Search results for: data reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28979

Search results for: data reduction

25619 Trend Analysis of Africa’s Entrepreneurial Framework Conditions

Authors: Sheng-Hung Chen, Grace Mmametena Mahlangu, Hui-Cheng Wang

Abstract:

This study aims to explore the trends of the Entrepreneurial Framework Conditions (EFCs) in the five African regions. The Global Entrepreneur Monitor (GEM) is the primary source of data. The data drawn were organized into a panel (2000-2021) and obtained from the National Expert Survey (NES) databases as harmonized by the (GEM). The Methodology used is descriptive and uses mainly charts and tables; this is in line with the approach used by the GEM. The GEM draws its data from the National Expert Survey (NES). The survey by the NES is administered to experts in each country. The GEM collects entrepreneurship data specific to each country. It provides information about entrepreneurial ecosystems and their impact on entrepreneurship. The secondary source is from the literature review. This study focuses on the following GEM indicators: Financing for Entrepreneurs, Government support and Policies, Taxes and Bureaucracy, Government programs, Basic School Entrepreneurial Education and Training, Post school Entrepreneurial Education and Training, R&D Transfer, Commercial And Professional Infrastructure, Internal Market Dynamics, Internal Market Openness, Physical and Service Infrastructure, and Cultural And Social Norms, based on GEM Report 2020/21. The limitation of the study is the lack of updated data from some countries. Countries have to fund their own regional studies; African countries do not regularly participate due to a lack of resources.

Keywords: trend analysis, entrepreneurial framework conditions (EFCs), African region, government programs

Procedia PDF Downloads 76
25618 Access to Apprenticeships and the Impact of Individual and School Level Characteristics

Authors: Marianne Dæhlen

Abstract:

Periods of apprenticeships are characteristic of many vocational educational training (VET) systems. In many countries, becoming a skilled worker implies that the journey starts with an application for apprenticeships at a company or another relevant training establishment. In Norway, where this study is conducted, VET students start their journey with two years of school-based training before applying for two years of apprenticeship. Previous research has shown that access to apprenticeships differs by family background (socio-economic, immigrant, etc.), gender, school grades, and region. The question we raise in this study is whether the status, reputation, or position of the vocational school contributes to VET students’ access to apprenticeships. Data and methods: Register data containing information about schools’ and VET students’ characteristics will be analyzed in multilevel regression analyses. At the school level, the data will contain information on school size, shares of immigrants and/or share of male/female students, and grade requirements for admission. At the VET-student level, the register contains information on e.g., gender, school grades, educational program/trade, obtaining apprenticeship or not. The data set comprises about 3,000 students. Results: The register data is expected to be received in November 2024 and consequently, any results are not present at the point of this call. The planned article is part of a larger research project granted from the Norwegian Research Council and will, accordingly to the plan, start up in December 2024.

Keywords: apprenticeships, VET-students’ characteristics, vocational schools, quantitative methods

Procedia PDF Downloads 17
25617 Data Acquisition System for Automotive Testing According to the European Directive 2004/104/EC

Authors: Herminio Martínez-García, Juan Gámiz, Yolanda Bolea, Antoni Grau

Abstract:

This article presents an interactive system for data acquisition in vehicle testing according to the test process defined in automotive directive 2004/104/EC. The project has been designed and developed by authors for the Spanish company Applus-LGAI. The developed project will result in a new process, which will involve the creation of braking cycle test defined in the aforementioned automotive directive. It will also allow the analysis of new vehicle features that was not feasible, allowing an increasing interaction with the vehicle. Potential users of this system in the short term will be vehicle manufacturers and in a medium term the system can be extended to testing other automotive components and EMC tests.

Keywords: automotive process, data acquisition system, electromagnetic compatibility (EMC) testing, European Directive 2004/104/EC

Procedia PDF Downloads 344
25616 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events

Authors: Jaqueline Maria Ribeiro Vieira

Abstract:

Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). Previously we developed and proposed a novel strategy capable of detecting patterns at borehole images that may point to regions that have tension and breakout characteristics, based on segmented images. In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge data set configurations.

Keywords: image segmentation, oil well visualization, classifiers, data-mining, visual computer

Procedia PDF Downloads 305
25615 Exploratory Analysis and Development of Sustainable Lean Six Sigma Methodologies Integration for Effective Operation and Risk Mitigation in Manufacturing Sectors

Authors: Chukwumeka Daniel Ezeliora

Abstract:

The Nigerian manufacturing sector plays a pivotal role in the country's economic growth and development. However, it faces numerous challenges, including operational inefficiencies and inherent risks that hinder its sustainable growth. This research aims to address these challenges by exploring the integration of Lean and Six Sigma methodologies into the manufacturing processes, ultimately enhancing operational effectiveness and risk mitigation. The core of this research involves the development of a sustainable Lean Six Sigma framework tailored to the specific needs and challenges of Nigeria's manufacturing environment. This framework aims to streamline processes, reduce waste, improve product quality, and enhance overall operational efficiency. It incorporates principles of sustainability to ensure that the proposed methodologies align with environmental and social responsibility goals. To validate the effectiveness of the integrated Lean Six Sigma approach, case studies and real-world applications within select manufacturing companies in Nigeria will be conducted. Data were collected to measure the impact of the integration on key performance indicators, such as production efficiency, defect reduction, and risk mitigation. The findings from this research provide valuable insights and practical recommendations for selected manufacturing companies in South East Nigeria. By adopting sustainable Lean Six Sigma methodologies, these organizations can optimize their operations, reduce operational risks, improve product quality, and enhance their competitiveness in the global market. In conclusion, this research aims to bridge the gap between theory and practice by developing a comprehensive framework for the integration of Lean and Six Sigma methodologies in Nigeria's manufacturing sector. This integration is envisioned to contribute significantly to the sector's sustainable growth, improved operational efficiency, and effective risk mitigation strategies, ultimately benefiting the Nigerian economy as a whole.

Keywords: lean six sigma, manufacturing, risk mitigation, sustainability, operational efficiency

Procedia PDF Downloads 212
25614 A Review of Spatial Analysis as a Geographic Information Management Tool

Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku

Abstract:

Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.

Keywords: aspatial technique, buffer analysis, epidemiology, interpolation

Procedia PDF Downloads 330
25613 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis

Authors: Jigg Pelayo, Ricardo Villar

Abstract:

The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.

Keywords: high value crop, LiDAR, OBIA, precision agriculture

Procedia PDF Downloads 404
25612 IoT Based Agriculture Monitoring Framework for Sustainable Rice Production

Authors: Armanul Hoque Shaon, Md Baizid Mahmud, Askander Nobi, Md. Raju Ahmed, Md. Jiabul Hoque

Abstract:

In the Internet of Things (IoT), devices are linked to the internet through a wireless network, allowing them to collect and transmit data without the need for a human operator. Agriculture relies heavily on wireless sensors, which are a vital component of the Internet of Things (IoT). This kind of wireless sensor network monitors physical or environmental variables like temperatures, sound, vibration, pressure, or motion without relying on a central location or sink and collaboratively passes its data across the network to be analyzed. As the primary source of plant nutrients, the soil is critical to the agricultural industry's continued growth. We're excited about the prospect of developing an Internet of Things (IoT) solution. To arrange the network, the sink node collects groundwater levels and sends them to the Gateway, which centralizes the data and forwards it to the sensor nodes. The sink node gathers soil moisture data, transmits the mean to the Gateways, and then forwards it to the website for dissemination. The web server is in charge of storing and presenting the moisture in the soil data to the web application's users. Soil characteristics may be collected using a networked method that we developed to improve rice production. Paddy land is running out as the population of our nation grows. The success of this project will be dependent on the appropriate use of the existing land base.

Keywords: IoT based agriculture monitoring, intelligent irrigation, communicating network, rice production

Procedia PDF Downloads 157
25611 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm

Authors: Thanh Noi Phan, Martin Kappas, Jan Degener

Abstract:

The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.

Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam

Procedia PDF Downloads 391
25610 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data

Authors: Arman S. Kussainov, Altynbek K. Beisekov

Abstract:

This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.

Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm

Procedia PDF Downloads 417
25609 Thick Data Analytics for Learning Cataract Severity: A Triplet Loss Siamese Neural Network Model

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Diagnosing cataract severity is an important factor in deciding to undertake surgery. It is usually conducted by an ophthalmologist or through taking a variety of fundus photography that needs to be examined by the ophthalmologist. This paper carries out an investigation using a Siamese neural net that can be trained with small anchor samples to score cataract severity. The model used in this paper is based on a triplet loss function that takes the ophthalmologist best experience in rating positive and negative anchors to a specific cataract scaling system. This approach that takes the heuristics of the ophthalmologist is generally called the thick data approach, which is a kind of machine learning approach that learn from a few shots. Clinical Relevance: The lens of the eye is mostly made up of water and proteins. A cataract occurs when these proteins at the eye lens start to clump together and block lights causing impair vision. This research aims at employing thick data machine learning techniques to rate the severity of the cataract using Siamese neural network.

Keywords: thick data analytics, siamese neural network, triplet-loss model, few shot learning

Procedia PDF Downloads 115
25608 Influence of Intermediate Principal Stress on Solution of Planar Stability Problems

Authors: M. Jahanandish, M. B. Zeydabadinejad

Abstract:

In this paper, von Mises and Drucker-Prager yield criteria, as typical ones that consider the effect of intermediate principal stress σ2, have been selected and employed for investigating the influence of σ2 on the solution of a typical stability problem. The bearing capacity factors have been calculated under plane strain condition (strip footing) and axisymmetric condition (circular footing) using the method of stress characteristics together with the criteria mentioned. Different levels of σ2 relative to the other two principal stresses have been considered. While a higher σ2 entry in yield criterion gives a higher bearing capacity; its entry in equilibrium equations (axisymmetric) causes substantial reduction.

Keywords: intermediate principal stress, plane strain, axisymmetric, yield criteria

Procedia PDF Downloads 466
25607 Case Study Analysis for Driver's Company in the Transport Sector with the Help of Data Mining

Authors: Diana Katherine Gonzalez Galindo, David Rolando Suarez Mora

Abstract:

With this study, we used data mining as a new alternative of the solution to evaluate the comments of the customers in order to find a pattern that helps us to determine some behaviors to reduce the deactivation of the partners of the LEVEL app. In one of the greatest business created in the last times, the partners are being affected due to an internal process that compensates the customer for a bad experience, but these comments could be false towards the driver, that’s why we made an investigation to collect information to restructure this process, many partners have been disassociated due to this internal process and many of them refuse the comments given by the customer. The main methodology used in this case study is the observation, we recollect information in real time what gave us the opportunity to see the most common issues to get the most accurate solution. With this new process helped by data mining, we could get a prediction based on the behaviors of the customer and some basic data recollected such as the age, the gender, and others; this could help us in future to improve another process. This investigation gives more opportunities to the partner to keep his account active even if the customer writes a message through the app. The term is trying to avoid a recession of drivers in the future offering improving in the processes, at the same time we are in search of stablishing a strategy which benefits both the app’s managers and the associated driver.

Keywords: agent, driver, deactivation, rider

Procedia PDF Downloads 285
25606 Image Compression Using Block Power Method for SVD Decomposition

Authors: El Asnaoui Khalid, Chawki Youness, Aksasse Brahim, Ouanan Mohammed

Abstract:

In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression.

Keywords: image compression, SVD, block SVD power method, lossless compression, near lossless

Procedia PDF Downloads 391
25605 Real-Time Pedestrian Detection Method Based on Improved YOLOv3

Authors: Jingting Luo, Yong Wang, Ying Wang

Abstract:

Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.

Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3

Procedia PDF Downloads 147
25604 Design of Reconfigurable Fixed-Point LMS Adaptive FIR Filter

Authors: S. Padmapriya, V. Lakshmi Prabha

Abstract:

In this paper, an efficient reconfigurable fixed-point Least Mean Square Adaptive FIR filter is proposed. The proposed architecture has two methods of operation: one is area efficient design and the other is optimized power. Pipelining of the adder blocks and partial product generator are used to achieve low area and reversible logic is used to obtain low power design. Depending upon the input samples and filter coefficients, one of the techniques is chosen. Least-Mean-Square adaptation is performed to update the weights. The architecture is coded using Verilog and synthesized in cadence encounter 0.18μm technology. The synthesized results show that the area reduction ratio of the proposed when compared with conventional technique is about 1.2%.

Keywords: adaptive filter, carry select adder, least mean square algorithm, reversible logic

Procedia PDF Downloads 331
25603 Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria

Authors: R. B. Adegbola, K. F. Oyedele, L. Adeoti

Abstract:

We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas.

Keywords: seismograph, road failure, rigidity modulus, N-value, subsidence

Procedia PDF Downloads 368
25602 A Process Model for Online Trip Reservation System

Authors: Sh. Wafa, M. Alanoud, S. Liyakathunisa

Abstract:

Online booking for a trip or hotel has become an indispensable traveling tool today, people tend to be more interested in selecting air flight travel as their first choice when going for a long trip. People's shopping behavior has greatly changed by the advent of social network. Traditional ticket booking methods are considered as outdated with the advancement in tools and technology. Web based booking framework is an 'absolute necessity to have' for any visit or movement business that is investing heaps of energy noting telephone calls, sending messages or considering employing more staff. In this paper, we propose a process model for online trip reservation for our designed web application. Our proposed system will be highly beneficial and helps in reduction in time and cost for customers.

Keywords: trip, hotel, reservation, process model, time, cost, web app

Procedia PDF Downloads 222
25601 Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area

Authors: Soumia Merat, Lynda Djerbal, Ramdane Bahar, Mohammed Amin Benbouras

Abstract:

Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values.

Keywords: empirical models, RMSE, shear wave velocity, standard penetration test

Procedia PDF Downloads 341
25600 Mathematical Modeling of District Cooling Systems

Authors: Dana Alghool, Tarek ElMekkawy, Mohamed Haouari, Adel Elomari

Abstract:

District cooling systems have captured the attentions of many researchers recently due to the enormous benefits offered by such system in comparison with traditional cooling technologies. It is considered a major component of urban cities due to the significant reduction of energy consumption. This paper aims to find the optimal design and operation of district cooling systems by developing a mixed integer linear programming model to minimize the annual total system cost and satisfy the end-user cooling demand. The proposed model is experimented with different cooling demand scenarios. The results of the very high cooling demand scenario are only presented in this paper. A sensitivity analysis on different parameters of the model was performed.

Keywords: Annual Cooling Demand, Compression Chiller, Mathematical Modeling, District Cooling Systems, Optimization

Procedia PDF Downloads 205
25599 A New Authenticable Steganographic Method via the Use of Numeric Data on Public Websites

Authors: Che-Wei Lee, Bay-Erl Lai

Abstract:

A new steganographic method via the use of numeric data on public websites with self-authentication capability is proposed. The proposed technique transforms a secret message into partial shares by Shamir’s (k, n)-threshold secret sharing scheme with n = k + 1. The generated k+1 partial shares then are embedded into the selected numeric items in a website as if they are part of the website’s numeric content. Afterward, a receiver links to the website and extracts every k shares among the k+1 ones from the stego-numeric-content to compute k+1 copies of the secret, and the phenomenon of value consistency of the computed k+1 copies is taken as an evidence to determine whether the extracted message is authentic or not, attaining the goal of self-authentication of the extracted secret message. Experimental results and discussions are provided to show the feasibility and effectiveness of the proposed method.

Keywords: steganography, data hiding, secret authentication, secret sharing

Procedia PDF Downloads 250
25598 A Novel Approach to Design of EDDR Architecture for High Speed Motion Estimation Testing Applications

Authors: T. Gangadhararao, K. Krishna Kishore

Abstract:

Motion Estimation (ME) plays a critical role in a video coder, testing such a module is of priority concern. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-and-quotient (RQ) code, to embed into ME for video coding testing applications. An error in processing Elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. The proposed EDDR design for ME testing can detect errors and recover data with an acceptable area overhead and timing penalty.

Keywords: area overhead, data recovery, error detection, motion estimation, reliability, residue-and-quotient (RQ) code

Procedia PDF Downloads 433
25597 An Effective Route to Control of the Safety of Accessing and Storing Data in the Cloud-Based Data Base

Authors: Omid Khodabakhshi, Amir Rozdel

Abstract:

The subject of cloud computing security research has allocated a number of challenges and competitions because the data center is comprised of complex private information and are always faced various risks of information disclosure by hacker attacks or internal enemies. Accordingly, the security of virtual machines in the cloud computing infrastructure layer is very important. So far, there are many software solutions to develop security in virtual machines. But using software alone is not enough to solve security problems. The purpose of this article is to examine the challenges and security requirements for accessing and storing data in an insecure cloud environment. In other words, in this article, a structure is proposed for the implementation of highly isolated security-sensitive codes using secure computing hardware in virtual environments. It also allows remote code validation with inputs and outputs. We provide these security features even in situations where the BIOS, the operating system, and even the super-supervisor are infected. To achieve these goals, we will use the hardware support provided by the new Intel and AMD processors, as well as the TPM security chip. In conclusion, the use of these technologies ultimately creates a root of dynamic trust and reduces TCB to security-sensitive codes.

Keywords: code, cloud computing, security, virtual machines

Procedia PDF Downloads 194
25596 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: electromechanical oscillations, power system stabilizers, power oscillation damping, hankel singular values

Procedia PDF Downloads 596
25595 Day-Case Ketamine Infusions in Patients with Chronic Pancreatitis

Authors: S. M. C. Kelly, M. Goulden

Abstract:

Introduction: Chronic Pancreatitis is an increasing problem worldwide. Pain is the main symptom and the main reason for hospital readmission following diagnosis, despite the use of strong analgesics including opioids. Ketamine infusions reduce pain in complex regional pain syndrome and other neuropathic pain conditions. Our centre has trialed the use of ketamine infusions in patients with chronic pancreatitis. We have evaluated this service to assess whether ketamine reduces emergency department admissions and analgesia requirements. Methods: This study collected retrospective data from 2010 in all patients who received a ketamine infusion for chronic pain secondary to a diagnosis of chronic pancreatitis. The day-case ketamine infusions were initiated in theatre by an anaesthetist, with standard monitoring and the assistance of an anaesthetic practitioner. A bolus dose of 0.5milligrams/kilogram was given in theatre. The infusion of 0.5 milligrams/kilogram per hour was then administered over a 6 hour period in the theatre recovery area. A study proforma detailed the medical history, analgesic use and admissions to hospital. Patients received a telephone follow up consultation. Results: Over the last eight years, a total of 30 patients have received intravenous ketamine infusions, with a total of 92 ketamine infusions being administered. 53% of the patients were male with the average age of 47. A total of 27 patients participated with the telephone consultation. A third of patients reported a reduction in hospital admissions with pain following the ketamine infusion. Analgesia requirements were reduced by an average of 48.3% (range 0-100%) for an average duration of 69.6 days (range 0-180 days.) Discussion: This service evaluation illustrates that ketamine infusions can reduce analgesic requirements and the number of hospital admissions in patients with chronic pancreatitis. In the light of increasing pressures on Emergency departments and the increasing evidence of the dangers of long-term opioid use, this is clearly a useful finding. We are now performing a prospective study to assess the long-term effectiveness of ketamine infusions in reducing analgesia requirements and improving patient’s quality of life.

Keywords: acute-on-chronic pain, intravenous analgesia infusion, ketamine, pancreatitis

Procedia PDF Downloads 139
25594 Packet Analysis in Network Forensics: Insights, Tools, and Case Study

Authors: Dalal Nasser Fathi, Amal Saud Al-Mutairi, Mada Hamed Al-Towairqi, Enas Fawzi Khairallah

Abstract:

Network forensics is essential for investigating cyber incidents and detecting malicious activities by analyzing network traffic, with a focus on packet and protocol data. This process involves capturing, filtering, and examining network data to identify patterns and signs of attacks. Packet analysis, a core technique in this field, provides insights into the origins of data, the protocols used, and any suspicious payloads, which aids in detecting malicious activity. This paper explores network forensics, providing guidance for the analyst on what to look for and identifying attack sites guided by the seven layers of the OSI model. Additionally, it explains the most commonly used tools in network forensics and demonstrates a practical example using Wireshark.

Keywords: network forensic, packet analysis, Wireshark tools, forensic investigation, digital evidence

Procedia PDF Downloads 15
25593 Identifying the Factors affecting on the Success of Energy Usage Saving in Municipality of Tehran

Authors: Rojin Bana Derakhshan, Abbas Toloie

Abstract:

For the purpose of optimizing and developing energy efficiency in building, it is required to recognize key elements of success in optimization of energy consumption before performing any actions. Surveying Principal Components is one of the most valuable result of Linear Algebra because the simple and non-parametric methods are become confusing. So that energy management system implemented according to energy management system international standard ISO50001:2011 and all energy parameters in building to be measured through performing energy auditing. In this essay by simulating used of data mining, the key impressive elements on energy saving in buildings to be determined. This approach is based on data mining statistical techniques using feature selection method and fuzzy logic and convert data from massive to compressed type and used to increase the selected feature. On the other side, influence portion and amount of each energy consumption elements in energy dissipation in percent are recognized as separated norm while using obtained results from energy auditing and after measurement of all energy consuming parameters and identified variables. Accordingly, energy saving solution divided into 3 categories, low, medium and high expense solutions.

Keywords: energy saving, key elements of success, optimization of energy consumption, data mining

Procedia PDF Downloads 473
25592 Analyzing the Evolution of Adverse Events in Pharmacovigilance: A Data-Driven Approach

Authors: Kwaku Damoah

Abstract:

This study presents a comprehensive data-driven analysis to understand the evolution of adverse events (AEs) in pharmacovigilance. Utilizing data from the FDA Adverse Event Reporting System (FAERS), we employed three analytical methods: rank-based, frequency-based, and percentage change analyses. These methods assessed temporal trends and patterns in AE reporting, focusing on various drug-active ingredients and patient demographics. Our findings reveal significant trends in AE occurrences, with both increasing and decreasing patterns from 2000 to 2023. This research highlights the importance of continuous monitoring and advanced analysis in pharmacovigilance, offering valuable insights for healthcare professionals and policymakers to enhance drug safety.

Keywords: event analysis, FDA adverse event reporting system, pharmacovigilance, temporal trend analysis

Procedia PDF Downloads 54
25591 Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction

Authors: E. Cesarini, M. Lorenzini, R. Cardarelli, S. Chao, E. Coccia, V. Fafone, Y. Minenkow, I. Nardecchia, I. M. Pinto, A. Rocchi, V. Sequino, C. Taranto

Abstract:

Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti2O/SiO2), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed.

Keywords: mechanical measurement, nanomaterials, optical coating, thermal noise

Procedia PDF Downloads 425
25590 Sustainable Ecological Agricultural Systems in Bangladesh: Environmental, Economic and Social Perspective of Compost

Authors: Protima Chakraborty

Abstract:

The sustainability of conventional agriculture in Bangladesh is under threat from the continuous degradation of land and water resources, and from declining yields due to indiscriminate use of agrochemicals. NASL (Northern Agro Services Limited) is pursuing efforts to promote ecological agriculture with emphasis on better use of organic fertilizer resources and the reduction of external inputs. This paper examines the sustainability of two production systems in terms of their environmental soundness, economic viability and social acceptability based on empirical data collected through making demonstration land cultivation, a household survey, soil sample analysis, observations and discussions with key informants. Twelve indicators were selected to evaluate sustainability. Significant differences were found between the two systems in crop diversification, soil fertility management, pests and diseases management, and use of agrochemicals & Organic Compost. However, significant variations were found in other indicators such as land-use pattern, crop yield and stability, risk and uncertainties, and food security. Although crop yield and financial return were found to be slightly higher in the ecological system, the economic return and value addition per unit of land show the positive difference of using compost rather than chemical fertilizer. The findings suggest that ecological agriculture has a tendency towards becoming ecologically, economically and socially more sound than conventional agriculture, as it requires considerably fewer agro-chemicals, adds more organic matter to the soil, provides balanced food, and requires higher local inputs without markedly compromising output and financial benefits. Broad-policy measures, including the creation of mass awareness of adverse health effects of agrochemical-based products, are outlined for the promotion of ecological agriculture.

Keywords: Bangladesh, compost, conventional agriculture, organic fertilizer, environmental sustainability, economic viability, social acceptability

Procedia PDF Downloads 246