Search results for: thermal cycling machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6377

Search results for: thermal cycling machine

3017 The Effect of Solution Density on the Synthesis of Magnesium Borate from Boron-Gypsum

Authors: N. Tugrul, E. Sariburun, F. T. Senberber, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Boron-gypsum is a waste which occurs in the boric acid production process. In this study, the boron content of this waste is evaluated for the use in synthesis of magnesium borates and such evaluation of this kind of waste is useful more than storage or disposal. Magnesium borates, which are a sub-class of boron minerals, are useful additive materials for the industries due to their remarkable thermal and mechanical properties. Magnesium borates were obtained hydrothermally at different temperatures. Novelty of this study is the search of the solution density effects to magnesium borate synthesis process for the increasing the possibility of boron-gypsum usage as a raw material. After the synthesis process, products are subjected to XRD and FT-IR to identify and characterize their crystal structure, respectively.

Keywords: boron-gypsum, hydrothermal synthesis, magnesium borate, solution density

Procedia PDF Downloads 385
3016 Vision Based People Tracking System

Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti

Abstract:

In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.

Keywords: camshift algorithm, computer vision, Kalman filter, object tracking

Procedia PDF Downloads 441
3015 How to Improve Immersiveness in Virtual Reality Through Advanced Sense of Presence: A Literature Review

Authors: Bochen Jia, Francesco Zhu

Abstract:

People are constantly surprised at how real and immersive virtual reality (VR) is, even though the technology is still rudimentary, and we are only scratching the surface of its possibilities. Therefore, this literature review built a body of knowledge of existing technology that can be used to improve immersiveness in VR. For this paper, "Sense of Presence (SoP)" was chosen as the terminology to describe immersiveness in VR. Eight studies that tested VR technologies were identified. Many other studies were included to back up the incentives behind these technologies. VR technologies include vibration, airflow, thermal components, EMS, and quadcopters. Study results from selected papers were analyzed, compared, and generally positive. Seven studies had positive results, and only one had negative results. Vibration is the most effective option to improve SoP.

Keywords: virtual reality, sense of presence, self-awareness, literature review

Procedia PDF Downloads 123
3014 Transient Heat Conduction in Nonuniform Hollow Cylinders with Time Dependent Boundary Condition at One Surface

Authors: Sen Yung Lee, Chih Cheng Huang, Te Wen Tu

Abstract:

A solution methodology without using integral transformation is proposed to develop analytical solutions for transient heat conduction in nonuniform hollow cylinders with time-dependent boundary condition at the outer surface. It is shown that if the thermal conductivity and the specific heat of the medium are in arbitrary polynomial function forms, the closed solutions of the system can be developed. The influence of physical properties on the temperature distribution of the system is studied. A numerical example is given to illustrate the efficiency and the accuracy of the solution methodology.

Keywords: analytical solution, nonuniform hollow cylinder, time-dependent boundary condition, transient heat conduction

Procedia PDF Downloads 497
3013 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming

Authors: Rohit Mittal, Bright Keswani, Amit Mithal

Abstract:

This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.

Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming

Procedia PDF Downloads 639
3012 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian

Abstract:

The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: life prediction, condenser tube, neural network, fuzzy logic

Procedia PDF Downloads 345
3011 Development of Non-Intrusive Speech Evaluation Measure Using S-Transform and Light-Gbm

Authors: Tusar Kanti Dash, Ganapati Panda

Abstract:

The evaluation of speech quality and intelligence is critical to the overall effectiveness of the Speech Enhancement Algorithms. Several intrusive and non-intrusive measures are employed to calculate these parameters. Non-Intrusive Evaluation is most challenging as, very often, the reference clean speech data is not available. In this paper, a novel non-intrusive speech evaluation measure is proposed using audio features derived from the Stockwell transform. These features are used with the Light Gradient Boosting Machine for the effective prediction of speech quality and intelligibility. The proposed model is analyzed using noisy and reverberant speech from four databases, and the results are compared with the standard Intrusive Evaluation Measures. It is observed from the comparative analysis that the proposed model is performing better than the standard Non-Intrusive models.

Keywords: non-Intrusive speech evaluation, S-transform, light GBM, speech quality, and intelligibility

Procedia PDF Downloads 253
3010 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites

Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan

Abstract:

All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.

Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite

Procedia PDF Downloads 89
3009 Structural and Magnetic Properties of Bi0.82La0.2Fe1-xCrxO3 Nanoparticles

Authors: H. Nematifar, D. Sanavi Khoshnoud, S. Feyz

Abstract:

Bi0.82La0.2Fe1-xCrxO3 (BLFCxO, x = 0.0, 0.02, 0.05 and 0.08) nanoparticles were successfully synthesized by a sol-gel method. The X-ray diffraction (XRD) patterns indicate that the lattice parameters decrease for x ≤ 0.05, firstly, and then they increase for x > 0.05. A transformation from rhombohedral structure to orthorhombic structure occurs at x = 0.08. The transmission electron microscopy (TEM) analysis shows that the average nanoparticle size is about 60-70 nm. The remnant magnetisation (Mr) increases gradually with x to 0.02, then decreases with further increasing x up to 0.05, and finally enchases abruptly in x = 0.08. The coercivity (HC) increases gradually with x to 0.05, and then significantly reduced with increasing Cr substitution. The magnetic ordering temperature (TN) decreases with Cr doping concentration. The M-H curves of all samples exhibit a wasp-waist hysteresis loop in low magnetic region. This property can play an important role for the applications of some multiferroic nano-device.

Keywords: BiFeO3, sol-gel preparation, nanoparticles, magnetic materials, thermal analysis

Procedia PDF Downloads 304
3008 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 284
3007 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales

Authors: Philipp Sommer, Amgad Agoub

Abstract:

The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.

Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning

Procedia PDF Downloads 48
3006 Design of Composite Joints from Carbon Fibre for Automotive Parts

Authors: G. Hemath Kumar, H. Mohit, K. Karthick

Abstract:

One of the most important issues in the composite technology is the repairing of parts of aircraft structures which is manufactured from composite materials. In such applications and also for joining various composite parts together, they are fastened together either using adhesives or mechanical fasteners. The tensile strength of these joints was carried out using Universal Testing Machine (UTM). A parametric study was also conducted to compare the performance of the hybrid joint with varying adherent thickness, adhesive thickness and overlap length. The composition of the material is combination of epoxy resin and carbon fibre under the method of reinforcement. To utilize the full potential of composite materials as structural elements, the strength and stress distribution of these joints must be understood. The study of tensile strength in the members involved under various design conditions and various joints were took place.

Keywords: carbon fiber, FRP composite, MMC, automotive

Procedia PDF Downloads 400
3005 Carbon Nanocomposites : Structure, Characterization and Environmental Application

Authors: Bensacia Nabila, Hadj-Ziane Amel, Sefah Karima

Abstract:

Carbon nanocomposites have received more attention in the last years in view of their special properties such as low density, high specific surface area, and thermal and mechanical stability. Taking into account the importance of these materials, many studies aimed at improving the synthesis process have been conducted. However, the presence of impurities could affect significantly the properties of these materials, and the characterization of these compounds is an important challenge to assure the quality of the new carbon nanocomposites. The present study aims to develop a new recyclable decontaminating material for dyes removal. This new material consists of an active element based on carbon nanotubes wrapped in a microcapsule of iron oxide. The adsorbent is characterized by Transmission electron microscopy, X-ray diffraction and the surface area was measured by the BET method.

Keywords: carbon nanocomposite, chitozen, elimination, dyes

Procedia PDF Downloads 317
3004 Dynamical and Thermal Study of Twin Impinging Jets a Vertical Plate with Various Jet Velocities and Impinging Distance

Authors: Louaifi Hamaili Samira, Mataoui Amina, Cheraitia Tadjeddine

Abstract:

This investigation proposes a numerical analysis of two turbulent parallel jets impinging a heated plate. The heat transfer enhancement is carried out according of the main parameters of the jet-wall interaction. The numerical solution of the stationary equations (RANS) is performed by the finite volume method using the k - ε model. A parametric study is performed to evaluate simultaneously the effect of nozzle-plate distance and velocity ratios in the range 0≤λ≤1. It is found that good local cooling is obtained for λ= 0.25 when the impinging distance is between 4w and 8w than for velocity ratios λ=1 and λ= 0.75. On the other hand, for impinging distances exceeding 8w, the velocity ratio λ =0.75 is more appropriate for good local cooling of the plate.

Keywords: two unequal jets, turbulence, mixing, heat transfer, CFD

Procedia PDF Downloads 23
3003 Development of Ultrasounf Probe Holder for Automatic Scanning Asymmetric Reflector

Authors: Nabilah Ibrahim, Hafiz Mohd Zaini, Wan Fatin Liyana Mutalib

Abstract:

Ultrasound equipment or machine is capable to scan in two dimensional (2D) areas. However there are some limitations occur during scanning an object. The problem will occur when scanning process that involving the asymmetric object. In this project, the ultrasound probe holder for asymmetric reflector scanning in 3D image is proposed to make easier for scanning the phantom or object that has asymmetric shape. Initially, the constructed asymmetric phantom that construct will be used in 2D scanning. Next, the asymmetric phantom will be interfaced by the movement of ultrasound probe holder using the Arduino software. After that, the performance of the ultrasound probe holder will be evaluated by using the various asymmetric reflector or phantom in constructing a 3D image

Keywords: ultrasound 3D images, axial and lateral resolution, asymmetric reflector, Arduino software

Procedia PDF Downloads 553
3002 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.

Keywords: artificial neural network, cement, circular economy, concrete, by products

Procedia PDF Downloads 109
3001 Design Analysis of Solar Energy Panels for Tropical Nigeria

Authors: Cyril Agochi Okorowo

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man have greatly influenced climate change over the years as a result of a consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discusses solar energy as the abundant renewable energy in the tropical Nigeria, processes of harvesting the energy and recommends solar energy as an alternative means of electric power generation in a time the demand for power in Nigeria supersedes supply.

Keywords: analysis, energy, design, solar

Procedia PDF Downloads 283
3000 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 212
2999 Highly Realistic Facial Expressions of Anthropomorphic Social Agent as a Factor in Solving the 'Uncanny Valley' Problem

Authors: Daniia Nigmatullina, Vlada Kugurakova, Maxim Talanov

Abstract:

We present a methodology and our plans of anthropomorphic social agent visualization. That includes creation of three-dimensional model of the virtual companion's head and its facial expressions. Talking Head is a cross-disciplinary project of developing of the human-machine interface with cognitive functions. During the creation of a realistic humanoid robot or a character, there might be the ‘uncanny valley’ problem. We think about this phenomenon and its possible causes. We are going to overcome the ‘uncanny valley’ by increasing of realism. This article discusses issues that should be considered when creating highly realistic characters (particularly the head), their facial expressions and speech visualization.

Keywords: anthropomorphic social agent, facial animation, uncanny valley, visualization, 3D modeling

Procedia PDF Downloads 287
2998 Sliding Mode Control of the Power of Doubly Fed Induction Generator for Variable Speed Wind Energy Conversion System

Authors: Ahmed Abbou, Ali Mousmi, Rachid El Akhrif

Abstract:

This research paper aims to reduce the chattering phenomenon due to control by sliding mode control applied on a wind energy conversion system based on the doubly fed induction generator (DFIG). Our goal is to offset the effect of parametric uncertainties and come as close as possible to the dynamic response solicited by the control law in the ideal case and therefore force the active and reactive power generated by the DFIG to accurately follow the reference values which are provided to it. The simulation results using Matlab / Simulink demonstrate the efficiency and performance of the proposed technique while maintaining the simplicity of control by first order sliding mode.

Keywords: correction of the equivalent command, DFIG, induction machine, sliding mode controller

Procedia PDF Downloads 407
2997 Investigate the Effects of Geometrical Structure and Layer Orientation on Strength of 3D-FDM Rapid Prototyped Samples

Authors: Ahmed A.D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti

Abstract:

Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.

Keywords: building orientation, compression strength, rapid prototyping, tensile strength

Procedia PDF Downloads 691
2996 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 140
2995 Lipid-Coated Magnetic Nanoparticles for Frequency Triggered Drug Delivery

Authors: Yogita Patil-Sen

Abstract:

Superparamagnetic Iron Oxide Nanoparticles (SPIONs) have become increasingly important materials for separation of specific bio-molecules, drug delivery vehicle, contrast agent for MRI and magnetic hyperthermia for cancer therapy. Hyperthermia is emerging as an alternative cancer treatment to the conventional radio- and chemo-therapy, which have harmful side effects. When subjected to an alternating magnetic field, the magnetic energy of SPIONs is converted into thermal energy due to movement of particles. The ability of SPIONs to generate heat and potentially kill cancerous cells, which are more susceptible than the normal cells to temperatures higher than 41 °C forms the basis of hyerpthermia treatement. The amount of heat generated depends upon the magnetic properties of SPIONs which in turn is affected by their properties such as size and shape. One of the main problems associated with SPIONs is particle aggregation which limits their employability in in vivo drug delivery applications and hyperthermia cancer treatments. Coating the iron oxide core with thermally responsive lipid based nanostructures tend to overcome the issue of aggregation as well as improve biocompatibility and can enhance drug loading efficiency. Herein we report suitability of SPIONs and silica coated core-shell SPIONs, which are further, coated with various lipids for drug delivery and magnetic hyperthermia applications. The synthesis of nanoparticles is carried out using the established methods reported in the literature with some modifications. The nanoparticles are characterised using Infrared spectroscopy (IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM). The heating ability of nanoparticles is tested under alternating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of alternating magnetic field. The results suggest that the nanoparticles exhibit superparamagnetic behaviour, although coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the alternating magnetic field. Thus, the results demonstrate that lipid coated SPIONs exhibit potential as drug delivery vehicles for magnetic hyperthermia based cancer therapy.

Keywords: drug delivery, hyperthermia, lipids, superparamagnetic iron oxide nanoparticles (SPIONS)

Procedia PDF Downloads 228
2994 Carbon Nanofibers as the Favorite Conducting Additive for Mn₃O₄ Catalysts for Oxygen Reactions in Rechargeable Zinc-Air Battery

Authors: Augustus K. Lebechi, Kenneth I. Ozoemena

Abstract:

Rechargeable zinc-air batteries (RZABs) have been described as one of the most viable next-generation ‘beyond-the-lithium-ion’ battery technologies with great potential for renewable energy storage. It is safe, with a high specific energy density (1086 Wh/kg), environmentally benign, and low-cost, especially in resource-limited African countries. For widespread commercialization, the sluggish oxygen reaction kinetics pose a major challenge that impedes the reversibility of the system. Hence, there is a need for low-cost and highly active bifunctional electrocatalysts. Manganese oxide catalysts on carbon conducting additives remain the best couple for the realization of such low-cost RZABs. In this work, hausmannite Mn₃O₄ nanoparticles were synthesized through the annealing method from commercial electrolytic manganese dioxide (EMD), multi-walled carbon nanotubes (MWCNTs) were synthesized via the chemical vapor deposition (CVD) method and carbon nanofibers (CNFs) were synthesized via the electrospinning process with subsequent carbonization. Both Mn₃O₄ catalysts and the carbon conducting additives (MWCNT and CNF) were thoroughly characterized using X-ray powder diffraction spectroscopy (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and X-ray photoelectron spectroscopy (XPS). Composite electrocatalysts (Mn₃O₄/CNT and Mn₃O₄/CNF) were investigated for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an alkaline medium. Using the established electrocatalytic modalities for evaluating the electrocatalytic performance of materials (including double layer, electrochemical active surface area, roughness factor, specific current density, and catalytic stability), CNFs proved to be the most efficient conducting additive material for the Mn₃O₄ catalyst. From the DFT calculations, the higher performance of the CNFs over the MWCNTs is related to the ability of the CNFs to allow for a more favorable distribution of the d-electrons of the manganese (Mn) and enhanced synergistic effect with Mn₃O₄ for weaker adsorption energies of the oxygen intermediates (O*, OH* and OOH*). In a proof-of-concept, Mn₃O₄/CNF was investigated as the air cathode for rechargeable zinc-air battery (RZAB) in a micro-3D-printed cell configuration. The RZAB showed good performance in terms of open circuit voltage (1.77 V), maximum power density (177.5 mW cm-2), areal-discharge energy and cycling stability comparable to Pt/C (20 wt%) + IrO2. The findings here provide fresh physicochemical perspectives on the future design and utility of CNFs for developing manganese-based RZABs.

Keywords: bifunctional electrocatalyst, oxygen evolution reaction, oxygen reduction reactions, rechargeable zinc-air batteries.

Procedia PDF Downloads 53
2993 Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria

Authors: Okorowo Cyril Agochi

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply.

Keywords: electric, power, renewable energy, solar energy, sun, tropical

Procedia PDF Downloads 535
2992 Investigating the Physical Properties of Polycaprolactone/Eucomis autumnalis Nanocellulose Composite

Authors: Dolly Selikane, Thandi Gumede

Abstract:

Among the commonly studied organic fillers for polycaprolactone (PCL), cellulose is the most promising. It is available in various particle sizes and sources, providing numerous options for finding a suitable match for PCL matrices. In this study, cellulose was extracted from the leaves of E. autumnalis to create a PCL/nanocellulose composite through melt blending. The prepared nanocellulose was blended with PCL at a weight ratio of 97/3, and the resulting composite was characterized by its thermal and mechanical properties. The results showed that the addition of nanocellulose to PCL improved its mechanical properties, with a maximum increase of 29% in tensile strength and 31% in Young's modulus. The SEM analysis confirmed the successful blending of PCL and nanocellulose. The findings of this study suggest that the nanocellulose from Eucomis autumnalis plant has the potential to improve the mechanical properties of PCL and could be used in biomedical and packaging applications.

Keywords: polycaprolactone, medicinal plants, Eucomis autumnalis, nanocellulose, composite

Procedia PDF Downloads 115
2991 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media

Authors: Andrew Kurochkin, Kostiantyn Bokhan

Abstract:

In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.

Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction

Procedia PDF Downloads 127
2990 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 126
2989 Thermosalient Effect of an Organic Aminonitrile and its Derivatives

Authors: Lukman O. Alimi, Vincent J. Smith, Leonard J. Barbour

Abstract:

The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or a ballistic event1. Thermosalient compounds, colloquially known as ‘jumping crystals’ are promising materials for fabrication of actuators that are also being considered as materials for clean energy conversion because of their capabilities to convert thermal energy into mechanical motion directly. Herein, an organic aminonitrile and its derivatives have been probed by a combination of structural, microscopic and thermoanalytical techniques. Crystals of these compounds were analysed by means of single crystal XRD and hotstage microscopy in the temperature range of 100 to 298 K and found to exhibit the thermosalient effect. We also carried out differential scanning calorimetric analysis at the temperature corresponding to that at which the crystal jumps as observed under a hotstage microscope.

Keywords: aminonitrile, jumping crystal, self actuation, thermosalient effect

Procedia PDF Downloads 428
2988 Upgrading of Old Large Turbo Generators

Authors: M. Shadmand, T. Enayaty Ahangar, S. Kazemi

Abstract:

Insulation system of electrical machineries is the most critical point for their durability. Depending on generator nominal voltage, its insulation system is designed. In this research, a new stator insulation system is designed by new type of mica tapes which will consequently enables us to decrease the nominal ground-wall insulation thickness for the same voltage level. By keeping constant the slot area, it will be possible to increase the copper value in stator bars which will consequently able us to increase the nominal output current of turbo-generator. This will affect the cooling capability of machinery to some extent. But by considering the thermal conductivity of new insulating system which is improved, it is possible to increase the output power of generator up to 6% more. This research is done practically on a 200 MVA and 15.75 kV turbo-generators which its insulating system is Resin Rich (RR).

Keywords: insulation system, resin rich, VPI, upgrading

Procedia PDF Downloads 495