Search results for: density peak clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5180

Search results for: density peak clustering

1790 Shark Resources in the Iranian Waters of the Persian Gulf

Authors: Nassir Niamaimandi, Mehrdad Hosaini Shabankareh

Abstract:

This study was analyzed the annual catch and trawl survey data of sharks in the northern part of the Persian Gulf (26˚ 30΄ to 30˚ 00΄N and 49˚ 00΄ to 56˚ 00΄E) from 2004 to 2009. Trawl survey was conducted by research vessel Ferdous, equipped with bottom trawl nets in meshes 400mm and 80mm at the body, and cod-end, respectively. Ten stratums were selected in the study area and 199 stations were randomly trawled. The density (CPUA) of shark resources was estimated based on swept area method. The annual total catch was obtained from Iranian fisheries organization (Shilat). The results of catch per unit area showed 250.7 kg/nm2 in 2004 to 49.7 kg/nm2 in 2009. There was a high degree of variability of CPUA among different areas and the maximum was estimated 1870.8 kg/nm2 in Nayband and Mogham. In catch composition data, sharks have a decreasing trend from 4.2% in 2004 to 2.9% in 2009 that shows a decline with an annual average 1.3% during 2004-2009. This results suggesting that the shark resource is overexploited and the current effort is far higher than the effort required harvesting optimum yields.

Keywords: shark resources, Iranian waters, Persian Gulf, Trawl survey

Procedia PDF Downloads 538
1789 Low-Cost Wireless Power Transfer System for Smart Recycling Containers

Authors: Juan Luis Leal, Rafael Maestre, Ovidio López

Abstract:

As innovation progresses, more possibilities are made available to increase the efficiency and reach of solutions for Smart Cities, most of which require the data provided by the Internet of Things (IoT) devices and may even have higher power requirements such as motors or actuators. A reliable power supply with the lowest maintenance is a requirement for the success of these solutions in the long term. Energy harvesting, mainly solar, becomes the solution of choice in most cases, but only if there is enough power to be harvested, which may depend on the device location (e.g., outdoors vs. indoor). This is the case of Smart Waste Containers with compaction systems, which have moderately high-power requirements, and may be installed in places with little sunlight for solar generation. It should be noted that waste is unloaded from the containers with cranes, so sudden and irregular movements may happen, making wired power unviable. In these cases, a wireless power supply may be a great alternative. This paper proposes a cost-effective two coil resonant wireless power transfer (WPT) system and describes its implementation, which has been carried out within an R&D project and validated in real settings with smart containers. Experimental results prove that the developed system achieves wireless power transmission up to 35W in the range of 5 cm to 1 m with a peak efficiency of 78%. The circuit is operated at relatively low resonant frequencies, which combined with enough wire-to-wire separation between the coil windings, reduce the losses caused by the proximity effect and, therefore, allow the use of common stranded wire instead of Litz wire, this without reducing the efficiency significantly. All these design considerations led to a final system that achieves a high efficiency for the desired charging range, simplifying the energy supply for Smart Containers as well as other devices that may benefit from a cost-effective wireless charging system.

Keywords: electromagnetic coupling, resonant wireless charging, smart recycling containers, wireless power transfer

Procedia PDF Downloads 75
1788 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd ZaizuIlyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two technique, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapping on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non Gaussian in the feature space and by using combination of several Gaussian function that has different statistical properties, the best feature representation can be model using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculate GMM components. The method is tested using FERET data sets and is able to achieved 92% recognition rates.

Keywords: local features modelling, face recognition system, Gaussian mixture models, Feret

Procedia PDF Downloads 641
1787 Relationships between Chinese Educated and Talented Women

Authors: Jianghe Niu, Mu-Qing Huang

Abstract:

This research applies qualitative approach to conduct literature review to explore and analyze the relationship between three pairs of female Chinese public figure with high levels of education and social recognitionto understand the role of male admiration in driving hostile response from the female pairs. Commonalities in the cases were found. Hong Huang and SuMang, both are coaches in the Chinese fashion industry, and their contemporaries are also editors-in-chief of major fashion publications. Lin Huiyin and XieBingxin are successful women in the field of literature and architecture. They are of similar age and share similar place of origin and family background; the former received high levels of male admiration, while the latter did not. Zhang Ailing and Su Qing, they are both highly established in the field of literature with very similar style, and they shared great admiration for each other’s talent once upon a time. Zhang’s husband used to be Su Qing's lover, and it was only through Su Qing that He met Zhang Ailing. Conclusion: The relationship between Chinese women, especially women with high levels of education and social recognition, the degree of similarities, and the closeness of relationship of these attributes (such as age, family background, education level, peer similarity, appearance, family, marriage) is positively correlated with increased level of discord, hostility, and hostility. This is observed across the three samples. The relationship between Chinese women, especially women with high levels of education and social recognition - if there are men romantically involved and the levels of male admiration is not equal between the two females - the imbalance of male admiration will act as a leverage that further drives up the levels of negative relationship between the women. This is the case with the first two examples above. The relationship between Chinese women, especially women with high levels of education and social recognition - if there is a man romantically involved and if he’s a previous lover to one woman - the transfer of male romantic interest from the first women to the second women, the new union will bring the hostile and negative relationship with the two females to a peak.

Keywords: Chinese, gender, relationship, women

Procedia PDF Downloads 102
1786 Simulating Studies on Phosphate Removal from Laundry Wastewater Using Biochar: Dudinin Approach

Authors: Eric York, James Tadio, Silas Owusu Antwi

Abstract:

Laundry wastewater contains a diverse range of chemical pollutants that can have detrimental effects on human health and the environment. In this study, simulation studies by Spyder Python software v 3.2 to assess the efficacy of biochar in removing PO₄³⁻ from wastewater were conducted. Through modeling and simulation, the mechanisms involved in the adsorption process of phosphate by biochar were studied by altering variables which is specific to the phosphate from common laundry phosphate detergents, such as the aqueous solubility, initial concentration, and temperature using the Dudinin Approach (DA). Results showed that the concentration equilibrate at near the highest concentrations for Sugar beet-120 mgL⁻¹, Tailing-85 mgL⁻¹, CaO- rich-50 mgL⁻¹, Eggshell and rice straw-48 mgL⁻¹, Undaria Pinnatifida Roots-190 mgL⁻¹, Ca-Alginate Granular Beads -240 mgL⁻¹, Laminaria Japonica Powder -900 mgL⁻¹, Pinesaw dust-57 mgL⁻¹, Ricehull-190 mgL⁻¹, sesame straw- 470 mgL⁻¹, Sugar Bagasse-380 mgL⁻¹, Miscanthus Giganteus-240 mgL⁻¹, Wood Bc-130 mgL⁻¹, Pine-25 mgL⁻¹, Sawdust-6.8 mgL⁻¹, Sewage Sludge-, Rice husk-12 mgL⁻¹, Corncob-117 mgL⁻¹, Maize straw- 1800 mgL⁻¹ while Peanut -Eucalyptus polybractea-, Crawfish equilibrated at near concentration. CO₂ activated Thalia, sewage sludge biochar, Broussonetia Papyrifera Leaves equilibrated just at the lower concentration. Only Soyer bean Stover exhibited a sharp rise and fall peak in mid-concentration at 2 mgL⁻¹ volume. The modelling results were consistent with experimental findings from the literature, ensuring the accuracy, repeatability, and reliability of the simulation study. The simulation study provided insights into adsorption for PO₄³⁻ from wastewater by biochar using concentration per volume that can be adsorbed ideally under the given conditions. Studies showed that applying the principle experimentally in real wastewater with all its complexity is warranted and not far-fetched.

Keywords: simulation studies, phosphate removal, biochar, adsorption, wastewater treatment

Procedia PDF Downloads 94
1785 Morphometric Study of the Eggs of Pheasant Eggs Phasianus colchicus (Aves, Phasianidae)

Authors: S. Zenia, A. Menasseria, A. E. Kheidous, F. Larinouna, A. Smai, H. Saadi, F. Haddadj, A. Milla, F. Marniche

Abstract:

Pheasant, is a bird of great ornamental value through the beauty of its form and colors, it is among the most popular birds. The present study was conducted in an experimental breeding. The objective of this work is to know the quality of the eggs of this bird. A total of 938 eggs were collected. To deepen the knowledge about the characteristics of external shell quality, biometric parameters were studied, among them we find the weight with a mean value of 29.2± 2, 24 g. Egg length (mm) and egg width (mm) mean value are respectively 43.01 ± 1,84 cm and 34.05 ± 1,44cm. The volume and shape index of eggs obtained are respectively 25,63±2,88cm3 and 79.00 ± 3%, shell index which recorded an average of 68%. Water loss recorded is 13%. Note that all these parameters and others may influence hatching. The analysis of variance applied for the comparison of egg weight shows that there is no significant difference in the same form factor (P> 0.05). Otherwise, the comparison test used shows a significant difference with P <0.05 for length, width, volume, density, indices of shell and water loss of eggs between the different. Indeed, several factors may explain the difference as the absence of sorting eggs during incubation and other factors that will be exposing later.

Keywords: analysis of variance, egg, hatching, morphometry of eggs Phaisan (Phasianus colchicus.L.)

Procedia PDF Downloads 572
1784 Holistic Urban Development: Incorporating Both Global and Local Optimization

Authors: Christoph Opperer

Abstract:

The rapid urbanization of modern societies and the need for sustainable urban development demand innovative solutions that meet both individual and collective needs while addressing environmental concerns. To address these challenges, this paper presents a study that explores the potential of spatial and energetic/ecological optimization to enhance the performance of urban settlements, focusing on both architectural and urban scales. The study focuses on the application of biological principles and self-organization processes in urban planning and design, aiming to achieve a balance between ecological performance, architectural quality, and individual living conditions. The research adopts a case study approach, focusing on a 10-hectare brownfield site in the south of Vienna. The site is surrounded by a small-scale built environment as an appropriate starting point for the research and design process. However, the selected urban form is not a prerequisite for the proposed design methodology, as the findings can be applied to various urban forms and densities. The methodology used in this research involves dividing the overall building mass and program into individual small housing units. A computational model has been developed to optimize the distribution of these units, considering factors such as solar exposure/radiation, views, privacy, proximity to sources of disturbance (such as noise), and minimal internal circulation areas. The model also ensures that existing vegetation and buildings on the site are preserved and incorporated into the optimization and design process. The model allows for simultaneous optimization at two scales, architectural and urban design, which have traditionally been addressed sequentially. This holistic design approach leads to individual and collective benefits, resulting in urban environments that foster a balance between ecology and architectural quality. The results of the optimization process demonstrate a seemingly random distribution of housing units that, in fact, is a densified hybrid between traditional garden settlements and allotment settlements. This urban typology is selected due to its compatibility with the surrounding urban context, although the presented methodology can be extended to other forms of urban development and density levels. The benefits of this approach are threefold. First, it allows for the determination of ideal housing distribution that optimizes solar radiation for each building density level, essentially extending the concept of sustainable building to the urban scale. Second, the method enhances living quality by considering the orientation and positioning of individual functions within each housing unit, achieving optimal views and privacy. Third, the algorithm's flexibility and robustness facilitate the efficient implementation of urban development with various stakeholders, architects, and construction companies without compromising its performance. The core of the research is the application of global and local optimization strategies to create efficient design solutions. By considering both, the performance of individual units and the collective performance of the urban aggregation, we ensure an optimal balance between private and communal benefits. By promoting a holistic understanding of urban ecology and integrating advanced optimization strategies, our methodology offers a sustainable and efficient solution to the challenges of modern urbanization.

Keywords: sustainable development, self-organization, ecological performance, solar radiation and exposure, daylight, visibility, accessibility, spatial distribution, local and global optimization

Procedia PDF Downloads 46
1783 Probabilistic Modeling of Post-Liquefaction Ground Deformation

Authors: Javad Sadoghi Yazdi, Robb Eric S. Moss

Abstract:

This paper utilizes a probabilistic liquefaction triggering method for modeling post-liquefaction ground deformation. This cone penetration test CPT-based liquefaction triggering is employed to estimate the factor of safety against liquefaction (FSL) and compute the maximum cyclic shear strain (γmax). The study identifies a maximum PL value of 90% across various relative densities, which challenges the decrease from 90% to 70% as relative density decreases. It reveals that PL ranges from 5% to 50% for volumetric strain (εvol) less than 1%, while for εvol values between 1% and 3.2%, PL spans from 50% to 90%. The application of the CPT-based simplified liquefaction triggering procedures has been employed in previous researches to estimate liquefaction ground-failure indices, such as the Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN). However, several studies have been conducted to highlight the variability in liquefaction probability calculations, suggesting a more accurate depiction of liquefaction likelihood. Consequently, the utilization of these simplified methods may not offer practical efficiency. This paper further investigates the efficacy of various established liquefaction vulnerability parameters, including LPI and LSN, in explaining the observed liquefaction-induced damage within residential zones of Christchurch, New Zealand using results from CPT database.

Keywords: cone penetration test (CPT), liquefaction, postliquefaction, ground failure

Procedia PDF Downloads 42
1782 Rock Property Calculation for Determine Hydrocarbon Zone Based on Petrophysical Principal and Sequence Stratigraphic Correlation in Blok M

Authors: Muhammad Tarmidzi, Reza M. G. Gani, Andri Luthfi

Abstract:

The purpose of this study is to identify rock zone containing hydrocarbons with calculating rock property includes volume shale, total porosity, effective porosity and water saturation. Identification method rock property based on GR log, resistivity log, neutron log and density rock. Zoning is based on sequence stratigraphic markers that are sequence boundary (SB), transgressive surface (TS) and flooding surface (FS) which correlating ten well log in blok “M”. The results of sequence stratigraphic correlation consist of eight zone that are two LST zone, three TST zone and three HST zone. The result of rock property calculation in each zone is showing two LST zone containing hydrocarbons. LST-1 zone has average volume shale (Vsh) 25%, average total porosity (PHIT) 14%, average effective porosity (PHIE) 11% and average water saturation 0,83. LST-2 zone has average volume shale (Vsh) 19%, average total porosity (PHIT) 21%, average effective porosity (PHIE) 17% and average water saturation 0,82.

Keywords: hydrocarbons zone, petrophysic, rock property, sequence stratigraphic

Procedia PDF Downloads 294
1781 Nine Year Trend Analysis of Malaria in Kahsay Abera General Hospital Humera Town: Western Tigrai, Northern Ethiopia: A Retrospective Study

Authors: Getachew Belay, Getachew Kahsu, Brhane Berhe, Kebede Tesfay, Fitsum Mardu, Nigus Shishay, Hadush Negash, Aster Tsegaye

Abstract:

Background: Malaria kills million people around the world, and it is still a serious public health problem in Ethiopia. Over the past years, the disease has been consistently reported as leading cause of outpatient visits, hospitalization and death in health facilities across the country. This study assessed malaria trend in Humera Town Kahsay Abera Hospital Tigrai region, Northern Ethiopia. Method: A Health facility retrospective cross sectional study was conducted in Kahsay Abera General Hospital from January 2011 to December 2019. Data of Malaria cases were reviewed from Health Management Information System with the help of experts in the office. The nine year data were extracted and analyzed using Excel by excluding those which lack demographic data. Result: A total of 36,604 smear positive malaria cases were confirmed in last nine years in the study area. Plasmodim falcifarum was the most prevalent reported species. Higher number of malaria cases were reported during October season.Males were more infected by the disese (63.1%) than females and males aged 15 years and above were the most iffected ones. The percentage proportion of P.falcifarum and P.vivax were 61.6% to 38.4%, respectively. There was a decreasing trend over the nine years following the peak in 2013. Conclusion: Malaria smear positivity, with highest cases being recorded in October, was declined over the nine years after peaking in 2013. Males aged 15 years and above were more affected, and P falciparum was the predominat species. Strengtheing the prevention and control activities is warranted in the study area.

Keywords: trend, malaria, kahsay abera general hospital, tigray, ethiopia

Procedia PDF Downloads 58
1780 Physical and Mechanical Characterization of Limestone in the Quarry of Meftah (Algeria)

Authors: Khaled Benyounes

Abstract:

Determination of the rock mechanical properties such as unconfined compressive strength UCS, Young’s modulus E, and tensile strength by the Brazilian test Rtb is considered to be the most important component in drilling and mining engineering project. Research related to establishing correlation between strength and physical parameters of rocks has always been of interest to mining and reservoir engineering. For this, many rock blocks of limestone were collected from the quarry located in Meftah (Algeria), the cores were crafted in the laboratory using a core drill. This work examines the relationships between mechanical properties and some physical properties of limestone. Many empirical equations are established between UCS and physical properties of limestone (such as dry bulk density, velocity of P-waves, dynamic Young’s modulus, alteration index, and total porosity). Other correlations, UCS - tensile strength, dynamic Young’s modulus - static Young’s modulus have been find. Based on the Mohr-Coulomb failure criterion, we were able to establish mathematical relationships that will allow estimating the cohesion and internal friction angle from UCS and indirect tensile strength. Results from this study can be useful for mining industry for resolve range of geomechanical problems such as slope stability.

Keywords: limestone, mechanical strength, Young’s modulus, porosity

Procedia PDF Downloads 621
1779 Landslide and Liquefaction Vulnerability Analysis Using Risk Assessment Analysis and Analytic Hierarchy Process Implication: Suitability of the New Capital of the Republic of Indonesia on Borneo Island

Authors: Rifaldy, Misbahudin, Khalid Rizky, Ricky Aryanto, M. Alfiyan Bagus, Fahri Septianto, Firman Najib Wibisana, Excobar Arman

Abstract:

Indonesia is a country that has a high level of disaster because it is on the ring of fire, and there are several regions with three major plates meeting in the world. So that disaster analysis must always be done to see the potential disasters that might always occur, especially in this research are landslides and liquefaction. This research was conducted to analyze areas that are vulnerable to landslides and liquefaction hazards and their relationship with the assessment of the issue of moving the new capital of the Republic of Indonesia to the island of Kalimantan with a total area of 612,267.22 km². The method in this analysis uses the Analytical Hierarchy Process and consistency ratio testing as a complex and unstructured problem-solving process into several parameters by providing values. The parameters used in this analysis are the slope, land cover, lithology distribution, wetness index, earthquake data, peak ground acceleration. Weighted overlay was carried out from all these parameters using the percentage value obtained from the Analytical Hierarchy Process and confirmed its accuracy with a consistency ratio so that a percentage of the area obtained with different vulnerability classification values was obtained. Based on the analysis results obtained vulnerability classification from very high to low vulnerability. There are (0.15%) 918.40083 km² of highly vulnerable, medium (20.75%) 127,045,44815 km², low (56.54%) 346,175.886188 km², very low (22.56%) 138,127.484832 km². This research is expected to be able to map landslides and liquefaction disasters on the island of Kalimantan and provide consideration of the suitability of regional development of the new capital of the Republic of Indonesia. Also, this research is expected to provide input or can be applied to all regions that are analyzing the vulnerability of landslides and liquefaction or the suitability of the development of certain regions.

Keywords: analytic hierarchy process, Borneo Island, landslide and liquefaction, vulnerability analysis

Procedia PDF Downloads 144
1778 Impact of Coccidia on Mortality and Weight Growth in Japanese Quail Coturnix japonica (Aves, Phasianidae) in Algeria

Authors: Amina Smai, Fairouz Haddadj, Habiba Saadi-Idouhar, Meriem Aissi, Safia Zenia, Salaheddine Doumandji

Abstract:

Coccidiosis is a very common intestinal parasitic disease caused by a worldwide distributed protozoan of the genus Eimeria. This disease is very common in young birds beyond the second week of life, especially in land-based breeding. The study was carried out in a hunting center of Zeralda located in the north-east of Algiers. The objective of our work is to study the evolution of coccidiosis in quails from 1 to 35 days old by collecting their droppings daily. These are analyzed in the laboratory using the flotation method and the Mac Master one to count coccidia. Weight changes are taken into account as well as mortality in parallel with certain zootechnical parameters such as density. The species of coccidia recovered is Eimeria coturnicis. The results showed that there is an average evolution of mortality of individuals with a rate of 13.33% due to the presence of coccidia with a significant regression (p=0.031). The weight of the quails increases with the age of the animal with a rapid growth rate from the 3rd week onwards. Indeed, the statistical analysis reveals that the evolution of the number did not affect the evolution of the weight (p=0.70) and the GMQ (R=0.52).

Keywords: coccidiosis, Coturnix japonica, daily average gain, weight

Procedia PDF Downloads 156
1777 Gas Condensing Unit with Inner Heat Exchanger

Authors: Dagnija Blumberga, Toms Prodanuks, Ivars Veidenbergs, Andra Blumberga

Abstract:

Gas condensing units with inner tubes heat exchangers represent third generation technology and differ from second generation heat and mass transfer units, which are fulfilled by passive filling material layer. The first one improves heat and mass transfer by increasing cooled contact surface of gas and condensate drops and film formed in inner tubes heat exchanger. This paper presents a selection of significant factors which influence the heat and mass transfer. Experimental planning is based on the research and analysis of main three independent variables; velocity of water and gas as well as density of spraying. Empirical mathematical models show that the coefficient of heat transfer is used as dependent parameter which depends on two independent variables; water and gas velocity. Empirical model is proved by the use of experimental data of two independent gas condensing units in Lithuania and Russia. Experimental data are processed by the use of heat transfer criteria-Kirpichov number. Results allow drawing the graphical nomogram for the calculation of heat and mass transfer conditions in the innovative and energy efficient gas cooling unit.

Keywords: gas condensing unit, filling, inner heat exchanger, package, spraying, tunes

Procedia PDF Downloads 274
1776 Assessment of the Effects of Water Harvesting Technology on Downstream Water Availability Using SWAT Model

Authors: Ayalkibet Mekonnen, Adane Abebe

Abstract:

In hydrological cycle there are many water-related human interventions that modify the natural systems. Rainwater harvesting is one such intervention that involves harnessing of water in the upstream. Water harvesting used in upstream prevents water runoff on downstream mainly disturbance on biodiversity and ecosystems. The main objectives of the study are to assess the effects of water harvesting technologies on downstream water availability in the Woreda. To address the above problem, SWAT model, cost-benefit ratio and optimal control approach was used to analyse the hydrological and socioeconomic impact and tradeoffs on water availability of the community, respectively. The downstream impacts of increasing water consumption in the upstream rain-fed areas of the Bilate and Shala Catchment are simulated using the semi-distributed SWAT model. The two land use scenarios tested at sub basin levels (1) conventional land use represents the current land use practice (Agri-CON) and (2) in-field rainwater harvesting (IRWH), improving soil water availability through rainwater harvesting land use scenario. The simulated water balance results showed that the highest peak mean monthly direct flow obtained from Agri-CON land use (127.1 m3/ha), followed by Agri-IRWH land use (11.5 mm) and LULC 2005 (90.1 m3/ha). The Agri-IRWH scenario reduced direct flow by 10% compared to Agri-CON and more groundwater flow contributed by Agri-IRWH (190 m3/ha) than Agri-CON (125 m3/ha). The overall result suggests that the water yield of the Woreda may not be negatively affected by the Agri-IRWH land use scenario. The technology in the Woreda benefited positively having an average benefit cost ratio of 4.2. Water harvesting for domestic use was not optimal that the value of the water per demand harvested was less than the amount of water needed. Storage tanks, series of check dams, gravel filled dams are an alternative solutions for water harvesting.

Keywords: water harvesting, SWAT model, land use scenario, Agri-CON, Agri-IRWH, trade off, benefit cost ratio

Procedia PDF Downloads 317
1775 Influence of Drying Method in Parts of Alumina Obtained for Rapid Prototyping and Uniaxial Dry Pressing

Authors: N. O. Muniz, F. A. Vechietti, L. Treccani, K. Rezwan, Luis Alberto dos Santos

Abstract:

Developing new technologies in the manufacture of biomaterials is a major challenge for researchers in the tissue engineering area. Many in vitro and in vivo studies have revealed the significance of the porous structure of the biomaterials on the promotion of bone ingrowth. The use of Rapid Prototyping in the manufacture of ceramics in the biomedical area has increased in recent years and few studies are conducted on obtaining alumina pieces. The aim of this work was the study of alumina pieces obtained by 3D printing and uniaxial dry pressing (DP) in order to evaluate porosity achieved by this two different techniques. Also, the influence of the powder drying process was determined. The row alumina powders were drying by freeze drying and oven. Apparent porosity, apparent density, retraction after thermal treatment were evaluated. The porosity values obtained by DP, regardless of method of drying powders, were much lower than those obtained by RP as expected. And for the prototyped samples, the method of powder drying significantly influenced porosities, reached 48% for drying oven versus 65% for freeze-drying. Therefore, the method of 3D printing, using different powder drying, allows a better control over the porosity.

Keywords: rapid prototyping, freeze-drying, porosity, alumina

Procedia PDF Downloads 446
1774 Influence of Shading on a BIPV System’s Performance in an Urban Context: Case Study of BIPV Systems of the Science Center of Complexity Building of the National and Autonomous University of Mexico in Mexico City

Authors: Viridiana Edith Ardura Perea, José Luis Bermúdez Alcocer

Abstract:

The purpose of this paper is to establish the influence of shading on a Building Integrated Photovoltaic (BIPV) system´s performance in an urban context. The PV systems of the Science Center of Complexity (Centro de Ciencias de la Complejidad) Building based in the Main Campus of the National and Autonomous University of Mexico (UNAM) in Mexico City was taken as case study.  The PV systems are placed on the rooftop and on the south façade of the building.  The south-façade PV system, operating as sunshades, consists of two strings:  one at the ground floor and the other one at the first floor.  According to the building’s facility manager, the south-façade PV system generates 42% less electricity per kilowatt peak (kWp) installed than the one on the roof.  The methods applied in this study were Solar Radiation Analysis (SRA) simulations performed with the Insight 360 Plug-in from Revit 2018® and an on-site measurement using specialized tools.  The results of the SRA simulations showed that the shading casted by the PV system placed on the first floor on top of the PV system of the ground floor decreases its solar incident radiation over 50%.  The simulation outcome was compared and validated to the measured data obtained from the on-site measurement.  In conclusion, the loss factor achieved from the shading of the PVs is due to the surroundings and the PV system´s own design.  The south-façade BIPV system’s deficient design generates critical losses on its performance and decreases its profitability.

Keywords: building integrated photovoltaics design, energy analysis software, shading losses, solar radiation analysis

Procedia PDF Downloads 154
1773 The “Buffer Layer” An Improved Electrode-Electrolyte Interface For Solid-State Batteries

Authors: Gregory Schmidt

Abstract:

Solid-state lithium batteries are broadly accepted as promising candidates for application in the next generation of EVs as they should offer safer and higher-energy-density batteries. Nonetheless, their development is impeded by many challenges, including the resistive electrode–electrolyte interface originating from the removal of the liquid electrolyte that normally permeates through the porous cathode and ensures efficient ionic conductivity through the cell. One way to tackle this challenge is by formulating composite cathodes containing solid ionic conductors in their structure, but this approach will require the conductors to exhibit chemical stability, electrochemical stability, flexibility, and adhesion and is, therefore, limited to some materials. Recently, Arkema developed a technology called buffering layer which allows the transformation of any conventional porous electrode into a catholyte. This organic layer has a very high ionic conductivity at room temperature, is compatible with all active materials, and can be processed with conventional Gigafactory equipment. Moreover, this layer helps protect the solid ionic conductor from the cathode and anode materials. During this presentation, the manufacture and the electrochemical performance of this layer for different systems of cathode and anode will be discussed.

Keywords: electrochemistry, all solid state battery, materials, interface

Procedia PDF Downloads 77
1772 Evaluation of Essential Oils Toxicity on Resistant and Susceptible House Fly Strains

Authors: Xing Ping Hu, Yuexun Tian, Jerome Hogsette

Abstract:

Housefly, Musca domestica L., is a serious urban nuisance and public health/food safety concern. This study evaluated the topical toxicity of 17 essential oil components and 3 plant essential oils against permethrin-resistant adult females and insecticide-susceptible house fly strains. Results show that thymol had the lowest LD₅₀ values against permethrin-resistant strain (43.77 and 41.10 ug per fly) and permethrin-susceptible strain (35.19 and 29.16 ug per fly) at both 24- and 48-hours post treatments; (+)-Pulegone had the lowest LD₉₅ values against the permethrin-resistant strain (0.15 and 0.10 mg per fly) at 24- and 48-hours post treatments, whereas plant thyme oil had the lowest LD₉₅ value of 0.17 mg per fly at post-24h and post-48h against the permethrin-susceptible strain. Additionally, the LD₅₀s was slightly but not significantly negatively correlated with the boiling points of the compounds tested; but showed no correlation with the density and LogP. These results indicate that specific essential oils and compounds have topical insecticidal properties against house flies with low dose. They may have the potential for development as botanical insecticides.

Keywords: urban pest, public health, pest management, botanical chemical

Procedia PDF Downloads 363
1771 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties

Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni

Abstract:

Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.

Keywords: multiscale model, tropocollagen, fibrils, ligaments commas

Procedia PDF Downloads 141
1770 Vibration of Nanobeam Subjected to Constant Magnetic Field and Ramp-Type Thermal Loading under Non-Fourier Heat Conduction Law of Lord-Shulman

Authors: Hamdy M. Youssef

Abstract:

In this work, the usual Euler–Bernoulli nanobeam has been modeled in the context of Lord-Shulman thermoelastic theorem, which contains non-Fourier heat conduction law. The nanobeam has been subjected to a constant magnetic field and ramp-type thermal loading. The Laplace transform definition has been applied to the governing equations, and the solutions have been obtained by using a direct approach. The inversions of the Laplace transform have been calculated numerically by using Tzou approximation method. The solutions have been applied to a nanobeam made of silicon nitride. The distributions of the temperature increment, lateral deflection, strain, stress, and strain-energy density have been represented in figures with different values of the magnetic field intensity and ramp-time heat parameter. The value of the magnetic field intensity and ramp-time heat parameter have significant effects on all the studied functions, and they could be used as tuners to control the energy which has been generated through the nanobeam.

Keywords: nanobeam, vibration, constant magnetic field, ramp-type thermal loading, non-Fourier heat conduction law

Procedia PDF Downloads 116
1769 Passively Q-Switched 914 nm Microchip Laser for LIDAR Systems

Authors: Marco Naegele, Klaus Stoppel, Thomas Dekorsy

Abstract:

Passively Q-switched microchip lasers enable the great potential for sophisticated LiDAR systems due to their compact overall system design, excellent beam quality, and scalable pulse energies. However, many near-infrared solid-state lasers show emitting wavelengths > 1000 nm, which are not compatible with state-of-the-art silicon detectors. Here we demonstrate a passively Q-switched microchip laser operating at 914 nm. The microchip laser consists of a 3 mm long Nd:YVO₄ crystal as a gain medium, while Cr⁴⁺:YAG with an initial transmission of 98% is used as a saturable absorber. Quasi-continuous pumping enables single pulse operation, and low duty cycles ensure low overall heat generation and power consumption. Thus, thermally induced instabilities are minimized, and operation without active cooling is possible while ambient temperature changes are compensated by adjustment of the pump laser current only. Single-emitter diode pumping at 808 nm leads to a compact overall system design and robust setup. Utilization of a microchip cavity approach ensures single-longitudinal mode operation with spectral bandwidths in the picometer regime and results in short laser pulses with pulse durations below 10 ns. Beam quality measurements reveal an almost diffraction-limited beam and enable conclusions concerning the thermal lens, which is essential to stabilize the plane-plane resonator. A 7% output coupler transmissivity is used to generate pulses with energies in the microjoule regime and peak powers of more than 600 W. Long-term pulse duration, pulse energy, central wavelength, and spectral bandwidth measurements emphasize the excellent system stability and facilitate the utilization of this laser in the context of a LiDAR system.

Keywords: diode-pumping, LiDAR system, microchip laser, Nd:YVO4 laser, passively Q-switched

Procedia PDF Downloads 112
1768 Geovisualization of Human Mobility Patterns in Los Angeles Using Twitter Data

Authors: Linna Li

Abstract:

The capability to move around places is doubtless very important for individuals to maintain good health and social functions. People’s activities in space and time have long been a research topic in behavioral and socio-economic studies, particularly focusing on the highly dynamic urban environment. By analyzing groups of people who share similar activity patterns, many socio-economic and socio-demographic problems and their relationships with individual behavior preferences can be revealed. Los Angeles, known for its large population, ethnic diversity, cultural mixing, and entertainment industry, faces great transportation challenges such as traffic congestion, parking difficulties, and long commuting. Understanding people’s travel behavior and movement patterns in this metropolis sheds light on potential solutions to complex problems regarding urban mobility. This project visualizes people’s trajectories in Greater Los Angeles (L.A.) Area over a period of two months using Twitter data. A Python script was used to collect georeferenced tweets within the Greater L.A. Area including Ventura, San Bernardino, Riverside, Los Angeles, and Orange counties. Information associated with tweets includes text, time, location, and user ID. Information associated with users includes name, the number of followers, etc. Both aggregated and individual activity patterns are demonstrated using various geovisualization techniques. Locations of individual Twitter users were aggregated to create a surface of activity hot spots at different time instants using kernel density estimation, which shows the dynamic flow of people’s movement throughout the metropolis in a twenty-four-hour cycle. In the 3D geovisualization interface, the z-axis indicates time that covers 24 hours, and the x-y plane shows the geographic space of the city. Any two points on the z axis can be selected for displaying activity density surface within a particular time period. In addition, daily trajectories of Twitter users were created using space-time paths that show the continuous movement of individuals throughout the day. When a personal trajectory is overlaid on top of ancillary layers including land use and road networks in 3D visualization, the vivid representation of a realistic view of the urban environment boosts situational awareness of the map reader. A comparison of the same individual’s paths on different days shows some regular patterns on weekdays for some Twitter users, but for some other users, their daily trajectories are more irregular and sporadic. This research makes contributions in two major areas: geovisualization of spatial footprints to understand travel behavior using the big data approach and dynamic representation of activity space in the Greater Los Angeles Area. Unlike traditional travel surveys, social media (e.g., Twitter) provides an inexpensive way of data collection on spatio-temporal footprints. The visualization techniques used in this project are also valuable for analyzing other spatio-temporal data in the exploratory stage, thus leading to informed decisions about generating and testing hypotheses for further investigation. The next step of this research is to separate users into different groups based on gender/ethnic origin and compare their daily trajectory patterns.

Keywords: geovisualization, human mobility pattern, Los Angeles, social media

Procedia PDF Downloads 101
1767 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 415
1766 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development

Authors: Sreto Boljevic

Abstract:

In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.

Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES

Procedia PDF Downloads 184
1765 A Data-Driven Approach for Studying the Washout Effects of Rain on Air Pollution

Authors: N. David, H. O. Gao

Abstract:

Air pollution is a serious environmental threat on a global scale and can cause harm to human health, morbidity and premature mortality. Reliable monitoring and control systems are therefore necessary to develop coping skills against the hazards associated with this phenomenon. However, existing environmental monitoring means often do not provide a sufficient response due to practical and technical limitations. Commercial microwave links that form the infrastructure for transmitting data between cell phone towers can be harnessed to map rain at high tempo-spatial resolution. Rainfall causes a decrease in the signal strength received by these wireless communication links allowing it to be used as a built-in sensor network to map the phenomenon. In this study, we point to the potential that lies in this system to indirectly monitor areas where air pollution is reduced. The relationship between pollutant wash-off and rainfall provides an opportunity to acquire important spatial information about air quality using existing cell-phone tower signals. Since the density of microwave communication networks is high relative to any dedicated sensor arrays, it could be possible to rely on this available observation tool for studying precipitation scavenging on air pollutants, for model needs and more.

Keywords: air pollution, commercial microwave links, rainfall, washout

Procedia PDF Downloads 94
1764 Effect of Bentonite on Shear Strength of Bushehr Calcareous Sand

Authors: Arash Poordana, Reza Ziaie Moayed

Abstract:

Calcareous sands are found most commonly in areas adjacent to crude oil and gas, and particularly around water. These types of soil have high compressibility due to high inter-granular porosity, irregularity, fragility, and especially crushing. Also, based on experience, it has been shown that the behavior of these types of soil is not similar to silica sand in loading. Since the destructive effects of cement on the environment are obvious, other alternatives such as bentonite are popular to be used. Bentonite has always been used commercially in civil engineering projects and according to its low hydraulic conductivity, it is used for landfills, cut-off walls, and nuclear wastelands. In the present study, unconfined compression tests in five ageing periods (1, 3, 7, 14, and 28 days) after mixing different percentages of bentonite (5%, 7.5% and 10%) with Bushehr calcareous sand were performed. The relative density considered for the specimens is 50%. Optimum water content was then added to each specimen accordingly (19%, 18.5%, and 17.5%). The sample preparation method was wet tamping and the specimens were compacted in five layers. It can be concluded from the results that as the bentonite content increases, the unconfined compression strength of the soil increases. Based on the obtained results, 3-day and 7-day ageing periods showed 30% and 50% increase in the shear strength of soil, respectively.

Keywords: unconfined compression test, bentonite, Bushehr, calcareous sand

Procedia PDF Downloads 102
1763 Urban Vitality: Methods for Measuring Vitality in Egypt's Commercial Streets

Authors: Alaa Eldien Sarhaan, Rania A. Galil, Yasmina Youssef

Abstract:

Vital streets transfer a totally different message from the lifeless streets; vitality is considered as the mobility dynamism for the city’s streets. The quality of a street is integral to the vitality. However, most efforts have focused on the requirements of cars resulting in the loss many qualities. A successful street is related to the needs and expectations of pedestrians. The amount of activity held in a place is one of the measures of vitality; hence the meaning of a vital street may be the result of a number of people engaged in various activities meeting their needs and expectations. Consequently, it varies from one city to another. This research focuses on vitality in commercial streets. It studies commercial streets in the Egyptian context, which have developed into a chaotic environment due to inefficiency and high-density activities. The first part identifies the meaning of vitality in the frame of its physical, social and economic dimensions, then determines the methods used in measuring vitality across commercial streets. Secondly, an application on one of the most important commercial streets in Alexandria ‘El-Attareen’ street is chosen as a case study to measure its vitality. The study contributes to a greater understanding of how theories on vital urban life contribute to the development of vital commercial streets in the Egyptian and similar contexts.

Keywords: footfall measurement, vitality, urban commercial streets, yield factor

Procedia PDF Downloads 236
1762 A Comprehensive Comparative Study on Seasonal Variation of Parameters Involved in Site Characterization and Site Response Analysis by Using Microtremor Data

Authors: Yehya Rasool, Mohit Agrawal

Abstract:

The site characterization and site response analysis are the crucial steps for reliable seismic microzonation of an area. So, the basic parameters involved in these fundamental steps are required to be chosen properly in order to efficiently characterize the vulnerable sites of the study region. In this study, efforts are made to delineate the variations in the physical parameter of the soil for the summer and monsoon seasons of the year (2021) by using Horizontal-to-Vertical Spectral Ratios (HVSRs) recorded at five sites of the Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India. The data recording at each site was done in such a way that less amount of anthropogenic noise was recorded at each site. The analysis has been done for five seismic parameters like predominant frequency, H/V ratio, the phase velocity of Rayleigh waves, shear wave velocity (Vs), compressional wave velocity (Vp), and Poisson’s ratio for both the seasons of the year. From the results, it is observed that these parameters majorly vary drastically for the upper layers of soil, which in turn may affect the amplification ratios and probability of exceedance obtained from seismic hazard studies. The HVSR peak comes out to be higher in monsoon, with a shift in predominant frequency as compared to the summer season of the year 2021. Also, the drastic reduction in shear wave velocity (up to ~10 m) of approximately 7%-15% is also perceived during the monsoon period with a slight decrease in compressional wave velocity. Generally, the increase in the Poisson ratios is found to have higher values during monsoon in comparison to the summer period. Our study may be very beneficial to various agricultural and geotechnical engineering projects.

Keywords: HVSR, shear wave velocity profile, Poisson ratio, microtremor data

Procedia PDF Downloads 68
1761 Contaminated Sites Prioritization Process Promoting and Redevelopment Planning

Authors: Che-An Lin, Wan-Ying Tsai, Ying-Shin Chen, Yu-Jen Chung

Abstract:

With the number and area of contaminated sites continued to increase in Taiwan, the Government have to make a priority list of screening contaminated sites under the limited funds and information. This study investigated the announcement of Taiwan EPA land 261 contaminated sites (except the agricultural lands), after preliminary screening 211 valid data to propose a screening system, removed contaminated sites were used to check the accuracy. This system including two dimensions which can create the sequence and use the XY axis to construct four quadrants. One dimension included environmental and social priority and the other related economic. All of the evaluated items included population density, land values, traffic hub, pollutant compound, pollutant concentrations, pollutant transport pathways, land usage sites, site areas, and water conductivity. The classification results of this screening are 1. Prioritization promoting sites (10%). 2. Environmental and social priority of the sites (17%), 3. Economic priority of the sites (30%), 4. Non-priority sites (43 %). Finally, this study used three of the removed contaminated sites to check screening system verification. As the surmise each of them are in line with the priority site and Economic priority of the site.

Keywords: contaminated sites, redevelopment, environmental, economics

Procedia PDF Downloads 456