Search results for: learning Maltese as a second language
6331 Dynamic Distribution Calibration for Improved Few-Shot Image Classification
Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran
Abstract:
Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.Keywords: deep learning, computer vision, image classification, few-shot learning, threshold
Procedia PDF Downloads 686330 Memory Based Reinforcement Learning with Transformers for Long Horizon Timescales and Continuous Action Spaces
Authors: Shweta Singh, Sudaman Katti
Abstract:
The most well-known sequence models make use of complex recurrent neural networks in an encoder-decoder configuration. The model used in this research makes use of a transformer, which is based purely on a self-attention mechanism, without relying on recurrence at all. More specifically, encoders and decoders which make use of self-attention and operate based on a memory, are used. In this research work, results for various 3D visual and non-visual reinforcement learning tasks designed in Unity software were obtained. Convolutional neural networks, more specifically, nature CNN architecture, are used for input processing in visual tasks, and comparison with standard long short-term memory (LSTM) architecture is performed for both visual tasks based on CNNs and non-visual tasks based on coordinate inputs. This research work combines the transformer architecture with the proximal policy optimization technique used popularly in reinforcement learning for stability and better policy updates while training, especially for continuous action spaces, which are used in this research work. Certain tasks in this paper are long horizon tasks that carry on for a longer duration and require extensive use of memory-based functionalities like storage of experiences and choosing appropriate actions based on recall. The transformer, which makes use of memory and self-attention mechanism in an encoder-decoder configuration proved to have better performance when compared to LSTM in terms of exploration and rewards achieved. Such memory based architectures can be used extensively in the field of cognitive robotics and reinforcement learning.Keywords: convolutional neural networks, reinforcement learning, self-attention, transformers, unity
Procedia PDF Downloads 1376329 Vascular Crossed Aphasia in Dextrals: A Study on Bengali-Speaking Population in Eastern India
Authors: Durjoy Lahiri, Vishal Madhukar Sawale, Ashwani Bhat, Souvik Dubey, Gautam Das, Biman Kanti Roy, Suparna Chatterjee, Goutam Gangopadhyay
Abstract:
Crossed aphasia has been an area of considerable interest for cognitive researchers as it offers a fascinating insight into cerebral lateralization for language function. We conducted an observational study in the stroke unit of a tertiary care neurology teaching hospital in eastern India on subjects with crossed aphasia over a period of four years. During the study period, we detected twelve cases of crossed aphasia in strongly right-handed patients, caused by ischemic stroke. The age, gender, vernacular language and educational status of the patients were noted. Aphasia type and severity were assessed using Bengali version of Western Aphasia Battery (validated). Computed tomography, magnetic resonance imaging and angiography were used to evaluate the location and extent of the ischemic lesion in brain. Our series of 12 cases of crossed aphasia included 7 male and 5 female with mean age being 58.6 years. Eight patients were found to have Broca’s aphasia, 3 had trans-cortical motor aphasia and 1 patient suffered from global aphasia. Nine patients were having very severe aphasia and 3 suffered from mild aphasia. Mirror-image type of crossed aphasia was found in 3 patients, whereas 9 had anomalous variety. In our study crossed aphasia was found to be more frequent in males. Anomalous pattern was more common than mirror-image. Majority of the patients had motor-type aphasia and no patient was found to have pure comprehension deficit. We hypothesize that in Bengali-speaking right-handed population, lexical-semantic system of the language network remains loyal to the left hemisphere even if the phonological output system is anomalously located in the right hemisphere.Keywords: aphasia, crossed, lateralization, language function, vascular
Procedia PDF Downloads 1946328 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 1356327 Analysis of Feminist Translation in Subtitling from Arabic into English: A Case Study
Authors: Ghada Ahmed
Abstract:
Feminist translation is one of the strategies adopted in the field of translation studies when a gendered content is being rendered from one language to another, and this strategy has been examined in previous studies on written texts. This research, however, addresses the practice of feminist translation in audiovisual texts that are concerned with the screen, dialogue, image and visual aspects. In this thesis, the objectives are studying feminist translation and its adaptation in subtitling from Arabic into English. It addresses the connections between gender and translation as one domain and feminist translation practices with particular consideration of feminist translation strategies in English subtitles. It examines the visibility of the translator throughout the process, assuming that feminist translation is a product directed by the translator’s feminist position, culture, and ideology as a means of helping unshadow women. It also discusses how subtitling constraints impact feminist translation and how the image that has a narrative value can be integrated into the content of the English subtitles. The reasons for conducting this research project are to study language sexism in English and look into Arabic into English gendered content, taking into consideration the Arabic cultural concepts that may lose their connotations when they are translated into English. This research is also analysing the image in an audiovisual text and its contribution to the written dialogue in subtitling. Thus, this research attempts to answer the following questions: To what extent is there a form of affinity between a gendered content and translation? Is feminist translation an act of merely working on a feminist text or feminising the language of any text, by incorporating the translator’s ideology? How can feminist translation practices be applied in an audiovisual text? How likely is it to adapt feminist translation looking into visual components as well as subtitling constraints? Moreover, the paper searches into the fields of gender and translation; feminist translation, language sexism, media studies, and the gap in the literature related to feminist translation practice in visual texts. For my case study, the "Speed Sisters" film has been chosen so as to analyze its English subtitles for my research. The film is a documentary that was produced in 2015 and directed by Amber Fares. It is about five Palestinian women who try to break the stereotypes about women, and have taken their passion about car-racing forward to be the first all-women car-racing driving team in the Middle East. It tackles the issue of gender in both content and language and this is reflected in the translation. As the research topic is semiotic-channelled, the choice for the theoretical approaches varies and combines between translation studies, audiovisual translation, gender studies, and media studies. Each of which will contribute to understanding a specific field of the research and the results will eventually be integrated to achieve the intended objectives in a way that demonstrates rendering a gendered content in one of the audiovisual translation modes from a language into another.Keywords: audiovisual translation, feminist translation, films gendered content, subtitling conventions and constraints
Procedia PDF Downloads 3016326 Breast Cancer Detection Using Machine Learning Algorithms
Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra
Abstract:
In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer
Procedia PDF Downloads 556325 Online vs. in vivo Workshops in a Masters’ Degree Course in Mental Health Nursing: Students’ Views and Opinions
Authors: Evmorfia Koukia, Polyxeni Mangoulia
Abstract:
Workshops tend to be a vivid and productive way as an in vivo teaching method. Due to the pandemic, COVID-19 university courses were conducted through the internet. Method It was tried for the first time to integrate online art therapy workshops in a core course named “Special Themes of Mental Health Nursing” in a MSc Program in Mental Health. The duration of the course is 3-hours per week for 11 weeks in a single semester. The course has a main instructor, a professor of psychiatric nursing experienced in arts therapies workshops and visiting art therapists. All art therapists were given a certain topic to cover. Students were encouraged to keep a logbook that was evaluated at the end of the semester and was submitted as a part of the examination process of the course. An interview of 10 minutes was conducted with each student at the end of the course from an independent investigator (an assistant professor) Participants The students (sample) of the program were: nurses, psychologists, and social workers Results: All students who participated in the courses found that the learning process was vivid, encouraging participation and self-motivation, and there were no main differences from in vivo learning. The students identified their personal needs, and they felt a personal connection with the learning experience. The result of the personalized learning was that students discovered their strengths and weaknesses and developed skills like critical thinking. All students admitted that the workshops were the optimal way for them to comprehend the courses’ content, their capability to become therapists, as well as their obstacles and weaknesses while working with patients in mental health. Conclusion: There were no important differences between the views of students in online and in vivo teaching method of the workshops. The result has shown that workshops in mental health can contribute equally in the learning experience.Keywords: mental health, workshops, students, nursing
Procedia PDF Downloads 2106324 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19
Authors: Lan Cheng, Harry Qin, Yang Wang
Abstract:
Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis
Procedia PDF Downloads 1166323 Inquiry-based Science Education in Computer Science Learning in Primary School
Authors: Maslin Masrom, Nik Hasnaa Nik Mahmood, Wan Normeza Wan Zakaria, Azizul Azizan, Norshaliza Kamaruddin
Abstract:
Traditionally, in science education, the teacher provides facts and the students learn them. It is outmoded for today’s students to equip them with real-life situations, mainly because knowledge and life skills are acquired passively from the instructors. Inquiry-Based Science Education (IBSE) is an approach that allows students to experiment, ask questions, and develop responses based on reasoning. It has provided students and teachers with opportunities to actively engage in collaborative learning via inquiry. This approach inspires the students to become active thinkers, research for solutions, and gain life-long experience and self-confidence. Therefore, the research aims to investigate how the primary-school teacher supports students or pupils through an inquiry-based science education approach for computer science, specifically coding skills. The results are presented and described.Keywords: inquiry-based science education, student-centered learning, computer science, primary school
Procedia PDF Downloads 1586322 Online Postgraduate Students’ Perceptions and Experiences With Student to Student Interactions: A Case for Kamuzu University of Health Sciences in Malawi
Authors: Frazer McDonald Ng'oma
Abstract:
Online Learning in Malawi has only immersed in recent years due to the need to increase access to higher education, the need to accommodate upgrading students who wish to study on a part time basis while still continuing their work, and the COVID-19 pandemic, which forced the closure of schools resulting in academic institutions seeking alternative modes of teaching and Learning to ensure continued teaching and Learning. Realizing that this mode of Learning is becoming a norm, institutions of higher Learning have started pioneering online post-graduate programs from which they can draw lessons before fully implementing it in undergraduate programs. Online learning pedagogy has not been fully grasped and institutions are still experimenting with this mode of Learning until online Learning guiding policies are created and its standards improved. This single case descriptive qualitative research study sought to investigate online postgraduate students’ perceptions and experiences with Student to student interactive pedagogy in their programs. The results of the study are to inform institutions and educators how to structure their programs to ensure that their students get the full satisfaction. 25 Masters students in 3 recently introduced online programs at Kamuzu University of Health Sciences (KUHES), were engaged; 19 were interviewed and 6 responded to questionnaires. The findings from the students were presented and categorized in themes and subthemes that emerged from the qualitative data that was collected and analysed following Colaizzi’s framework for data analysis that resulted in themes formulation. Findings revealed that Student to student interactions occurred in the online programme during live sessions, on class Whatsapp group, in discussion boards as well as on emails. Majority of the students (n=18) felt the level of students’ interaction initiated by the institution was too much, referring to mandatory interactions activities like commenting in discussion boards and attending to live sessons. Some participants (n=7) were satisfied with the level of interaction and also pointed out that they would be fine with more program-initiated student–to–student interactions. These participants attributed having been out of school for some time as a reason for needing peer interactions citing that it is already difficult to get back to a traditional on-campus school after some time, let alone an online class where there is no physical interaction with other students. In general, majority of the participants (n=18) did not value Student to student interaction in online Learning. The students suggested that having intensive student-to-student interaction in postgraduate online studies does not need to be a high priority for the institution and they further recommended that if a lecturer decides to incorporate student-to-student activities into a class, they should be optional.Keywords: online learning, interactions, student interactions, post graduate students
Procedia PDF Downloads 736321 The Implementation of Character Education in Code Riverbanks, Special Region of Yogyakarta, Indonesia
Authors: Ulil Afidah, Muhamad Fathan Mubin, Firdha Aulia
Abstract:
Code riverbanks Yogyakarta is a settlement area with middle to lower social classes. Socio-economic situation is affecting the behavior of society. This research aimed to find and explain the implementation and the assessment of character education which were done in elementary schools in Code riverside, Yogyakarta region of Indonesia. This research is a qualitative research which the subjects were the kids of Code riverbanks, Yogyakarta. The data were collected through interviews and document studies and analyzed qualitatively using the technique of interactive analysis model of Miles and Huberman. The results show that: (1) The learning process of character education was done by integrating all aspects such as democratic and interactive learning session also introducing role model to the students. 2) The assessment of character education was done by teacher based on teaching and learning process and an activity in outside the classroom that was the criterion on three aspects: Cognitive, affective and psychomotor.Keywords: character, Code riverbanks, education, Yogyakarta
Procedia PDF Downloads 2516320 The Voiceless Dental- Alveolar Common Augment in Arabic and Other Semitic Languages, a Morphophonemic Comparison
Authors: Tarek Soliman Mostafa Soliman Al-Nana'i
Abstract:
There are non-steady voiced augments in the Semitic languages, and in the morphological and structural augmentation, two sounds were augments in all Semitic languages at the level of the spoken language and two letters at the level of the written language, which are the hamza and the ta’. This research studies only the second of them; Therefore, we defined it as “The Voiceless Dental- alveolar common augment” (VDACA) to distinguish it from the glottal sound “Hamza”, first, middle, or last, in a noun or in a verb, in Arabic and its equivalent in the Semitic languages. What is meant by “VDACA” is the ta’ that is in addition to the root of the word at the morphological level: the word “voiceless” takes out the voiced sounds that we studied before, and the “dental- alveolar common augment” takes out the laryngeal sound of them, which is the “Hamza”: and the word “common” brings out the uncommon voiceless sounds, which are sīn, shīn, and hā’. The study is limited to the ta' alone among the Arabic sounds, and this title faced a problem in identifying it with the ta'. Because the designation of the ta is not the same in most Semitic languages. Hebrew, for example, has “tav” and is pronounced with the voiced fa (v), which is not in Arabic. It is called different names in other Semitic languages, such as “taw” or “tAu” in old Syriac. And so on. This goes hand in hand with the insistence on distance from the written level and the reference to the phonetic aspect in this study that is closely and closely linked to the morphological level. Therefore, the study is “morphophonemic”. What is meant by Semitic languages in this study are the following: Akkadian, Ugaritic, Hebrew, Syriac, Mandaean, Ge'ez, and Amharic. The problem of the study is the agreement or difference between these languages in the position of that augment, first, middle, or last. And in determining the distinguishing characteristics of each language from the other. As for the study methodology, it is determined by the comparative approach in Semitic languages, which is based on the descriptive approach for each language. The study is divided into an introduction, four sections, and a conclusion: Introduction: It included the subject of the study, its importance, motives, problem, methodology, and division. The first section: VDACA as a non-common phoneme. The second: VDACA as a common phoneme. The third: VDACA as a functional morpheme. The fourth section: Commentary and conclusion with the most important results. The positions of VDACA in Arabic and other Semitic languages, and in nouns and verbs, were limited to first, middle, and last. The research identified the individual addition, which is common with other augments, and the research proved that this augmentation is constant in all Semitic languages, but there are characteristics that distinguish each language from the other.Keywords: voiceless -, dental- alveolar, augment, Arabic - semitic languages
Procedia PDF Downloads 756319 Analogy to Continental Divisions: An Attention-Grabbing Approach to Teach Taxonomic Hierarchy to Students
Authors: Sagheer Ahmad
Abstract:
Teaching is a sacred profession whereby students are developed in their mental abilities to cope with the challenges of the remote world. Thinkers have developed plenty of interesting ways to make the learning process quick and absorbing for the students. However, third world countries are still lacking these remote facilities in the institutions, and therefore, teaching is totally dependent upon the skills of the teachers. Skillful teachers use self-devised and stimulating ideas to grab the attention of their students. Most of the time their ideas are based on local grounds with which the students are already familiar. This self-explanatory characteristic is the base of several local ideologies to disseminate scientific knowledge to new generations. Biology is such a subject which largely bases upon hypotheses, and teaching it in an interesting way is needful to create a friendly relationship between teacher and student, and to make a fantastic learning environment. Taxonomic classification if presented as it is, may not be attractive for the secondary school students who just start learning about biology at elementary levels. Presenting this hierarchy by exemplifying Kingdom, Phylum, Class, Order, family, genus and Species as comparatives of our division into continents, countries, cities, towns, villages, homes and finally individuals could be an attention-grabbing approach to make this concept get into bones of students. Similarly, many other interesting approaches have also been adopted to teach students in a fascinating way so that learning science subjects may not be boring for them. Discussing these appealing ways of teaching students can be a valuable stimulus to refine teaching methodologies about science, thereby promoting the concept of friendly learning.Keywords: biology, innovative approaches, taxonomic classification, teaching
Procedia PDF Downloads 2536318 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 776317 The Translation Of Original Metaphor In Literature
Authors: Esther Matthews
Abstract:
This paper looks at ways of translating new metaphors: those conceived and created by authors, which are often called ‘original’ metaphors in the world of Translation Studies. An original metaphor is the most extreme form of figurative language, often dramatic and shocking in effect. It displays unexpected juxtapositions of language, suggesting there could be as many different translations as there are translators. However, some theorists say original metaphors should be translated ‘literally’ or ‘word for word’ as far as possible, suggesting a similarity between translators’ solutions. How do literary translators approach this challenge? This study focuses on Spanish-English translations of a novel full of original metaphors: Nada by Carmen Laforet (1921 – 2004). Original metaphors from the text were compared to the four published English translations by Inez Muñoz, Charles Franklin Payne, Glafyra Ennis, and Edith Grossman. These four translators employed a variety of translation methods, but they translated ‘literally’ in well over half of the original metaphors studied. In a two-part translation exercise and questionnaire, professional literary translators were asked to translate a number of these metaphors. Many different methods were employed, but again, over half of the original metaphors were translated literally. Although this investigation was limited to one author and language pair, it gives a clear indication that, although literary translators’ solutions vary, on the whole, they prefer to translate original metaphors as literally as possible within the confines of English grammar and syntax. It also reveals literary translators’ desire to reproduce the distinctive character of an author’s work as accurately as possible for the target reader.Keywords: translation, original metaphor, literature, translator training
Procedia PDF Downloads 2796316 Supervised Machine Learning Approach for Studying the Effect of Different Joint Sets on Stability of Mine Pit Slopes Under the Presence of Different External Factors
Authors: Sudhir Kumar Singh, Debashish Chakravarty
Abstract:
Slope stability analysis is an important aspect in the field of geotechnical engineering. It is also important from safety, and economic point of view as any slope failure leads to loss of valuable lives and damage to property worth millions. This paper aims at mitigating the risk of slope failure by studying the effect of different joint sets on the stability of mine pit slopes under the influence of various external factors, namely degree of saturation, rainfall intensity, and seismic coefficients. Supervised machine learning approach has been utilized for making accurate and reliable predictions regarding the stability of slopes based on the value of Factor of Safety. Numerous cases have been studied for analyzing the stability of slopes using the popular Finite Element Method, and the data thus obtained has been used as training data for the supervised machine learning models. The input data has been trained on different supervised machine learning models, namely Random Forest, Decision Tree, Support vector Machine, and XGBoost. Distinct test data that is not present in training data has been used for measuring the performance and accuracy of different models. Although all models have performed well on the test dataset but Random Forest stands out from others due to its high accuracy of greater than 95%, thus helping us by providing a valuable tool at our disposition which is neither computationally expensive nor time consuming and in good accordance with the numerical analysis result.Keywords: finite element method, geotechnical engineering, machine learning, slope stability
Procedia PDF Downloads 1036315 Functional and Efficient Query Interpreters: Principle, Application and Performances’ Comparison
Authors: Laurent Thiry, Michel Hassenforder
Abstract:
This paper presents a general approach to implement efficient queries’ interpreters in a functional programming language. Indeed, most of the standard tools actually available use an imperative and/or object-oriented language for the implementation (e.g. Java for Jena-Fuseki) but other paradigms are possible with, maybe, better performances. To proceed, the paper first explains how to model data structures and queries in a functional point of view. Then, it proposes a general methodology to get performances (i.e. number of computation steps to answer a query) then it explains how to integrate some optimization techniques (short-cut fusion and, more important, data transformations). It then compares the functional server proposed to a standard tool (Fuseki) demonstrating that the first one can be twice to ten times faster to answer queries.Keywords: data transformation, functional programming, information server, optimization
Procedia PDF Downloads 1606314 Beyond the Flipped Classroom: A Tool to Promote Autonomy, Cooperation, Differentiation and the Pleasure of Learning
Authors: Gabriel Michel
Abstract:
The aim of our research is to find solutions for adapting university teaching to today's students and companies. To achieve this, we have tried to change the posture and behavior of those involved in the learning situation by promoting other skills. There is a gap between the expectations and functioning of students and university teaching. At the same time, the business world needs employees who are obviously competent and proficient in technology, but who are also imaginative, flexible, able to communicate, learn on their own and work in groups. These skills are rarely developed as a goal at university. The flipped classroom has been one solution. Thanks to digital tools such as Moodle, for example, but the model behind them is still centered on teachers and classic learning scenarios: it makes course materials available without really involving them and encouraging them to cooperate. It's against this backdrop that we've conducted action research to explore the possibility of changing the way we learn (rather than teach) by changing the posture of both the classic student and the teacher. We hypothesized that a tool we developed would encourage autonomy, the possibility of progressing at one's own pace, collaboration and learning using all available resources(other students, course materials, those on the web and the teacher/facilitator). Experimentation with this tool was carried out with around thirty German and French first-year students at the Université de Lorraine in Metz (France). The projected changesin the groups' learning situations were as follows: - use the flipped classroom approach but with a few traditional presentations by the teacher (materials having been put on a server) and lots of collective case solving, - engage students in their learning by inviting them to set themselves a primary objective from the outset, e.g. “Assimilating 90% of the course”, and secondary objectives (like a to-do list) such as “create a new case study for Tuesday”, - encourage students to take control of their learning (knowing at all times where they stand and how far they still have to go), - develop cooperation: the tool should encourage group work, the search for common solutions and the exchange of the best solutions with other groups. Those who have advanced much faster than the others, or who already have expertise in a subject, can become tutors for the others. A student can also present a case study he or she has developed, for example, or share materials found on the web or produced by the group, as well as evaluating the productions of others, - etc… A questionnaire and analysis of assessment results showed that the test group made considerable progress compared with a similar control group. These results confirmed our hypotheses. Obviously, this tool is only effective if the organization of teaching is adapted and if teachers are willing to change the way they work.Keywords: pedagogy, cooperation, university, learning environment
Procedia PDF Downloads 286313 Students' Willingness to Accept Virtual Lecturing Systems: An Empirical Study by Extending the UTAUT Model
Authors: Ahmed Shuhaiber
Abstract:
The explosion of the World Wide Web and the electronic trend of university teaching have transformed the learning style to become more learner-centred, Which has popularized the digital delivery of mediated lectures as an alternative or an adjunct to traditional lectures. Despite its potential and popularity, virtual lectures have not been adopted yet in Jordanian universities. This research aimed to fill this gap by studying the factors that influence student’s willingness to accept virtual lectures in one Jordanian University. A quantitative approach was followed by obtaining 216 survey responses and statistically applying the UTAUT model with some modifications. Results revealed that performance expectancy, effort expectancy, social influences and self-efficacy could significantly influence student’s attitudes towards virtual lectures. Additionally, facilitating conditions and attitudes towards virtual lectures were found with significant influence on student’s intention to take virtual lectures. Research implications and future work were specified afterwards.Keywords: E-learning, student willingness, UTAUT, virtual Lectures, web-based learning systems
Procedia PDF Downloads 2926312 The Role of ChatGPT in Enhancing ENT Surgical Training
Authors: Laura Brennan, Ram Balakumar
Abstract:
ChatGPT has been developed by Open AI (Nov 2022) as a powerful artificial intelligence (AI) language model which has been designed to produce human-like text from user written prompts. To gain the most from the system, user written prompts must give context specific information. This article aims to give guidance on how to optimise the ChatGPT system in the context of education for otolaryngology. Otolaryngology is a specialist field which sees little time dedicated to providing education to both medical students and doctors. Additionally, otolaryngology trainees have seen a reduction in learning opportunities since the COVID-19 pandemic. In this article we look at these various barriers to medical education in Otolaryngology training and suggest ways that ChatGPT can overcome them and assist in simulation-based training. Examples provide how this can be achieved using the Authors’ experience to further highlight the practicalities. What this article has found is that while ChatGPT cannot replace traditional mentorship and practical surgical experience, it can serve as an invaluable supplementary resource to simulation based medical education in Otolaryngology.Keywords: artificial intelligence, otolaryngology, surgical training, medical education
Procedia PDF Downloads 1616311 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents
Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei
Abstract:
With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.Keywords: document processing, framework, formal definition, machine learning
Procedia PDF Downloads 2206310 Design of the Intelligent Virtual Learning Coach. A Contextual Learning Approach to Digital Literacy of Senior Learners in the Context of Electronic Health Record (EHR)
Authors: Ilona Buchem, Carolin Gellner
Abstract:
The call for the support of senior learners in the development of digital literacy has become prevalent in recent years, especially in view of the aging societies paired with advances in digitalization in all spheres of life, including e-health. The goal has been to create opportunities for learning that incorporate the use of context in a reflective and dialogical way. Contextual learning has focused on developing skills through the application of authentic problems. While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning, focusing on knowledge acquisition and cognitive tasks, little research exists in reflective mentoring and coaching with the help of pedagogical agents and addressing the contextual dimensions of learning. This paper describes an approach to creating opportunities for senior learners to improve their digital literacy in the authentic context of the electronic health record (EHR) with the support of an intelligent virtual learning coach. The paper focuses on the design of the virtual coach as part of an e-learning system, which was developed in the EPA-Coach project founded by the German Ministry of Education and Research. The paper starts with the theoretical underpinnings of contextual learning and the related design considerations for a virtual learning coach based on previous studies. Since previous research in the area was mostly designed to cater to the needs of younger audiences, the results had to be adapted to the specific needs of senior learners. Next, the paper outlines the stages in the design of the virtual coach, which included the adaptation of the design requirements, the iterative development of the prototypes, the results of the two evaluation studies and how these results were used to improve the design of the virtual coach. The paper then presents the four prototypes of a senior-friendly virtual learning coach, which were designed to represent different preferences related to the visual appearance, the communication and social interaction styles, and the pedagogical roles. The first evaluation of the virtual coach design was an exploratory, qualitative study, which was carried out in October 2020 with eight seniors aged 64 to 78 and included a range of questions about the preferences of senior learners related to the visual design, gender, age, communication and role. Based on the results of the first evaluation, the design was adapted to the preferences of the senior learners and the new versions of prototypes were created to represent two male and two female options of the virtual coach. The second evaluation followed a quantitative approach with an online questionnaire and was conducted in May 2021 with 41 seniors aged 66 to 93 years. Following three research questions, the survey asked about (1) the intention to use, (2) the perceived characteristics, and (3) the preferred communication/interaction style of the virtual coach, i. e. task-oriented, relationship-oriented, or a mix. This paper follows with the discussion of the results of the design process and ends with conclusions and next steps in the development of the virtual coach including recommendations for further research.Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records
Procedia PDF Downloads 1816309 The Audio-Visual and Syntactic Priming Effect on Specific Language Impairment and Gender in Modern Standard Arabic
Authors: Mohammad Al-Dawoody
Abstract:
This study aims at exploring if priming is affected by gender in Modern Standard Arabic and if it is restricted solely to subjects with no specific language impairment (SLI). The sample in this study consists of 74 subjects, between the ages of 11;1 and 11;10, distributed into (a) 2 SLI experimental groups of 38 subjects divided into two gender groups of 18 females and 20 males and (b) 2 non-SLI control groups of 36 subjects divided into two gender groups of 17 females and 19 males. Employing a mixed research design, the researcher conducted this study within the framework of the relevance theory (RT) whose main assumption is that human beings are endowed with a biological ability to magnify the relevance of the incoming stimuli. Each of the four groups was given two different priming stimuli: audio-visual priming (T1) and syntactic priming (T2). The results showed that the priming effect was sheer distinct among SLI participants especially when retrieving typical responses (TR) in T1 and T2 with slight superiority of males over females. The results also revealed that non-SLI females showed stronger original response (OR) priming in T1 than males and that non-SLI males in T2 excelled in OR priming than females. Furthermore, the results suggested that the audio-visual priming has a stronger effect on SLI females than non-SLI females and that syntactic priming seems to have the same effect on the two groups (non-SLI and SLI females). The conclusion is that the priming effect varies according to gender and is not confined merely to non-SLI subjects.Keywords: specific language impairment, relevance theory, audio-visual priming, syntactic priming, modern standard Arabic
Procedia PDF Downloads 1786308 Qualitative Analysis of User Experiences and Needs for Educational Chatbots in Higher Education
Authors: Felix Golla
Abstract:
In an era where technology increasingly intersects with education, the potential of chatbots and ChatGPT agents in enhancing student learning experiences in higher education is both significant and timely. This study explores the integration of these AI-driven tools in educational settings, emphasizing their design and functionality to meet the specific needs of students. Recognizing the gap in literature concerning student-centered AI applications in education, this research offers valuable insights into the role and efficacy of chatbots and ChatGPT agents as educational tools. Employing qualitative research methodologies, the study involved conducting semi-structured interviews with university students. These interviews were designed to gather in-depth insights into the students' experiences and expectations regarding the use of AI in learning environments. The High-Performance Cycle Model, renowned for its focus on goal setting and motivation, served as the theoretical framework guiding the analysis. This model helped in systematically categorizing and interpreting the data, revealing the nuanced perceptions and preferences of students regarding AI tools in education. The major findings of the study indicate a strong preference among students for chatbots and ChatGPT agents that offer personalized interaction, adaptive learning support, and regular, constructive feedback. These features were deemed essential for enhancing student engagement, motivation, and overall learning outcomes. Furthermore, the study revealed that students perceive these AI tools not just as passive sources of information but as active facilitators in the learning process, capable of adapting to individual learning styles and needs. In conclusion, this study underscores the transformative potential of chatbots and ChatGPT agents in higher education. It highlights the need for these AI tools to be designed with a student-centered approach, ensuring their alignment with educational objectives and student preferences. The findings contribute to the evolving discourse on AI in education, suggesting a paradigm shift towards more interactive, responsive, and personalized learning experiences. This research not only informs educators and technologists about the desirable features of educational chatbots but also opens avenues for future studies to explore the long-term impact of AI integration in academic curricula.Keywords: chatbot design in education, high-performance cycle model application, qualitative research in AI, student-centered learning technologies
Procedia PDF Downloads 726307 Exploring Instructional Designs on the Socio-Scientific Issues-Based Learning Method in Respect to STEM Education for Measuring Reasonable Ethics on Electromagnetic Wave through Science Attitudes toward Physics
Authors: Adisorn Banhan, Toansakul Santiboon, Prasong Saihong
Abstract:
Using the Socio-Scientific Issues-Based Learning Method is to compare of the blended instruction of STEM education with a sample consisted of 84 students in 2 classes at the 11th grade level in Sarakham Pittayakhom School. The 2-instructional models were managed of five instructional lesson plans in the context of electronic wave issue. These research procedures were designed of each instructional method through two groups, the 40-experimental student group was designed for the instructional STEM education (STEMe) and 40-controlling student group was administered with the Socio-Scientific Issues-Based Learning (SSIBL) methods. Associations between students’ learning achievements of each instructional method and their science attitudes of their predictions to their exploring activities toward physics with the STEMe and SSIBL methods were compared. The Measuring Reasonable Ethics Test (MRET) was assessed students’ reasonable ethics with the STEMe and SSIBL instructional design methods on two each group. Using the pretest and posttest technique to monitor and evaluate students’ performances of their reasonable ethics on electromagnetic wave issue in the STEMe and SSIBL instructional classes were examined. Students were observed and gained experience with the phenomena being studied with the Socio-Scientific Issues-Based Learning method Model. To support with the STEM that it was not just teaching about Science, Technology, Engineering, and Mathematics; it is a culture that needs to be cultivated to help create a problem solving, creative, critical thinking workforce for tomorrow in physics. Students’ attitudes were assessed with the Test Of Physics-Related Attitude (TOPRA) modified from the original Test Of Science-Related Attitude (TOSRA). Comparisons between students’ learning achievements of their different instructional methods on the STEMe and SSIBL were analyzed. Associations between students’ performances the STEMe and SSIBL instructional design methods of their reasonable ethics and their science attitudes toward physics were associated. These findings have found that the efficiency of the SSIBL and the STEMe innovations were based on criteria of the IOC value higher than evidence as 80/80 standard level. Statistically significant of students’ learning achievements to their later outcomes on the controlling and experimental groups with the SSIBL and STEMe were differentiated between students’ learning achievements at the .05 level. To compare between students’ reasonable ethics with the SSIBL and STEMe of students’ responses to their instructional activities in the STEMe is higher than the SSIBL instructional methods. Associations between students’ later learning achievements with the SSIBL and STEMe, the predictive efficiency values of the R2 indicate that 67% and 75% for the SSIBL, and indicate that 74% and 81% for the STEMe of the variances were attributable to their developing reasonable ethics and science attitudes toward physics, consequently.Keywords: socio-scientific issues-based learning method, STEM education, science attitudes, measurement, reasonable ethics, physics classes
Procedia PDF Downloads 2966306 Beliefs, Practices and Identity about Bilingualism: Korean-australian Immigrant Parents and Family Language Policies
Authors: Eun Kyong Park
Abstract:
This study explores the relationships between immigrant parents’ beliefs about bilingualism, family literacy practices, and their children’s identity development in Sydney, Australia. This project examines how these parents’ ideological beliefs and knowledge are related to their provision of family literacy practices and management of the environment for their bilingual children based on family language policy (FLP). This is a follow-up study of the author’s prior thesis that presented Korean immigrant mothers’ beliefs and decision-making in support of their children’s bilingualism. It includes fathers’ perspectives within the participating families as a whole by foregrounding their perceptions of bilingual and identity development. It adopts a qualitative approach with twelve immigrant mothers and fathers living in a Korean-Australian community whose child attends one of the communities Korean language programs. This time, it includes introspective and self-evocative auto-ethnographic data. The initial data set collected from the first part of this study demonstrated the mothers provided rich, diverse, and specific family literacy activities for their children. These mothers selected specific practices to facilitate their child’s bilingual development at home. The second part of data has been collected over a three month period: 1) a focus group interview with mothers; 2) a brief self-report of fathers; 3) the researcher’s reflective diary. To analyze these multiple data, thematic analysis and coding were used to reveal the parents’ ideologies surrounding bilingualism and bilingual identities. It will highlight the complexity of language and literacy practices in the family domain interrelated with sociocultural factors. This project makes an original contribution to the field of bilingualism and FLP and a methodological contribution by introducing auto-ethnographic input of this community’s lived practices. This project will empower Korean-Australian immigrant families and other multilingual communities to reflect their beliefs and practices for their emerging bilingual children. It will also enable educators and policymakers to access authentic information about how bilingualism is practiced within these immigrant families in multiple ways and to help build the culturally appropriate partnership between home and school community.Keywords: bilingualism, beliefs, identity, family language policy, Korean immigrant parents in Australia
Procedia PDF Downloads 1376305 Predicting Radioactive Waste Glass Viscosity, Density and Dissolution with Machine Learning
Authors: Joseph Lillington, Tom Gout, Mike Harrison, Ian Farnan
Abstract:
The vitrification of high-level nuclear waste within borosilicate glass and its incorporation within a multi-barrier repository deep underground is widely accepted as the preferred disposal method. However, for this to happen, any safety case will require validation that the initially localized radionuclides will not be considerably released into the near/far-field. Therefore, accurate mechanistic models are necessary to predict glass dissolution, and these should be robust to a variety of incorporated waste species and leaching test conditions, particularly given substantial variations across international waste-streams. Here, machine learning is used to predict glass material properties (viscosity, density) and glass leaching model parameters from large-scale industrial data. A variety of different machine learning algorithms have been compared to assess performance. Density was predicted solely from composition, whereas viscosity additionally considered temperature. To predict suitable glass leaching model parameters, a large simulated dataset was created by coupling MATLAB and the chemical reactive-transport code HYTEC, considering the state-of-the-art GRAAL model (glass reactivity in allowance of the alteration layer). The trained models were then subsequently applied to the large-scale industrial, experimental data to identify potentially appropriate model parameters. Results indicate that ensemble methods can accurately predict viscosity as a function of temperature and composition across all three industrial datasets. Glass density prediction shows reliable learning performance with predictions primarily being within the experimental uncertainty of the test data. Furthermore, machine learning can predict glass dissolution model parameters behavior, demonstrating potential value in GRAAL model development and in assessing suitable model parameters for large-scale industrial glass dissolution data.Keywords: machine learning, predictive modelling, pattern recognition, radioactive waste glass
Procedia PDF Downloads 1176304 [Keynote Talk]: A Blueprint for an Educational Trajectory: The Power of Discourse in Constructing “Naughty” and “Adorable” Kindergarten Students
Authors: Fernanda T. Orsati, Julie Causton
Abstract:
Discursive practices enacted by educators in kindergarten create a blueprint for how the educational trajectories of students with disabilities are constructed. This two-year ethnographic case study critically examine educators’ relationships with students considered to present challenging behaviors in one kindergarten classroom located in a predominantly White middle-class school district in the Northeast of the United States. Focusing on the language and practices used by one special education teacher and three teaching assistants, this paper analyzes how teacher responses to students’ behaviors constructs and positions students over one year of kindergarten education. Using a critical discourse analysis, it shows that educators understand students’ behaviors as a deficit and needing consequences. This study highlights how educators’ responses reflect students' individual characteristics including family background, socioeconomics and ability status. This paper offers in-depth analysis of two students’ stories, which evidenced that the language used by educators amplifies the social positioning of students within the classroom and creates a foundation for who they are constructed to be. Through exploring routine language and practices, this paper demonstrates that educators outlined a blueprint of kindergartners, which positioned students as learners in ways that became the ground for either a limited or a promising educational pathway for them.Keywords: behavior, early education, special education, critical discourse analysis
Procedia PDF Downloads 3146303 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 646302 Audio-Visual Co-Data Processing Pipeline
Authors: Rita Chattopadhyay, Vivek Anand Thoutam
Abstract:
Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech
Procedia PDF Downloads 81