land and threatening agricultural uses, landscape and urban sustainability. Urban planning allows managing and optimum use allocation based on soil vocation and socio-ecosystem needs, while peri-urban space arises as an opportunity for developing different uses which do not match either within the compact city, not in open agricultural lands, such as medium-size agrocomposting systems or biomass plants. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Therefore, a qualitative multi-criteria methodology has been developed for Vitoria-Gasteiz city to assess the spatial definition of peri-urban land. Climate change and circular economy were identified as frameworks where to determine future land, soil vocation and urban planning requirements which eventually become estimations of required local food and renewable energy supply along with alternative waste management system´s implementation. By means of it, it has been developed an urban planning proposal which overcomes urban-non urban dichotomy in Vitoria-Gasteiz. The proposal aims to enhance rural system and improve urban sustainability performance through the normative recognition of an agricultural peri-urban belt.

Keywords: landscape ecology, land-use management, periurban, urban planning

Procedia PDF Downloads 154
15443 Explosive Clad Metals for Geothermal Energy Recovery

Authors: Heather Mroz

Abstract:

Geothermal fluids can provide a nearly unlimited source of renewable energy but are often highly corrosive due to dissolved carbon dioxide (CO2), hydrogen sulphide (H2S), Ammonia (NH3) and chloride ions. The corrosive environment drives material selection for many components, including piping, heat exchangers and pressure vessels, to higher alloys of stainless steel, nickel-based alloys and titanium. The use of these alloys is cost-prohibitive and does not offer the pressure rating of carbon steel. One solution, explosion cladding, has been proven to reduce the capital cost of the geothermal equipment while retaining the mechanical and corrosion properties of both the base metal and the cladded surface metal. Explosion cladding is a solid-state welding process that uses precision explosions to bond two dissimilar metals while retaining the mechanical, electrical and corrosion properties. The process is commonly used to clad steel with a thin layer of corrosion-resistant alloy metal, such as stainless steel, brass, nickel, silver, titanium, or zirconium. Additionally, explosion welding can join a wider array of compatible and non-compatible metals with more than 260 metal combinations possible. The explosion weld is achieved in milliseconds; therefore, no bulk heating occurs, and the metals experience no dilution. By adhering to a strict set of manufacturing requirements, both the shear strength and tensile strength of the bond will exceed the strength of the weaker metal, ensuring the reliability of the bond. For over 50 years, explosion cladding has been used in the oil and gas and chemical processing industries and has provided significant economic benefit in reduced maintenance and lower capital costs over solid construction. The focus of this paper will be on the many benefits of the use of explosion clad in process equipment instead of more expensive solid alloy construction. The method of clad-plate production with explosion welding as well as the methods employed to ensure sound bonding of the metals. It will also include the origins of explosion cladding as well as recent technological developments. Traditionally explosion clad plate was formed into vessels, tube sheets and heads but recent advances include explosion welded piping. The final portion of the paper will give examples of the use of explosion-clad metals in geothermal energy recovery. The classes of materials used for geothermal brine will be discussed, including stainless steels, nickel alloys and titanium. These examples will include heat exchangers (tube sheets), high pressure and horizontal separators, standard pressure crystallizers, piping and well casings. It is important to educate engineers and designers on material options as they develop equipment for geothermal resources. Explosion cladding is a niche technology that can be successful in many situations, like geothermal energy recovery, where high temperature, high pressure and corrosive environments are typical. Applications for explosion clad metals include vessel and heat exchanger components as well as piping.

Keywords: clad metal, explosion welding, separator material, well casing material, piping material

Procedia PDF Downloads 146
15442 Environmental Catalysts for Refining Technology Application: Reduction of CO Emission and Gasoline Sulphur in Fluid Catalytic Cracking Unit

Authors: Loganathan Kumaresan, Velusamy Chidambaram, Arumugam Velayutham Karthikeyani, Alex Cheru Pulikottil, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar

Abstract:

Environmentally driven regulations throughout the world stipulate dramatic improvements in the quality of transportation fuels and refining operations. The exhaust gases like CO, NOx, and SOx from stationary sources (e.g., refinery) and motor vehicles contribute to a large extent for air pollution. The refining industry is under constant environmental pressure to achieve more rigorous standards on sulphur content in the fuel used in the transportation sector and other off-gas emissions. Fluid catalytic cracking unit (FCCU) is a major secondary process in refinery for gasoline and diesel production. CO-combustion promoter additive and gasoline sulphur reduction (GSR) additive are catalytic systems used in FCCU to assist the combustion of CO to CO₂ in the regenerator and regulate sulphur in gasoline faction respectively along with main FCC catalyst. Effectiveness of these catalysts is governed by the active metal used, its dispersion, the type of base material employed, and retention characteristics of additive in FCCU such as attrition resistance and density. The challenge is to have a high-density microsphere catalyst support for its retention and high activity of the active metals as these catalyst additives are used in low concentration compare to the main FCC catalyst. The present paper discusses in the first part development of high dense microsphere of nanocrystalline alumina by hydro-thermal method for CO combustion promoter application. Performance evaluation of additive was conducted under simulated regenerator conditions and shows CO combustion efficiency above 90%. The second part discusses the efficacy of a co-precipitation method for the generation of the active crystalline spinels of Zn, Mg, and Cu with aluminium oxides as an additive. The characterization and micro activity test using heavy combined hydrocarbon feedstock at FCC unit conditions for evaluating gasoline sulphur reduction activity are studied. These additives were characterized by X-Ray Diffraction, NH₃-TPD & N₂ sorption analysis, TPR analysis to establish structure-activity relationship. The reaction of sulphur removal mechanisms involving hydrogen transfer reaction, aromatization and alkylation functionalities are established to rank GSR additives for their activity, selectivity, and gasoline sulphur removal efficiency. The sulphur shifting in other liquid products such as heavy naphtha, light cycle oil, and clarified oil were also studied. PIONA analysis of liquid product reveals 20-40% reduction of sulphur in gasoline without compromising research octane number (RON) of gasoline and olefins content.

Keywords: hydrothermal, nanocrystalline, spinel, sulphur reduction

Procedia PDF Downloads 89
15441 An Exploratory Study of Reliability of Ranking vs. Rating in Peer Assessment

Authors: Yang Song, Yifan Guo, Edward F. Gehringer

Abstract:

Fifty years of research has found great potential for peer assessment as a pedagogical approach. With peer assessment, not only do students receive more copious assessments; they also learn to become assessors. In recent decades, more educational peer assessments have been facilitated by online systems. Those online systems are designed differently to suit different class settings and student groups, but they basically fall into two categories: rating-based and ranking-based. The rating-based systems ask assessors to rate the artifacts one by one following some review rubrics. The ranking-based systems allow assessors to review a set of artifacts and give a rank for each of them. Though there are different systems and a large number of users of each category, there is no comprehensive comparison on which design leads to higher reliability. In this paper, we designed algorithms to evaluate assessors' reliabilities based on their rating/ranking against the global ranks of the artifacts they have reviewed. These algorithms are suitable for data from both rating-based and ranking-based peer assessment systems. The experiments were done based on more than 15,000 peer assessments from multiple peer assessment systems. We found that the assessors in ranking-based peer assessments are at least 10% more reliable than the assessors in rating-based peer assessments. Further analysis also demonstrated that the assessors in ranking-based assessments tend to assess the more differentiable artifacts correctly, but there is no such pattern for rating-based assessors.

Keywords: peer assessment, peer rating, peer ranking, reliability

Procedia PDF Downloads 423
15440 Constraint-Based Computational Modelling of Bioenergetic Pathway Switching in Synaptic Mitochondria from Parkinson's Disease Patients

Authors: Diana C. El Assal, Fatima Monteiro, Caroline May, Peter Barbuti, Silvia Bolognin, Averina Nicolae, Hulda Haraldsdottir, Lemmer R. P. El Assal, Swagatika Sahoo, Longfei Mao, Jens Schwamborn, Rejko Kruger, Ines Thiele, Kathrin Marcus, Ronan M. T. Fleming

Abstract:

Degeneration of substantia nigra pars compacta dopaminergic neurons is one of the hallmarks of Parkinson's disease. These neurons have a highly complex axonal arborisation and a high energy demand, so any reduction in ATP synthesis could lead to an imbalance between supply and demand, thereby impeding normal neuronal bioenergetic requirements. Synaptic mitochondria exhibit increased vulnerability to dysfunction in Parkinson's disease. After biogenesis in and transport from the cell body, synaptic mitochondria become highly dependent upon oxidative phosphorylation. We applied a systems biochemistry approach to identify the metabolic pathways used by neuronal mitochondria for energy generation. The mitochondrial component of an existing manual reconstruction of human metabolism was extended with manual curation of the biochemical literature and specialised using omics data from Parkinson's disease patients and controls, to generate reconstructions of synaptic and somal mitochondrial metabolism. These reconstructions were converted into stoichiometrically- and fluxconsistent constraint-based computational models. These models predict that Parkinson's disease is accompanied by an increase in the rate of glycolysis and a decrease in the rate of oxidative phosphorylation within synaptic mitochondria. This is consistent with independent experimental reports of a compensatory switching of bioenergetic pathways in the putamen of post-mortem Parkinson's disease patients. Ongoing work, in the context of the SysMedPD project is aimed at computational prediction of mitochondrial drug targets to slow the progression of neurodegeneration in the subset of Parkinson's disease patients with overt mitochondrial dysfunction.

Keywords: bioenergetics, mitochondria, Parkinson's disease, systems biochemistry

Procedia PDF Downloads 280
15439 Agroforestry Systems and Practices and Its Adoption in Kilombero Cluster of Sagcot, Tanzania

Authors: Lazaro E. Nnko, Japhet J. Kashaigili, Gerald C. Monela, Pantaleo K. T. Munishi

Abstract:

Agroforestry systems and practices are perceived to improve livelihood and sustainable management of natural resources. However, their adoption in various regions differs with the biophysical conditions and societal characteristics. This study was conducted in Kilombero District to investigate the factors influencing the adoption of different agroforestry systems and practices in agro-ecosystems and farming systems. A household survey, key informant interviews, and focus group discussion was used for data collection in three villages. Descriptive statistics and multinomial logistic regression in SPSS were applied for analysis. Results show that Igima and Ngajengwa villages had home garden practices dominated, as revealed by 63.3% and 66.7%, respectively, while Mbingu village had mixed intercropping practice with 56.67%. Agrosilvopasture systems were dominant in Igima and Ngajengwa villages with 56.7% and 66.7%, respectively, while in Mbingu village, the dominant system was agrosilviculture with 66.7%. The results from multinomial logistic regression show that different explanatory variable was statistical significance as predictors of the adoption of agroforestry systems and practices. Residence type and sex were the most dominant factor influencing the adoption of agroforestry systems. Duration of stay in the village, availability of extension education, residence, and sex were the dominant factor influencing the adoption of agroforestry practices. The most important and statistically significant factors among these were residence type and sex. The study concludes that agroforestry will be more successful if the local priorities, which include social-economic need characteristics of the society, will be considered in designing systems and practices. The socio-economic need of the community should be addressed in the process of expanding the adoption of agroforestry systems and practices.

Keywords: agroforestry adoption, agroforestry systems, agroforestry practices, agroforestry, Kilombero

Procedia PDF Downloads 99
15438 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms

Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias

Abstract:

High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.

Keywords: hybrid meta-heuristic methods, substation construction, resource allocation, time-cost efficiency

Procedia PDF Downloads 140
15437 Sliding Mode Control and Its Application in Custom Power Device: A Comprehensive Overview

Authors: Pankaj Negi

Abstract:

Nowadays the demand for receiving the high quality electrical energy is being increasing as consumer wants not only reliable but also quality power. Custom power instruments are of the most well-known compensators of power quality in distributed network. This paper present a comprehensive review of compensating custom power devices mainly DSTATCOM (distribution static compensator),DVR (dynamic voltage restorer), and UPQC (unified power quality compensator) and also deals with sliding mode control and its applications to custom power devices. The sliding mode control strategy provides robustness to custom power device and enhances the dynamic response for compensating voltage sag, swell, voltage flicker, and voltage harmonics. The aim of this paper is to provide a broad perspective on the status of compensating devices in electric power distribution system and sliding mode control strategies to researchers and application engineers who are dealing with power quality and stability issues.

Keywords: active power filters(APF), custom power device(CPD), DSTATCOM, DVR, UPQC, sliding mode control (SMC), power quality

Procedia PDF Downloads 427
15436 Plastic Deformation of Mg-Gd Solid Solutions between 4K and 298K

Authors: Anna Kula, Raja K. Mishra, Marek Niewczas

Abstract:

Deformation behavior of Mg-Gd solid solutions have been studied by a combination of measurements of mechanical response, texture and dislocation substructure. Increase in Gd content strongly influences the work-hardening behavior and flow characteristics in tension and compression. Adiabatic instabilities have been observed in all alloys at 4K under both tension and compression. The frequency and the amplitude of adiabatic stress oscillations increase with Gd content. Profuse mechanical twinning has been observed under compression, resulting in a texture dominated by basal component parallel to the compression axis. Under tension, twining is less active and the texture evolution is affected mostly by slip. Increasing Gd concentration leads to the reduction of the tension and compression asymmetry due to weakening of the texture and stabilizing more homogenous twinning and slip, involving basal and non-basal slip systems.

Keywords: Mg-Gd alloys, mechanical properties, work hardening, twinning

Procedia PDF Downloads 525
15435 Requirement Engineering for Intrusion Detection Systems in Wireless Sensor Networks

Authors: Afnan Al-Romi, Iman Al-Momani

Abstract:

The urge of applying the Software Engineering (SE) processes is both of vital importance and a key feature in critical, complex large-scale systems, for example, safety systems, security service systems, and network systems. Inevitably, associated with this are risks, such as system vulnerabilities and security threats. The probability of those risks increases in unsecured environments, such as wireless networks in general and in Wireless Sensor Networks (WSNs) in particular. WSN is a self-organizing network of sensor nodes connected by wireless links. WSNs consist of hundreds to thousands of low-power, low-cost, multi-function sensor nodes that are small in size and communicate over short-ranges. The distribution of sensor nodes in an open environment that could be unattended in addition to the resource constraints in terms of processing, storage and power, make such networks in stringent limitations such as lifetime (i.e. period of operation) and security. The importance of WSN applications that could be found in many militaries and civilian aspects has drawn the attention of many researchers to consider its security. To address this important issue and overcome one of the main challenges of WSNs, security solution systems have been developed by researchers. Those solutions are software-based network Intrusion Detection Systems (IDSs). However, it has been witnessed, that those developed IDSs are neither secure enough nor accurate to detect all malicious behaviours of attacks. Thus, the problem is the lack of coverage of all malicious behaviours in proposed IDSs, leading to unpleasant results, such as delays in the detection process, low detection accuracy, or even worse, leading to detection failure, as illustrated in the previous studies. Also, another problem is energy consumption in WSNs caused by IDS. So, in other words, not all requirements are implemented then traced. Moreover, neither all requirements are identified nor satisfied, as for some requirements have been compromised. The drawbacks in the current IDS are due to not following structured software development processes by researches and developers when developing IDS. Consequently, they resulted in inadequate requirement management, process, validation, and verification of requirements quality. Unfortunately, WSN and SE research communities have been mostly impermeable to each other. Integrating SE and WSNs is a real subject that will be expanded as technology evolves and spreads in industrial applications. Therefore, this paper will study the importance of Requirement Engineering when developing IDSs. Also, it will study a set of existed IDSs and illustrate the absence of Requirement Engineering and its effect. Then conclusions are drawn in regard of applying requirement engineering to systems to deliver the required functionalities, with respect to operational constraints, within an acceptable level of performance, accuracy and reliability.

Keywords: software engineering, requirement engineering, Intrusion Detection System, IDS, Wireless Sensor Networks, WSN

Procedia PDF Downloads 311
15434 Development Of Diabetes Mellitus In Overweight People

Authors: Ashiraliyev SHavkat

Abstract:

Relevance of the topic: Diabetes mellitus in overweight people development and absence of treatment measures. Objective: to give patients the correct instructions on proper nutrition, to organize a network of preventive and therapeutic measures. Materials and methods: Multidisciplinary Tashkent Medical Academy. As a result of objective observations in patients who applied to the clinic, 28 11 overweight patients had to type 2 diabetes. Diabetesmellituswasdiagnosed. Results: 11.5 mmol / L on an empty stomach in the morning. EDT yes. Pathogenesis: fat content in the diet of patients with diabetes mellitus. Carbohydrate foods make up 60%. Eating disorders and physical inactivity As a result, the accumulation of glucose in the form of fat increases, and this is constantly in the blood, which led to an increase in the number of fatty acids. Clinic: Frequent fasting in 11 patients (hypothalamus). Associated with glucose deficiency), drinking 8-9 liters of water per day of blood in 7 people Systolic pressure 150 diastolic pressures 100. Sensation of ants in 3 people and poor eyesight in 5 people. Conclusion: Explain to patients that nutritional guidelines should be followed. Assign active movement in accordance with the energy entering the body.

Keywords: mellitus, diabetes, pathogenesis, clinic

Procedia PDF Downloads 76
15433 Application of Grey Theory in the Forecast of Facility Maintenance Hours for Office Building Tenants and Public Areas

Authors: Yen Chia-Ju, Cheng Ding-Ruei

Abstract:

This study took case office building as subject and explored the responsive work order repair request of facilities and equipment in offices and public areas by gray theory, with the purpose of providing for future related office building owners, executive managers, property management companies, mechanical and electrical companies as reference for deciding and assessing forecast model. Important conclusions of this study are summarized as follows according to the study findings: 1. Grey Relational Analysis discusses the importance of facilities repair number of six categories, namely, power systems, building systems, water systems, air conditioning systems, fire systems and manpower dispatch in order. In terms of facilities maintenance importance are power systems, building systems, water systems, air conditioning systems, manpower dispatch and fire systems in order. 2. GM (1,N) and regression method took maintenance hours as dependent variables and repair number, leased area and tenants number as independent variables and conducted single month forecast based on 12 data from January to December 2011. The mean absolute error and average accuracy of GM (1,N) from verification results were 6.41% and 93.59%; the mean absolute error and average accuracy of regression model were 4.66% and 95.34%, indicating that they have highly accurate forecast capability.

Keywords: rey theory, forecast model, Taipei 101, office buildings, property management, facilities, equipment

Procedia PDF Downloads 427
15432 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications

Authors: Andrés Gomez-Casseres, Rubén Contreras

Abstract:

In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.

Keywords: average current control, boost converter, electrical tuning, energy harvesting

Procedia PDF Downloads 747
15431 The Application of Maintenance Strategy in Energy Power Plant: A Case Study

Authors: Steven Vusmuzi Mashego, Opeyeolu Timothy Laseinde

Abstract:

This paper presents a case study on applying maintenance strategies observed in a turbo-generator at a coal power plant. Turbo generators are one of the primary and critical components in energy generation. It is essential to apply correct maintenance strategies and apply operational procedures accordingly. The maintenance strategies are implemented to ensure the high reliability of the equipment. The study was carried out at a coal power station which will transit to a cleaner energy source in the nearest future. The study is relevant as lessons learned in this system will support plans and operational models implemented when cleaner energy sources replace coal-powered turbines. This paper first outlines different maintenance strategies executed on the turbo-generator modules. Secondly, the impacts of human factors on a coal power station are discussed, and the findings prompted recommendations for future actions.

Keywords: maintenance strategies, turbo generator, operational error, human factor, electricity generation

Procedia PDF Downloads 95
15430 Phosphorus Recovery Optimization in Microbial Fuel Cell

Authors: Abdullah Almatouq

Abstract:

Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.

Keywords: energy, microbial fuel cell, phosphorus, struvite

Procedia PDF Downloads 144
15429 Time and Kinematics of Moving Bodies

Authors: Muhammad Omer Farooq Saeed

Abstract:

The purpose of the proposal is to find out what time actually is! And to understand the natural phenomenon of the behavior of time and light corresponding to the motion of the bodies at relatively high speeds. The utmost concern of the paper is to deal with the possible demerits in the equations of relativity, thereby providing some valuable extensions in those equations and concepts. The idea used develops the most basic conception of the relative motion of the body with respect to space and a real understanding of time and the variation of energy of the body in different frames of reference. The results show the development of a completely new understanding of time, relative motion and energy, along with some extensions in the equations of special relativity most importantly the time dilation and the mass-energy relationship that will explain all frames of a body, all in one go. The proposal also raises serious questions on the validity of the “Principle of Equivalence” on which the General Relativity is based, most importantly a serious case of the bending light that eventually goes against its own governing concepts of space-time being proposed in the theory. The results also predict the existence of a completely new field that explains the fact just how and why bodies acquire energy in space-time. This field explains the production of gravitational waves based on time. All in all, this proposal challenges the formulas and conceptions of Special and General Relativity, respectively.

Keywords: time, relative motion, energy, speed, frame of reference, photon, curvature, space-time, time –differentials

Procedia PDF Downloads 54
15428 Corrosion Response of Friction Stir Processed Mg-Zn-Zr-RE Alloy

Authors: Vasanth C. Shunmugasamy, Bilal Mansoor

Abstract:

Magnesium alloys are increasingly being considered for structural systems across different industrial sectors, including precision components of biomedical devices, owing to their high specific strength, stiffness and biodegradability. However, Mg alloys exhibit a high corrosion rate that restricts their application as a biomaterial. For safe use as biomaterial, it is essential to control their corrosion rates. Mg alloy corrosion is influenced by several factors, such as grain size, precipitates and texture. In Mg alloys, microgalvanic coupling between the α-Mg matrix and secondary precipitates can exist, which results in an increased corrosion rate. The present research addresses this challenge by engineering the microstructure of a biodegradable Mg–Zn–RE–Zr alloy by friction stir processing (FSP), a severe plastic deformation process. The FSP-processed Mg alloys showed improved corrosion resistance and mechanical properties. FSPed Mg alloy showed refined grains, a strong basal texture and broken and uniformly distributed secondary precipitates in the stir zone. Mg, alloy base material, exposed to In vitro corrosion medium showed micro galvanic coupling between precipitate and matrix, resulting in the unstable passive layer. However, FS processed alloy showed uniform corrosion owing to stable surface film formation. The stable surface film is attributed to refined grains, preferred texture and distribution of precipitates. The research results show promising potential for Mg alloy to be developed as a biomaterial.

Keywords: biomaterials, severe plastic deformation, magnesium alloys, corrosion

Procedia PDF Downloads 18
15427 Locally Crafted Sustainability: A Scoping Review for Nesting Social-Ecological and Socio-Technical Systems Towards Action Research in Agriculture

Authors: Marcia Figueira

Abstract:

Context: Positivist transformations in agriculture were responsible for top-down – often coercive – mechanisms of uniformed modernization that weathered local diversities and agency. New development pathways need to now shift according to comprehensive integrations of knowledge - scientific, indigenous, and local, and to be sustained on political interventions, bottom-up change, and social learning if climate goals are to be met – both in mitigation and adaptation. Objectives The objectives of this research are to understand how social-ecological and socio-technical systems characterisation can be nested to bridge scientific research/knowledge into a local context and knowledge system; and, with it, stem sustainable innovation. Methods To do so, we conducted a scoping review to explore theoretical and empirical works linked to Ostrom’s Social-Ecological Systems framework and Geels’ multi-level perspective of socio-technical systems transformations in the context of agriculture. Results As a result, we were able to identify key variables and connections to 1- understand the rules in use and the community attributes influencing resource management; and 2- how they are and have been shaped and shaping systems innovations. Conclusion Based on these results, we discuss how to leverage action research for mutual learning toward a replicable but highly place-based agriculture transformation frame.

Keywords: agriculture systems innovations, social-ecological systems, socio-technical systems, action research

Procedia PDF Downloads 84
15426 Toughness of a Silt-Based Construction Material Reinforced with Fibers

Authors: Y. Shamas, S. Imanzadeh, A. Jarno, S. Taibi

Abstract:

Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition.

Keywords: silt-based material, raw earth concrete, stress-strain curve, energy, toughness

Procedia PDF Downloads 200
15425 How Technology Can Help Teachers in Reflective Practice

Authors: Ambika Perisamy, Asyriawati binte Mohd Hamzah

Abstract:

The focus of this presentation is to discuss teacher professional development (TPD) through the use of technology. TPD is necessary to prepare teachers for future challenges they will face throughout their careers and to develop new skills and good teaching practices. We will also be discussing current issues in embracing technology in the field of early childhood education and the impact on the professional development of teachers. Participants will also learn to apply teaching and learning practices through the use of technology. One major objective of this presentation is to coherently fuse practical, technology and theoretical content. The process begins by concretizing a set of preconceived ideas which need to be joined with theoretical justifications found in the literature. Technology can make observations fairer and more reliable, easier to implement, and more preferable to teachers and principals. Technology will also help principals to improve classroom observations of teachers and ultimately improve teachers’ continuous professional development. Video technology allows the early childhood teachers to record and keep the recorded video for reflection at any time. This will also provide opportunities for her to share with her principals for professional dialogues and continuous professional development plans. A total of 10 early childhood teachers and 4 principals were involved in these efforts which identified and analyze the gaps in the quality of classroom observations and its co relation to developing teachers as reflective practitioners. The methodology used involves active exploration with video technology recordings, conversations, interviews and authentic teacher child interactions which forms the key thrust in improving teaching and learning practice. A qualitative analysis of photographs, videos, transcripts which illustrates teacher’s reflections and classroom observation checklists before and after the use of video technology were adopted. Arguably, although PD support can be magnanimously strong, if teachers could not connect or create meaning out of the opportunities made available to them, they may remain passive or uninvolved. Therefore, teachers must see the value of applying new ideas such as technology and approaches to practice while creating personal meaning out of professional development. These video recordings are transferable, can be shared and edited through social media, emails and common storage between teachers and principals. To conclude the importance of reflective practice among early childhood teachers and addressing the concerns raised before and after the use of video technology, teachers and principals shared the feasibility, practical and relevance use of video technology.

Keywords: early childhood education, reflective, improve teaching and learning, technology

Procedia PDF Downloads 480
15424 Measuring the Cavitation Cloud by Electrical Impedance Tomography

Authors: Michal Malik, Jiri Primas, Darina Jasikova, Michal Kotek, Vaclav Kopecky

Abstract:

This paper is a case study dealing with the viability of using Electrical Impedance Tomography for measuring cavitation clouds in a pipe setup. The authors used a simple passive cavitation generator to cause a cavitation cloud, which was then recorded for multiple flow rates using electrodes in two measuring planes. The paper presents the results of the experiment, showing the used industrial grade tomography system ITS p2+ is able to measure the cavitation cloud and may be particularly useful for identifying the inception of cavitation in setups where other measuring tools may not be viable.

Keywords: cavitation cloud, conductivity measurement, electrical impedance tomography, mechanically induced cavitation

Procedia PDF Downloads 238
15423 A Review on Applications of Experts Systems in Medical Sciences

Authors: D. K. Sreekantha, T. M. Girish, R. H. Fattepur

Abstract:

In this article, we have given an overview of medical expert systems, which can be used for the developed of physicians in making decisions such as appropriate, prognostic, and therapeutic decisions which help to organize, store, and gives appropriate medical knowledge needed by physicians and practitioners during medical operations or further treatment. If they support the studies by using these systems, advanced tools in medicine will be developed in the future. New trends in the methodology of development of medical expert systems have also been discussed in this paper. So Authors would like to develop an innovative IT based solution to help doctors in rural areas to gain expertise in Medical Science for treating patients. This paper aims to survey the Soft Computing techniques in treating patient’s problems used throughout the world.

Keywords: expert system, fuzzy logic, knowledge base, soft computing, epilepsy

Procedia PDF Downloads 248
15422 The Effects of Extreme Precipitation Events on Ecosystem Services

Authors: Szu-Hua Wang, Yi-Wen Chen

Abstract:

Urban ecosystems are complex coupled human-environment systems. They contain abundant natural resources for producing natural assets and attract urban assets to consume natural resources for urban development. Urban ecosystems provide several ecosystem services, including provisioning services, regulating services, cultural services, and supporting services. Rapid global climate change makes urban ecosystems and their ecosystem services encountering various natural disasters. Lots of natural disasters have occurred around the world under the constant changes in the frequency and intensity of extreme weather events in the past two decades. In Taiwan, hydrological disasters have been paid more attention due to the potential high sensitivity of Taiwan’s cities to climate change, and it impacts. However, climate change not only causes extreme weather events directly but also affects the interactions among human, ecosystem services and their dynamic feedback processes indirectly. Therefore, this study adopts a systematic method, solar energy synthesis, based on the concept of the eco-energy analysis. The Taipei area, the most densely populated area in Taiwan, is selected as the study area. The changes of ecosystem services between 2015 and Typhoon Soudelor have been compared in order to investigate the impacts of extreme precipitation events on ecosystem services. The results show that the forest areas are the largest contributions of energy to ecosystem services in the Taipei area generally. Different soil textures of different subsystem have various upper limits of water contents or substances. The major contribution of ecosystem services of the study area is natural hazard regulation provided by the surface water resources areas. During the period of Typhoon Soudelor, the freshwater supply in the forest areas had become the main contribution. Erosion control services were the main ecosystem service affected by Typhoon Soudelor. The second and third main ecosystem services were hydrologic regulation and food supply. Due to the interactions among ecosystem services, fresh water supply, water purification, and waste treatment had been affected severely.

Keywords: ecosystem, extreme precipitation events, ecosystem services, solar energy synthesis

Procedia PDF Downloads 133
15421 Automotive Quality Engineering: A Roadmap for Functional Safety

Authors: Hugo d’Albert, Udo Lindemann

Abstract:

The number of automotive electronic systems that allow realizing new functions, like driver assistance systems, has been increasing extremely in the last decade. Although they bring several benefits, their malfunctions can lead to severe consequences, such as personal injury of road users. Functional safety is an approach to identify these critical malfunctions and arrange technical systems that include only tolerable risk. This approach is– in comparison with other technical areas– relatively new in the automotive sector. For a long time, the automotive systems have based on mechanical components and approved principles, like robust design. With a growing number of electric and electronic components in the modern cars and realizing by software of the system functions, the need for new standards and methods to assure the functional safety has arisen. This paper described the current state of engineering for safety in automotive sector and discusses new directions to meet the challenges of the future.

Keywords: automotive systems, functional safety, quality engineering, quality management

Procedia PDF Downloads 296
15420 Adaptive Routing in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. E. H. Benyamina, T. Djeradi, P. Boulet

Abstract:

In this paper, we propose adaptive routing that considers the routing of communications in order to optimize the overall performance. The routing technique uses a newly proposed Algorithm to route communications between the tasks. The routing we propose of the communications leads to a better optimization of several performance metrics (time and energy consumption). Experimental results show that the proposed routing approach provides significant performance improvements when compared to those using static routing.

Keywords: multi-processor systems-on-chip (mpsocs), network-on-chip (noc), heterogeneous architectures, adaptive routin

Procedia PDF Downloads 364
15419 Effect of Collaborative Learning on Development of Process Skills and Attitude to Wards Science

Authors: Shri Krishna Mishra, Badri Yadav

Abstract:

Effect of collaborative learning on development of process skills and attitude towards science is It rightly said that the destiny of the nation is shaped inside its classroom. Classroom is a place where the pupil and teacher interact purposefully to gain knowledge. Teaching is the principal mode of education. It can be called a transaction between teacher and pupil, in which one transmits knowledge to other. The teaching learning process consists of three important components, the pupils, the teacher and the curriculum; the classroom is the collection of students of their own individual abilities and needs. In the present classroom teaching learners are either persuasive recipient or passive observant. The school environment leading to low-achievement we have to try better to develop in the young mind. Children are the sticks of dynamite, bundles of energy and potential power waiting to be ignited. Guide them carefully to a place where their potentialities and strength will be used to build a better world. Man’s future depends to large extent on scientific advances and development of productive activity. Science is considered as an important subject in school curricular. The education commission (1964-66) has suggested that science education is necessary for all children at school stage. It is essential to develop children’s logical and critical thinking. But these days thinking process and academic achievement of students have been suppressed by competitive environment of our schools. How the students perceive each other and interact with one another is a neglected aspect of instruction. In the constructivist perspective learning in a process of construction of knowledge. Learners actively construct their own knowledge by connecting new ideas to existing ideas on the basis of materials/ activities presented to them (experience).

Keywords: effect of collaborative learning, development of process skills, science education, attitude towards science

Procedia PDF Downloads 268
15418 Risk Propagation in Electricity Markets: Measuring the Asymmetric Transmission of Downside and Upside Risks in Energy Prices

Authors: Montserrat Guillen, Stephania Mosquera-Lopez, Jorge Uribe

Abstract:

An empirical study of market risk transmission between electricity prices in the Nord Pool interconnected market is done. Crucially, it is differentiated between risk propagation in the two tails of the price variation distribution. Thus, the downside risk from upside risk spillovers is distinguished. The results found document an asymmetric nature of risk and risk propagation in the two tails of the electricity price log variations. Risk spillovers following price increments in the market are transmitted to a larger extent than those after price reductions. Also, asymmetries related to both, the size of the transaction area and related to whether a given area behaves as a net-exporter or net-importer of electricity, are documented. For instance, on the one hand, the bigger the area of the transaction, the smaller the size of the volatility shocks that it receives. On the other hand, exporters of electricity, alongside countries with a significant dependence on renewable sources, tend to be net-transmitters of volatility to the rest of the system. Additionally, insights on the predictive power of positive and negative semivariances for future market volatility are provided. It is shown that depending on the forecasting horizon, downside and upside shocks to the market are featured by a distinctive persistence, and that upside volatility impacts more on net-importers of electricity, while the opposite holds for net-exporters.

Keywords: electricity prices, realized volatility, semivariances, volatility spillovers

Procedia PDF Downloads 162