Search results for: carbon nanotubes network
4389 On-Chip Sensor Ellipse Distribution Method and Equivalent Mapping Technique for Real-Time Hardware Trojan Detection and Location
Authors: Longfei Wang, Selçuk Köse
Abstract:
Hardware Trojan becomes great concern as integrated circuit (IC) technology advances and not all manufacturing steps of an IC are accomplished within one company. Real-time hardware Trojan detection is proven to be a feasible way to detect randomly activated Trojans that cannot be detected at testing stage. On-chip sensors serve as a great candidate to implement real-time hardware Trojan detection, however, the optimization of on-chip sensors has not been thoroughly investigated and the location of Trojan has not been carefully explored. On-chip sensor ellipse distribution method and equivalent mapping technique are proposed based on the characteristics of on-chip power delivery network in this paper to address the optimization and distribution of on-chip sensors for real-time hardware Trojan detection as well as to estimate the location and current consumption of hardware Trojan. Simulation results verify that hardware Trojan activation can be effectively detected and the location of a hardware Trojan can be efficiently estimated with less than 5% error for a realistic power grid using our proposed methods. The proposed techniques therefore lay a solid foundation for isolation and even deactivation of hardware Trojans through accurate location of Trojans.Keywords: hardware trojan, on-chip sensor, power distribution network, power/ground noise
Procedia PDF Downloads 3934388 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach
Authors: Apu Kumar Saha, Mrinmoy Majumder
Abstract:
The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering
Procedia PDF Downloads 5504387 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)
Procedia PDF Downloads 4434386 Utilizing Dowel-Laminated Mass Timber Components in Residential Multifamily Structures: A Case Study
Authors: Theodore Panton
Abstract:
As cities in the United States experience critical housing shortages, mass timber presents the opportunity to address this crisis in housing supply while taking advantage of the carbon-positive benefits of sustainably forested wood fiber. Mass timber, however, currently has a low level of adoption in residential multifamily structures due to the risk-averse nature of change within the construction financing, Architecture / Engineering / Contracting (AEC) communities, as well as various agency approval challenges. This study demonstrates how mass timber can be used within the cost and feasibility parameters of a typical multistory residential structure and ultimately address the need for dense urban housing. This study will utilize The Garden District, a mixed-use market-rate housing project in Woodinville, Washington, as a case study to illuminate the potential of mass timber in this application. The Garden District is currently in final stages of permit approval and will commence construction in 2023. It will be the tallest dowel-laminated timber (DLT) residential structure in the United States when completed. This case study includes economic, technical, and design reference points to demonstrate the relevance of the use of this system and its ability to deliver “triple bottom line” results. In terms of results, the study establishes scalable and repeatable approaches to project design and delivery of mass timber in multifamily residential uses and includes economic data, technical solutions, and a summary of end-user advantages. This study discusses the third party tested systems for satisfying acoustical requirements within dwelling units, a key to resolving the use of mass timber within multistory residential use. Lastly, the study will also compare the mass timber solution with a comparable cold formed steel (CFS) system with a similar program, which indicates a net carbon savings of over three million tons over the life cycle of the building.Keywords: DLT, dowell laminated timber, mass timber, market rate multifamily
Procedia PDF Downloads 1234385 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 1224384 Use of Locally Effective Microorganisms in Conjunction with Biochar to Remediate Mine-Impacted Soils
Authors: Thomas F. Ducey, Kristin M. Trippe, James A. Ippolito, Jeffrey M. Novak, Mark G. Johnson, Gilbert C. Sigua
Abstract:
The Oronogo-Duenweg mining belt –approximately 20 square miles around the Joplin, Missouri area– is a designated United States Environmental Protection Agency Superfund site due to lead-contaminated soil and groundwater by former mining and smelting operations. Over almost a century of mining (from 1848 to the late 1960’s), an estimated ten million tons of cadmium, lead, and zinc containing material have been deposited on approximately 9,000 acres. Sites that have undergone remediation, in which the O, A, and B horizons have been removed along with the lead contamination, the exposed C horizon remains incalcitrant to revegetation efforts. These sites also suffer from poor soil microbial activity, as measured by soil extracellular enzymatic assays, though 16S ribosomal ribonucleic acid (rRNA) indicates that microbial diversity is equal to sites that have avoided mine-related contamination. Soil analysis reveals low soil organic carbon, along with high levels of bio-available zinc, that reflect the poor soil fertility conditions and low microbial activity. Our study looked at the use of several materials to restore and remediate these sites, with the goal of improving soil health. The following materials, and their purposes for incorporation into the study, were as follows: manure-based biochar for the binding of zinc and other heavy metals responsible for phytotoxicity, locally sourced biosolids and compost to incorporate organic carbon into the depleted soils, effective microorganisms harvested from nearby pristine sites to provide a stable community for nutrient cycling in the newly composited 'soil material'. Our results indicate that all four materials used in conjunction result in the greatest benefit to these mine-impacted soils, based on above ground biomass, microbial biomass, and soil enzymatic activities.Keywords: locally effective microorganisms, biochar, remediation, reclamation
Procedia PDF Downloads 2194383 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction
Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach
Abstract:
X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast
Procedia PDF Downloads 2604382 A Review of Critical Framework Assessment Matrices for Data Analysis on Overheating in Buildings Impact
Authors: Martin Adlington, Boris Ceranic, Sally Shazhad
Abstract:
In an effort to reduce carbon emissions, changes in UK regulations, such as Part L Conservation of heat and power, dictates improved thermal insulation and enhanced air tightness. These changes were a direct response to the UK Government being fully committed to achieving its carbon targets under the Climate Change Act 2008. The goal is to reduce emissions by at least 80% by 2050. Factors such as climate change are likely to exacerbate the problem of overheating, as this phenomenon expects to increase the frequency of extreme heat events exemplified by stagnant air masses and successive high minimum overnight temperatures. However, climate change is not the only concern relevant to overheating, as research signifies, location, design, and occupation; construction type and layout can also play a part. Because of this growing problem, research shows the possibility of health effects on occupants of buildings could be an issue. Increases in temperature can perhaps have a direct impact on the human body’s ability to retain thermoregulation and therefore the effects of heat-related illnesses such as heat stroke, heat exhaustion, heat syncope and even death can be imminent. This review paper presents a comprehensive evaluation of the current literature on the causes and health effects of overheating in buildings and has examined the differing applied assessment approaches used to measure the concept. Firstly, an overview of the topic was presented followed by an examination of overheating research work from the last decade. These papers form the body of the article and are grouped into a framework matrix summarizing the source material identifying the differing methods of analysis of overheating. Cross case evaluation has identified systematic relationships between different variables within the matrix. Key areas focused on include, building types and country, occupants behavior, health effects, simulation tools, computational methods.Keywords: overheating, climate change, thermal comfort, health
Procedia PDF Downloads 3524381 Impact of Organic Farming on Soil Fertility and Microbial Activity
Authors: Menuka Maharjan
Abstract:
In the name of food security, agriculture intensification through conventional farming is being implemented in Nepal. Government focus on increasing agriculture production completely ignores soil as well human health. This leads to create serious soil degradation, i.e., reduction of soil fertility and microbial activity and health hazard in the country. On this note, organic farming is sustainable agriculture approach which can address challenge of sustaining food security while protecting the environment. This creates a win-win situation both for people and the environment. However, people have limited knowledge on significance of organic farming for environment conservation and food security especially developing countries like Nepal. Thus, the objective of the study was to assess the impacts of organic farming on soil fertility and microbial activity compared to conventional farming and forest in Chitwan, Nepal. Total soil organic carbon (C) was highest in organic farming (24 mg C g⁻¹ soil) followed by conventional farming (15 mg C g⁻¹ soil) and forest (9 mg C g⁻¹ soil) in the topsoil layer (0-10 cm depth). A similar trend was found for total nitrogen (N) content in all three land uses with organic farming soil possessing the highest total N content in both 0-10 cm and 10-20 cm depth. Microbial biomass C and N were also highest under organic farming, especially in the topsoil layer (350 and 46 mg g⁻¹ soil, respectively). Similarly, microbial biomass phosphorus (P) was higher (3.6 and 1.0 mg P kg⁻¹ at 0-10 and 10-20 cm depth, respectively) in organic farming compared to conventional farming and forest at both depths. However, conventional farming and forest soils had similar microbial biomass (C, N, and P) content. After conversion of forest, the P stock significantly increased by 373% and 170% in soil under organic farming at 0-10 and 10-20 cm depth, respectively. In conventional farming, the P stock increased by 64% and 36% at 0-10 cm and 10-20 cm depth, respectively, compared to forest. Overall, organic farming practices, i.e., crop rotation, residue input and farmyard manure application, significantly alters soil fertility and microbial activity. Organic farming system is emerging as a sustainable land use system which can address the issues of food security and environment conservation by increasing sustainable agriculture production and carbon sequestration, respectively, supporting to achieve goals of sustainable development.Keywords: organic farming, soil fertility, micobial biomas, food security
Procedia PDF Downloads 1794380 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 944379 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 1364378 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 4154377 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies
Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak
Abstract:
Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states
Procedia PDF Downloads 804376 Building a Dynamic News Category Network for News Sources Recommendations
Authors: Swati Gupta, Shagun Sodhani, Dhaval Patel, Biplab Banerjee
Abstract:
It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method.Keywords: news category, category network, news sources, ranking
Procedia PDF Downloads 3874375 Saccharification and Bioethanol Production from Banana Pseudostem
Authors: Elias L. Souza, Noeli Sellin, Cintia Marangoni, Ozair Souza
Abstract:
Among the different forms of reuse and recovery of agro-residual waste is the production of biofuels. The production of second-generation ethanol has been evaluated and proposed as one of the technically viable alternatives for this purpose. This research work employed the banana pseudostem as biomass. Two different chemical pre-treatment methods (acid hydrolisis with H2SO4 2% w/w and alkaline hydrolysis with NaOH 3% w/w) of dry and milled biomass (70 g/L of dry matter, ms) were assessed, and the corresponding reducing sugars yield, AR, (YAR), after enzymatic saccharification, were determined. The effect on YAR by increasing the dry matter (ms) from 70 to 100 g/L, in dry and milled biomass and also fresh, were analyzed. Changes in cellulose crystallinity and in biomass surface morphology due to the different chemical pre-treatments were analyzed by X-ray diffraction and scanning electron microscopy. The acid pre-treatment resulted in higher YAR values, whether related to the cellulose content under saccharification (RAR = 79,48) or to the biomass concentration employed (YAR/ms = 32,8%). In a comparison between alkaline and acid pre-treatments, the latter led to an increase in the cellulose content of the reaction mixture from 52,8 to 59,8%; also, to a reduction of the cellulose crystallinity index from 51,19 to 33,34% and increases in RAR (43,1%) and YAR/ms (39,5%). The increase of dry matter (ms) bran from 70 to 100 g/L in the acid pre-treatment, resulted in a decrease of average yields in RAR (43,1%) and YAR/ms (18,2%). Using the pseudostem fresh with broth removed, whether for 70 g/L concentration or 100 g/L in dry matter (ms), similarly to the alkaline pre-treatment, has led to lower average values in RAR (67,2% and 42,2%) and in YAR/ms (28,4% e 17,8%), respectively. The acid pre-treated and saccharificated biomass broth was detoxificated with different activated carbon contents (1,2 and 4% w/v), concentrated up to AR = 100 g/L and fermented by Saccharomyces cerevisiae. The yield values (YP/AR) and productivity (QP) in ethanol were determined and compared to those values obtained from the fermentation of non-concentrated/non-detoxificated broth (AR = 18 g/L) and concentrated/non-detoxificated broth (AR = 100 g/L). The highest average value for YP/AR (0,46 g/g) was obtained from the fermentation of non-concentrated broth. This value did not present a significant difference (p<0,05) when compared to the YP/RS related to the broth concentrated and detoxificated by activated carbon 1% w/v (YP/AR = 0,41 g/g). However, a higher ethanol productivity (QP = 1,44 g/L.h) was achieved through broth detoxification. This value was 75% higher than the average QP determined using concentrated and non-detoxificated broth (QP = 0,82 g/L.h), and 22% higher than the QP found in the non-concentrated broth (QP = 1,18 g/L.h).Keywords: biofuels, biomass, saccharification, bioethanol
Procedia PDF Downloads 3444374 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method
Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson
Abstract:
Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 1944373 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads
Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan
Abstract:
The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics
Procedia PDF Downloads 664372 A Study of Social Media Users’ Switching Behavior
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.Keywords: social media, switching, social media fatigue, alternative attractiveness
Procedia PDF Downloads 1424371 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 3474370 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener
Authors: Wenhao Li, Shijun Guo
Abstract:
Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring
Procedia PDF Downloads 1644369 Graphene Transistors Based Microwave Amplifiers
Authors: Pejman Hosseinioun, Ali Safari, Hamed Sarbazi
Abstract:
Graphene is a one-atom-thick sheet of carbon with numerous impressive properties. It is a promising material for future high-speed nanoelectronics due to its intrinsic superior carrier mobility and very high saturation velocity. These exceptional carrier transport properties suggest that graphene field effect transistors (G-FETs) can potentially outperform other FET technologies. In this paper, detailed discussions are introduced for Graphene Transistors Based Microwave Amplifiers.Keywords: graphene, microwave FETs, microwave amplifiers, transistors
Procedia PDF Downloads 4944368 Collective Intelligence-Based Early Warning Management for Agriculture
Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin
Abstract:
The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.Keywords: agricultural engineering, warning systems, social network services, context awareness
Procedia PDF Downloads 3844367 Roasting Degree of Cocoa Beans by Artificial Neural Network (ANN) Based Electronic Nose System and Gas Chromatography (GC)
Authors: Juzhong Tan, William Kerr
Abstract:
Roasting is one critical procedure in chocolate processing, where special favors are developed, moisture content is decreased, and better processing properties are developed. Therefore, determination of roasting degree of cocoa bean is important for chocolate manufacturers to ensure the quality of chocolate products, and it also decides the commercial value of cocoa beans collected from cocoa farmers. The roasting degree of cocoa beans currently relies on human specialists, who sometimes are biased, and chemical analysis, which take long time and are inaccessible to many manufacturers and farmers. In this study, a self-made electronic nose system consists of gas sensors (TGS 800 and 2000 series) was used to detecting the gas generated by cocoa beans with a different roasting degree (0min, 20min, 30min, and 40min) and the signals collected by gas sensors were used to train a three-layers ANN. Chemical analysis of the graded beans was operated by traditional GC-MS system and the contents of volatile chemical compounds were used to train another ANN as a reference to electronic nosed signals trained ANN. Both trained ANN were used to predict cocoa beans with a different roasting degree for validation. The best accuracy of grading achieved by electronic nose signals trained ANN (using signals from TGS 813 826 820 880 830 2620 2602 2610) turned out to be 96.7%, however, the GC trained ANN got the accuracy of 83.8%.Keywords: artificial neutron network, cocoa bean, electronic nose, roasting
Procedia PDF Downloads 2354366 Tourism as Economic Resource for Protecting the Landscape: Introducing Touristic Initiatives in Coastal Protected Areas of Albania
Authors: Enrico Porfido
Abstract:
The paper aims to investigate the relation between landscape and tourism, with a special focus on coastal protected areas of Albania. The relationship between tourism and landscape is bijective: There is no tourism without landscape attractive features and on the other side landscape needs economic resources to be conserved and protected. The survival of each component is strictly related to the other one. Today, the Albanian protected areas appear as isolated islands, too far away from each other to build an efficient network and to avoid waste in terms of energy, economy and working force. This study wants to stress out the importance of cooperation in terms of common strategies and the necessity of introducing a touristic sustainable model in Albania. Comparing the protection system laws of the neighbor countries of the Adriatic-Ionian region and through a desk review on the best practices of protected areas that benefit from touristic activities, the study proposes the creation of the Albanian Riviera Landscape Park. This action will impact positively the whole southern Albania territory, introducing a sustainable tourism network that aims to valorize the local heritage and to stop the coastal exploitation processes. The main output is the definition of future development scenarios in Albania with the establishment of new protected areas and the introduction of touristic initiatives.Keywords: Adriatic-Ionian region, protected areas, tourism for landscape, sustainable tourism
Procedia PDF Downloads 2834365 An Exploratory Study to Understand the Economic Opportunities from Climate Change
Authors: Sharvari Parikh
Abstract:
Climate change has always been looked upon as a threat. Increased use of fossil fuels, depletion of bio diversity, certain human activities, rising levels of Greenhouse Gas (GHG) emissions are the factors that have caused climate change. Climate change is creating new risks and aggravating the existing ones. The paper focuses on breaking the stereotypical perception of climate change and draws attention towards the constructive side of it. Researches around the world have concluded that climate change has provided us with many untapped opportunities. The next 15 years will be crucial, as it is in our hands whether we are able to grab these opportunities or just let the situation get worse. The world stands at a stage where we cannot think of making a choice between averting climate change and promoting growth and development. In fact, the solution to climate change itself has got economic opportunities. The data evidences from the paper show how we can create the opportunity to improve the lives of the world’s population at large through structural change which will promote environment friendly investments. Rising Investment in green energy and increased demand of climate friendly products has got ample of employment opportunities. Old technologies and machinery which are employed today lack efficiency and demand huge maintenance because of which we face high production cost. This can be drastically brought down by adaptation of Green technologies which are more accessible and affordable. Overall GDP of the world has been heavily affected in aggravating the problems arising out of increasing weather problems. Shifting to green economy can not only eliminate these costs but also build a sound economy. Accelerating the economy in direction of low-carbon future can lessen the burdens such as subsidies for fossil fuels, several public debts, unemployment, poverty, reduce healthcare expenses etc. It is clear that the world will be dragged into the ‘Darker phase’ if the current trends of fossil fuels and carbon are being consumed. Switching to Green economy is the only way in which we can lift the world from darker phase. Climate change has opened the gates for ‘Green and Clean economy’. It will also bring countries of the world together in achieving the common goal of Green Economy.Keywords: climate change, economic opportunities, green economy, green technology
Procedia PDF Downloads 2444364 Dynamic Risk Model for Offshore Decommissioning Using Bayesian Belief Network
Authors: Ahmed O. Babaleye, Rafet E. Kurt
Abstract:
The global oil and gas industry is beginning to witness an increase in the number of installations moving towards decommissioning. Decommissioning of offshore installations is a complex, costly and hazardous activity, making safety one of the major concerns. Among existing removal options, complete and partial removal options pose the highest risks. Therefore, a dynamic risk model of the accidents from the two options is important to assess the risks on an overall basis. In this study, a risk-based safety model is developed to conduct quantitative risk analysis (QRA) for jacket structure systems failure. Firstly, bow-tie (BT) technique is utilised to model the causal relationship between the system failure and potential accident scenarios. Subsequently, to relax the shortcomings of BT, Bayesian Belief Networks (BBNs) were established to dynamically assess associated uncertainties and conditional dependencies. The BBN is developed through a similitude mapping of the developed bow-tie. The BBN is used to update the failure probabilities of the contributing elements through diagnostic analysis, thus, providing a case-specific and realistic safety analysis method when compared to a bow-tie. This paper presents the application of dynamic safety analysis to guide the allocation of risk control measures and consequently, drive down the avoidable cost of remediation.Keywords: Bayesian belief network, offshore decommissioning, dynamic safety model, quantitative risk analysis
Procedia PDF Downloads 2814363 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Saad, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A new concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. To control the coordination problem, which depends on offset selection and to estimate uniform delay based on the offset choice in a traffic signal network. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and are compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show new model minimizes the total uniform delay to almost half compared to conventional models. The mathematical objective function is robust. The algorithm convergence time is fast.Keywords: area traffic control, traffic flow, differential evolution, sinusoidal periodic function, uniform delay, offset variable
Procedia PDF Downloads 2794362 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel
Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara
Abstract:
Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption
Procedia PDF Downloads 1554361 Improving the Effectiveness of Solidified Methane Storage: Developing Two Biosurfactants for Methane Hydrate Formation
Authors: Elaheh Sadeh, Abdolreza Farhadian, Matvei E. Semenov, Ulukbek Zh. Mirzakimov
Abstract:
Recent advancements in solidified gas technology have demonstrated substantial potential for applications in carbon capture, storage, and natural gas transportation. The key factor limiting the industrial adoption of hydrates lies in the necessity for efficient and environmentally friendly promoters. This study aims to address this issue by synthesizing two biosurfactants – sodium oleate (SO) and hydroxylated sodium oleate (HSO) – as promoters for methane hydrate formation. The unique properties of these green, bio-based surfactants can potentially optimize solidified methane storage with wide-ranging applications in energy storage and transportation. The synthesis process of these promoters is simple and easily scalable for industrial production. The utilization of water as a solvent in the process helps to mitigate environmental impacts and simplifies the scale-up procedure. High-pressure autoclave experiments revealed a significant acceleration in methane hydrate formation kinetics with minute concentrations of the biosurfactants. Remarkably, just 5 ppm of SO and HSO facilitated a maximum water-to-hydrate conversion of 90%, equating to a storage capacity of 156 v/v in distilled water. Furthermore, SO and HSO demonstrated impressive biodegradability, exceeding 60% within 28 days. Toxicity assessments confirmed the biocompatibility of these biosurfactants, with cell viability above 70% for skin and lung cells at concentrations up to 180 and 90 µg/mL, respectively. These results indicate that SO and HSO could serve as an environmentally friendly alternative to synthetic surfactants, such as SDS, for methane storage. The findings of this study have far-reaching implications for various industries and applications. These biosurfactants' efficiency in methane hydrate formation may contribute to improved seawater desalination processes and more effective carbon capture techniques, ultimately reducing greenhouse gas emissions. Moreover, their application in gas storage could revolutionize the way natural gas is transported and stored. The synthesis of effective biosurfactants like SO and HSO opens up a world of possibilities in environmental sustainability, energy efficiency, and industrial innovation.Keywords: methane storage, solidified methane, gas hydrate, biosurfactant
Procedia PDF Downloads 124360 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal
Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey
Abstract:
Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.Keywords: alternative ironmaking, coal gasification, extent of reduction, nugget making, syngas based DRI, solid state reduction
Procedia PDF Downloads 261