Search results for: cell differentiations
306 Glutamine Supplementation and Resistance Traning on Anthropometric Indices, Immunoglobulins, and Cortisol Levels
Authors: Alireza Barari, Saeed Shirali, Ahmad Abdi
Abstract:
Introduction: Exercise has contradictory effects on the immune system. Glutamine supplementation may increase the resistance of the immune system in athletes. The Glutamine is one of the most recognized immune nutrients that as a fuel source, substrate in the synthesis of nucleotides and amino acids and is also known to be part of the antioxidant defense. Several studies have shown that improving glutamine levels in plasma and tissues can have beneficial effects on the function of immune cells such as lymphocytes and neutrophils. This study aimed to investigate the effects of resistance training and training combined with glutamine supplementation to improve the levels of cortisol and immunoglobulin in untrained young men. The research shows that physical training can increase the cytokines in the athlete’s body of course; glutamine can counteract the negative effects of resistance training on immune function and stability of the mast cell membrane. Materials and methods: This semi-experimental study was conducted on 30 male non-athletes. They were randomly divided into three groups: control (no exercise), resistance training, resistance training and glutamine supplementation, respectively. Resistance training for 4 weeks and glutamine supplementation in 0.3 gr/kg/day after practice was applied. The resistance-training program consisted of eight exercises (leg press, lat pull, chest press, squat, seatedrow, abdominal crunch, shoulder press, biceps curl and triceps press down) four times per week. Participants performed 3 sets of 10 repetitions at 60–75% 1-RM. Anthropometry indexes (weight, body mass index, and body fat percentage), oxygen uptake (VO2max) Maximal, cortisol levels of immunoglobulins (IgA, IgG, IgM) were evaluated Pre- and post-test. Results: Results showed four week resistance training with and without glutamine cause significant increase in body weight, BMI and significantly decreased (P < 0/001) in BF. Vo2max also increased in both groups of exercise (P < 0/05) and exercise with glutamine (P < 0/001), such as in both groups significant reduction in IgG (P < 0/05) was observed. But no significant difference observed in levels of cortisol, IgA, IgM in any of the groups. No significant change observed in either parameter in the control group. No significant difference observed between the groups. Discussion: The alterations in the hormonal and immunological parameters can be used in order to assess the effect overload on the body, whether acute or chronically. The plasmatic concentration of glutamine has been associated to the functionality of the immunological system in individuals sub-mitted to intense physical training. resistance training has destructive effects on the immune system and glutamine supplementation cannot neutralize the damaging effects of power exercise on the immune system.Keywords: glutamine, resistance traning, immuglobulins, cortisol
Procedia PDF Downloads 478305 Development of a Natural Anti-cancer Formulation Which Can Target Triple Negative Breast Cancer Stem Cells
Authors: Samashi Munaweera
Abstract:
Cancer stem cells (CSC) are responsible for the initiation, extensive proliferation and metastasis of cancer. CSCs, including breast cancer stem cells (bCSCs) have a capacity to generate chemo and radiotherapy resistance heterogeneous population of cells. Over-expressed ABCB1 has been reported as a main reason for drug resistance of CSCs via activating drug efflux pumps by creating pores in the cell membrane. The overall efficiency of chemotherapeutic agents might be enhanced by blocking the ABCB protein efflux pump in the CSC membrane. There is an urgent need to search for persuasive natural drugs which can target CSCs. Anti-cancer properties of Hylocereus undatus on cancer CSCs have not yet been studied. In the present study, the anti-cancer effects of the peel and flesh of H. undatus fruit on bCSCs were evaluated with the aim of developing a marketable anti-cancer nutraceutical formulation. The flesh and peel of H. undatus were freeze-dried and sequentially extracted into four different solvents (hexane, chloroform, ethyl acetate and ethanol). All extracts (eight extracts) were dried under reduced pressure, and different concentrations (12.5-400 µg/mL) were treated on bCSCs isolated from a triple-negative chemo-resistant breast cancer phenotype (MDA-MB-231 cells). Anti-proliferative effects of all extracts and paclitaxel (positive control) were determined by a colorimetric assay (WST-1 based). Since peel-chloroform (IC50= 54.8 µg/mL) and flesh-ethyl acetate (IC50= 150.5 µg/mL) extras exerted a potent anti-proliferative effect at 72 h post-incubation, a combinatorial formulation (CF) was developed with the most active peel-chloroform extract and 20 µg/mL of verapamil (a known ABCB1 drug efflux pump blocker) first time in the world. Anti-proliferative effects and pro-apoptotic effects of CF were confirmed by estimating activated caspase3 and caspase7 levels and apoptotic morphological features in the CF-treated bCSCs compared to untreated and only verapamil (20 µg/mL) treated bCSCs, and CF treated normal mammary epithelial cells (MCF-10A). The antiproliferative effects of CF (16.4 µg/mL) are greater than paclitaxel (19.2 µg/mL) and three folds greater than peel-chloroform extract (IC50= 54.8 µg/mL) on bCSCs while exerting less effects on normal cells (> 400 µg/mL). Collectively, CF can be considered as a potential initiative of a nutraceutical formulation that can target CSCs.Keywords: breast cancer stem cells (bCSCs), Hylocereus undatus, combinatorial formulation (CF), ABCB 1 protein, verapamil
Procedia PDF Downloads 26304 Isolation of Nitrosoguanidine Induced NaCl Tolerant Mutant of Spirulina platensis with Improved Growth and Phycocyanin Production
Authors: Apurva Gupta, Surendra Singh
Abstract:
Spirulina spp., as a promising source of many commercially valuable products, is grown photo autotrophically in open ponds and raceways on a large scale. However, the economic exploitation in an open system seems to have been limited because of lack of multiple stress-tolerant strains. The present study aims to isolate a stable stress tolerant mutant of Spirulina platensis with improved growth rate and enhanced potential to produce its commercially valuable bioactive compounds. N-methyl-n'-nitro-n-nitrosoguanidine (NTG) at 250 μg/mL (concentration permitted 1% survival) was employed for chemical mutagenesis to generate random mutants and screened against NaCl. In a preliminary experiment, wild type S. platensis was treated with NaCl concentrations from 0.5-1.5 M to calculate its LC₅₀. Mutagenized colonies were then screened for tolerance at 0.8 M NaCl (LC₅₀), and the surviving colonies were designated as NaCl tolerant mutants of S. platensis. The mutant cells exhibited 1.5 times improved growth against NaCl stress as compared to the wild type strain in control conditions. This might be due to the ability of the mutant cells to protect its metabolic machinery against inhibitory effects of salt stress. Salt stress is known to adversely affect the rate of photosynthesis in cyanobacteria by causing degradation of the pigments. Interestingly, the mutant cells were able to protect its photosynthetic machinery and exhibited 4.23 and 1.72 times enhanced accumulation of Chl a and phycobiliproteins, respectively, which resulted in enhanced rate of photosynthesis (2.43 times) and respiration (1.38 times) against salt stress. Phycocyanin production in mutant cells was observed to enhance by 1.63 fold. Nitrogen metabolism plays a vital role in conferring halotolerance to cyanobacterial cells by influx of nitrate and efflux of Na+ ions from the cell. The NaCl tolerant mutant cells took up 2.29 times more nitrate as compared to the wild type and efficiently reduce it. Nitrate reductase and nitrite reductase activity in the mutant cells also improved by 2.45 and 2.31 times, respectively against salt stress. From these preliminary results, it could be deduced that enhanced nitrogen uptake and its efficient reduction might be a reason for adaptive and halotolerant behavior of the S. platensis mutant cells. Also, the NaCl tolerant mutant of S. platensis with significant improved growth and phycocyanin accumulation compared to the wild type can be commercially promising.Keywords: chemical mutagenesis, NaCl tolerant mutant, nitrogen metabolism, photosynthetic machinery, phycocyanin
Procedia PDF Downloads 167303 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance
Authors: H. Shahid
Abstract:
Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.Keywords: hydrogen, oxygen, thermolysis, ultraviolet
Procedia PDF Downloads 131302 Hydrogen Induced Fatigue Crack Growth in Pipeline Steel API 5L X65: A Combined Experimental and Modelling Approach
Authors: H. M. Ferreira, H. Cockings, D. F. Gordon
Abstract:
Climate change is driving a transition in the energy sector, with low-carbon energy sources such as hydrogen (H2) emerging as an alternative to fossil fuels. However, the successful implementation of a hydrogen economy requires an expansion of hydrogen production, transportation and storage capacity. The costs associated with this transition are high but can be partly mitigated by adapting the current oil and natural gas networks, such as pipeline, an important component of the hydrogen infrastructure, to transport pure or blended hydrogen. Steel pipelines are designed to withstand fatigue, one of the most common causes of pipeline failure. However, it is well established that some materials, such as steel, can fail prematurely in service when exposed to hydrogen-rich environments. Therefore, it is imperative to evaluate how defects (e.g. inclusions, dents, and pre-existing cracks) will interact with hydrogen under cyclic loading and, ultimately, to what extent hydrogen induced failure will limit the service conditions of steel pipelines. This presentation will explore how the exposure of API 5L X65 to a hydrogen-rich environment and cyclic loads will influence its susceptibility to hydrogen induced failure. That evaluation will be performed by a combination of several techniques such as hydrogen permeation testing (ISO 17081:2014), fatigue crack growth (FCG) testing (ISO 12108:2018 and AFGROW modelling), combined with microstructural and fractographic analysis. The development of a FCG test setup coupled with an electrochemical cell will be discussed, along with the advantages and challenges of measuring crack growth rates in electrolytic hydrogen environments. A detailed assessment of several electrolytic charging conditions will also be presented, using hydrogen permeation testing as a method to correlate the different charging settings to equivalent hydrogen concentrations and effective diffusivity coefficients, not only on the base material but also on the heat affected zone and weld of the pipelines. The experimental work is being complemented with AFGROW, a useful FCG modelling software that has helped inform testing parameters and which will also be developed to ultimately help industry experts perform structural integrity analysis and remnant life characterisation of pipeline steels under representative conditions. The results from this research will allow to conclude if there is an acceleration of the crack growth rate of API 5L X65 under the influence of a hydrogen-rich environment, an important aspect that needs to be rectified instandards and codes of practice on pipeline integrity evaluation and maintenance.Keywords: AFGROW, electrolytic hydrogen charging, fatigue crack growth, hydrogen, pipeline, steel
Procedia PDF Downloads 104301 Ionic Liquids-Polymer Nanoparticle Systems as Breakthrough Tools to Improve the Leprosy Treatment
Authors: A. Julio, R. Caparica, S. Costa Lima, S. Reis, J. G. Costa, P. Fonte, T. Santos De Almeida
Abstract:
The Mycobacterium leprae causes a chronic and infectious disease called leprosy, which the most common symptoms are peripheral neuropathy and deformation of several parts of the body. The pharmacological treatment of leprosy is a combined therapy with three different drugs, rifampicin, clofazimine, and dapsone. However, clofazimine and dapsone have poor solubility in water and also low bioavailability. Thus, it is crucial to develop strategies to overcome such drawbacks. The use of ionic liquids (ILs) may be a strategy to overcome the low solubility since they have been used as solubility promoters. ILs are salts, liquid below 100 ºC or even at room temperature, that may be placed in water, oils or hydroalcoholic solutions. Another approach may be the encapsulation of drugs into polymeric nanoparticles, which improves their bioavailability. In this study, two different classes of ILs were used, the imidazole- and the choline-based ionic liquids, as solubility enhancers of the poorly soluble antileprotic drugs. Thus, after the solubility studies, it was developed IL-PLGA nanoparticles hybrid systems to deliver such drugs. First of all, the solubility studies of clofazimine and dapsone were performed in water and in water: IL mixtures, at ILs concentrations where cell viability is maintained, at room temperature for 72 hours. For both drugs, it was observed an improvement on the drug solubility and [Cho][Phe] showed to be the best solubility enhancer, especially for clofazimine, where it was observed a 10-fold improvement. Later, it was produced nanoparticles, with a polymeric matrix of poly(lactic-co-glycolic acid) (PLGA) 75:25, by a modified solvent-evaporation W/O/W double emulsion technique in the presence of [Cho][Phe]. Thus, the inner phase was an aqueous solution of 0.2 % (v/v) of the above IL with each drug to its maximum solubility determined on the previous study. After the production, the nanosystem hybrid was physicochemically characterized. The produced nanoparticles had a diameter of around 580 nm and 640 nm, for clofazimine and dapsone, respectively. Regarding the polydispersity index, it was in agreement of the recommended value of this parameter for drug delivery systems (around 0.3). The association efficiency (AE) of the developed hybrid nanosystems demonstrated promising AE values for both drugs, given their low solubility (64.0 ± 4.0 % for clofazimine and 58.6 ± 10.0 % for dapsone), that prospects the capacity of these delivery systems to enhance the bioavailability and loading of clofazimine and dapsone. Overall, the study achievement may signify an upgrading of the patient’s quality of life, since it may mean a change in the therapeutic scheme, not requiring doses of drug so high to obtain a therapeutic effect. The authors would like to thank Fundação para a Ciência e a Tecnologia, Portugal (FCT/MCTES (PIDDAC), UID/DTP/04567/2016-CBIOS/PRUID/BI2/2018).Keywords: ionic liquids, ionic liquids-PLGA nanoparticles hybrid systems, leprosy treatment, solubility
Procedia PDF Downloads 148300 Identification of Potent and Selective SIRT7 Anti-Cancer Inhibitor via Structure-Based Virtual Screening and Molecular Dynamics Simulation
Authors: Md. Fazlul Karim, Ashik Sharfaraz, Aysha Ferdoushi
Abstract:
Background: Computational medicinal chemistry approaches are used for designing and identifying new drug-like molecules, predicting properties and pharmacological activities, and optimizing lead compounds in drug development. SIRT7, a nicotinamide adenine dinucleotide (NAD+)-dependent deacylase which regulates aging, is an emerging target for cancer therapy with mounting evidence that SIRT7 downregulation plays important roles in reversing cancer phenotypes and suppressing tumor growth. Activation or altered expression of SIRT7 is associated with the progression and invasion of various cancers, including liver, breast, gastric, prostate, and non-small cell lung cancer. Objectives: The goal of this work was to identify potent and selective bioactive candidate inhibitors of SIRT7 by in silico screening of small molecule compounds obtained from Nigella sativa (N. sativa). Methods: SIRT7 structure was retrieved from The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), and its active site was identified using CASTp and metaPocket. Molecular docking simulation was performed with PyRx 0.8 virtual screening software. Drug-likeness properties were tested using SwissADME and pkCSM. In silico toxicity was evaluated by Osiris Property Explorer. Bioactivity was predicted by Molinspiration software. Antitumor activity was screened for Prediction of Activity Spectra for Substances (PASS) using Way2Drug web server. Molecular dynamics (MD) simulation was carried out by Desmond v3.6 package. Results: A total of 159 bioactive compounds from the N. Sativa were screened against the SIRT7 enzyme. Five bioactive compounds: chrysin (CID:5281607), pinocembrin (CID:68071), nigellidine (CID:136828302), nigellicine (CID:11402337), and epicatechin (CID:72276) were identified as potent SIRT7 anti-cancer candidates after docking score evaluation and applying Lipinski's Rule of Five. Finally, MD simulation identified Chrysin as the top SIRT7 anti-cancer candidate molecule. Conclusion: Chrysin, which shows a potential inhibitory effect against SIRT7, can act as a possible anti-cancer drug candidate. This inhibitor warrants further evaluation to check its pharmacokinetics and pharmacodynamics properties both in vitro and in vivo.Keywords: SIRT7, antitumor, molecular docking, molecular dynamics simulation
Procedia PDF Downloads 76299 Chloride Ion Channels Play a Role in Mediating Immune Response during Pseudomonas aeruginosa Infection
Authors: Hani M. Alothaid, Louise Robson, Richmond Muimo
Abstract:
Cystic fibrosis (CF) is a disease that affects respiratory function and in EU it affects about 1 in 2,500 live births with an average 40-year life expectancy. This disease caused by mutations within the gene encoding the CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) chloride channel leading to dysregulation of epithelial fluid transport and chronic lung inflammation, suggesting functional alterations of immune cells. In airways, CFTR been found to form a functional complex with S100A10 and AnxA2 in a cAMP/PKA dependent manner. The multiprotein complex of AnxA2-S100A10 and CFTR is also regulated by calcineurin. The aim of this study was i) to investigate whether chloride ion (Cl−) channels are activated by Pseudomonas aeruginosa lipopolysaccharide (LPS from PA), ii) if this activation is regulated by cAMP/PKA/calcineurin pathway and iii) to investigate the role of LPS-activated Cl− channels in the release of pro-inflammatory cytokines by immune cells. Human peripheral blood monocytes were used in the study. Whole-cell patch records showed that LPS from PA can activate Cl− channels, including CFTR and outwardly-rectifying Cl− channel (ORCC). This activation appears to require an intact PKA/calcineurin signalling pathway. The Gout in the presence of LPS was significantly inhibited by diisothiocyanatostilbene-disulfonic acid (DIDS), an ORCC blocker (p<0.001). The Gout was further suppressed by CFTR(inh)-172, a specific inhibitor for CFTR channels (p<0.001). Monocytes pre-incubated with PKA inhibitor or calcineurin inhibitor before stimulated with LPS from PA that were resulted in DIDS and CFTR(inh)-172 insensitive currents. Activation of both ORCC and CFTR was however, observed in response to monocytes exposure to LPS. Additionally, ELISA showed that the CFTR and ORCC play a role in mediating the release of pro-inflammatory cytokines such as IL-1β upon exposure of monocytes to LPS. However, this secretion was significantly inhibited due to CFTR and ORCC inhibition. However, Cl− may play a role in IL-1β release independent of cAMP/PKA/calcineurin signalling due to the enhancement of IL-1β secretion even when cAMP/PKA/calcineurin pathway was inhibited. In conclusion, our data confirmed that LPS from PA activates Cl− channels in human peripheral blood monocytes. Our data also confirmed that Cl− channels were involved in IL-1β release in monocytes upon exposure to LPS. However, it has been found that PKA and calcineurin does not seem to influence the Cl− dependent cytokine release.Keywords: cystic fibrosis, CFTR, Annexin A2, S100A10, PP2B, PKA, outwardly-rectifying Cl− channel, Pseudomonas aeruginosa
Procedia PDF Downloads 176298 Establishment of High-Temperature Simultaneous Saccharification and Fermentation Process by Co-Culturing of Thermally Adapted Thermosensitive Saccharomyces Cerevisiae and Bacillus amyloliquefaciens
Authors: Ali Azam Talukder, Jamsheda Ferdous Tuli, Tanzina Islam Reba, Shuvra Kanti Dey, Mamoru Yamada
Abstract:
Recent global warming created by various pollutants prompted us to find new energy sources instead of fossil fuels. Fossil fuels are one of the key factors to emit various toxic gases in this planet. To solve this problem, along with the scarcity of the worldwide energy crisis, scientists are looking for various alternative options to mitigate the necessity of required future fuels. In this context, bioethanol can be one of the most suitable alternative energy sources. Bioethanol is a renewable, environment-friendly and carbon-neutral sustainable energy. In our previous study, we identified several bioethanol-producing microbes from the natural fermented sources of Bangladesh. Among them, the strain 4C encoded Saccharomyces cerevisiae produced maximum bioethanol when the fermentation temperature was 25˚C. In this study, we have established high-temperature simultaneous saccharification and fermentation process (HTSSF) by co-culturing of thermally adapted thermosensitive 4C as a fermenting agent and Bacillus amyloliquefaciens (C7), as a saccharifying agent under various physiological conditions or treatments. Conventional methods were applied for cell culture, media preparation and other experimental purposes. High-temperature adaptation of strain 4C was made from 30-42ᵒC, using either YPD or YPS media. In brief, for thermal adaptation, the temperature was periodically increased by 2ᵒC, 1ᵒC and 0.5ᵒC when medium growth temperatures were 30-36ᵒC, 36-40ᵒC, and 40-42ᵒC, respectively, where applicable. Amylase activity and bioethanol content were measured by DNS (3, 5-dinitrosalicylic acid) and solvent extraction and dichromate oxidation method, respectively. Among the various growth parameters like temperatures (30˚C, 37˚C and 42˚C), pHs (5.0, 6.0 and 7.0), carbon sources (5.0-10.0%) and ethanol stress tolerance (0.0-12.0%) etc. were tested, maximum Amylase activity (4.0 IU/ml/min) was recorded for Bacillus amyloliquefaciens (C7) at 42˚C, pH 6.0 and 10% starch. On the other hand, 4.10% bioethanol content was recorded when the thermally adapted strain 4C was co-cultured with C7 at 37ᵒC, pH 6.0 and 10.0% starch for 72 hours at HTSSF process. On the other hand, thermally non-adapted strains gave only 0.5-2.0% bioethanol content under the same physiological conditions. The thermally adapted strain 4C and strain C7, both can tolerate ethanol stress up to 12%. Altogether, a comparative study revealed that our established HTSSF process may be suitable for pilot scale and subsequently at industrial level bioethanol production.Keywords: bioethanol, co-culture, fermentation, saccharification
Procedia PDF Downloads 84297 Experimental Investigation of the Thermal Conductivity of Neodymium and Samarium Melts by a Laser Flash Technique
Authors: Igor V. Savchenko, Dmitrii A. Samoshkin
Abstract:
The active study of the properties of lanthanides has begun in the late 50s of the last century, when methods for their purification were developed and metals with a relatively low content of impurities were obtained. Nevertheless, up to date, many properties of the rare earth metals (REM) have not been experimentally investigated, or insufficiently studied. Currently, the thermal conductivity and thermal diffusivity of lanthanides have been studied most thoroughly in the low-temperature region and at moderate temperatures (near 293 K). In the high-temperature region, corresponding to the solid phase, data on the thermophysical characteristics of the REM are fragmentary and in some cases contradictory. Analysis of the literature showed that the data on the thermal conductivity and thermal diffusivity of light REM in the liquid state are few in number, little informative (only one point corresponds to the liquid state region), contradictory (the nature of the thermal conductivity change with temperature is not reproduced), as well as the results of measurements diverge significantly beyond the limits of the total errors. Thereby our experimental results allow to fill this gap and to clarify the existing information on the heat transfer coefficients of neodymium and samarium in a wide temperature range from the melting point up to 1770 K. The measurement of the thermal conductivity of investigated metallic melts was carried out by laser flash technique on an automated experimental setup LFA-427. Neodymium sample of brand NM-1 (99.21 wt % purity) and samarium sample of brand SmM-1 (99.94 wt % purity) were cut from metal ingots and then ones were annealed in a vacuum (1 mPa) at a temperature of 1400 K for 3 hours. Measuring cells of a special design from tantalum were used for experiments. Sealing of the cell with a sample inside it was carried out by argon-arc welding in the protective atmosphere of the glovebox. The glovebox was filled with argon with purity of 99.998 vol. %; argon was additionally cleaned up by continuous running through sponge titanium heated to 900–1000 K. The general systematic error in determining the thermal conductivity of investigated metallic melts was 2–5%. The approximation dependences and the reference tables of the thermal conductivity and thermal diffusivity coefficients were developed. New reliable experimental data on the transport properties of the REM and their changes in phase transitions can serve as a scientific basis for optimizing the industrial processes of production and use of these materials, as well as ones are of interest for the theory of thermophysical properties of substances, physics of metals, liquids and phase transformations.Keywords: high temperatures, laser flash technique, liquid state, metallic melt, rare earth metals, thermal conductivity, thermal diffusivity
Procedia PDF Downloads 198296 Bioincision of Gmelina Arborea Roxb. Heartwood with Inonotus Dryophilus (Berk.) Murr. for Improved Chemical Uptake and Penetration
Authors: A. O. Adenaiya, S. F. Curling, O. Y. Ogunsanwo, G . A. Ormondroyd
Abstract:
Treatment of wood with chemicals in order to prolong its service life may prove difficult in some refractory wood species. This impermeability in wood is usually due to biochemical changes which occur during heartwood formation. Bioincision, which is a short-term, controlled microbial decomposition of wood, is one of the promising approaches capable of improving the amenability of refractory wood to chemical treatments. Gmelina Arborea, a mainstay timber species in Nigeria, has impermeable heartwood due to the excessive tyloses which occlude its vessels. Therefore, the chemical uptake and penetration in Gmelina arborea heartwood bioincised with Inonotus dryophilus fungus was investigated. Five mature Gmelina Arborea trees were harvested at the Departmental plantation in Ajibode, Ibadan, Nigeria and a bolt of 300 cm was obtained from the basal portion of each tree. The heartwood portion of the bolts was extracted and converted into dimensions 20 mm x 20 mm x 60 mm and subsequently conditioned (200C at 65% Relative Humidity). Twenty wood samples each were bioincised with the white-rot fungus Inonotus dryophilus (ID, 999) for 3, 5, 7 and 9 weeks using standard procedure, while a set of sterile control samples were prepared. Ten of each bioincised and control sample were pressure-treated with 5% tanalith preservative, while the other ten of each bioincised and control samples were pressure-treated with a liquid dye for easy traceability of the chemical in the wood, both using a full cell treatment process. The bioincised and control samples were evaluated for their Weight Loss before chemical treatment (WL, %), Preservative Absorption (PA, Kg/m3), Preservative Retention (PR, Kg/m3), Axial Absorption (AA, Kg/m3), Lateral Absorption (LA, Kg/m3), Axial Penetration Depth (APD, mm), Radial Penetration Depth (RPD, mm), and Tangential Penetration Depth (TPD, mm). The data obtained were analyzed using ANOVA at α0.05. Results show that the weight loss was least in the samples bioincised for three weeks (0.09%) and highest after 7 weeks of bioincision (0.48%). The samples bioincised for 3 weeks had the least PA (106.72 Kg/m3) and PR (5.87 Kg/m3), while the highest PA (134.9 Kg/m3) and PR were observed after 7 weeks of bioincision (7.42 Kg/m3). The AA ranged from 27.28 Kg/m3 (3 weeks) to 67.05 Kg/m3 (5 weeks), while the LA was least after 5 weeks of incubation (28.1 Kg/m3) and highest after 9 weeks (71.74 Kg/m3). Significantly lower APD was observed in control samples (6.97 mm) than in the samples bioincised after 9weeks (19.22 mm). The RPD increased from 0.08 mm (control samples) to 3.48 mm (5 weeks), while TPD ranged from 0.38 mm (control samples) to 0.63 mm (9 weeks), implying that liquid flow in the wood was predominantly through the axial pathway. Bioincising G. arborea heartwood with I. dryophilus fungus for 9 weeks is capable of enhancing chemical uptake and deeper penetration of chemicals in the wood through the degradation of the occluding vessel tyloses, which is accompanied by a minimal degradation of the polymeric wood constituents.Keywords: Bioincision, chemical uptake, penetration depth, refractory wood, tyloses
Procedia PDF Downloads 104295 Vitex agnus-castus Anti-Inflammatory, Antioxidants Characters and Anti-Tumor Effect in Ehrlich Ascites Carcinoma Model
Authors: Abeer Y. Ibrahim, Faten M. Ibrahim, Samah A. El-Newary, Saber F. Hendawy
Abstract:
Objective: Appreciation of in-vitro anti-inflammatory and antioxidant characters of Vitex agnus-castus berries alcoholic extract and fractions, as well as in-vivo antitumor ability of alcoholic extract and chloroform fraction against Ehrlich ascites carcinoma is the aim of this study. Material and methods: Antioxidant properties of crude alcoholic extract of vitex berries as well as petroleum ether, chloroform, ethyl acetate and butanol fractions were evaluated, in-vitro assessments, as compared with standard materials, l-ascorbic acid (vitamin C) and butylated hydroxyl toluene(BHT). The anti-inflammatory activity was investigated in cyclooxygenase (COX)-1 and COX-2 inhibition assays. Moreover, in-vivo antitumor effect of vitex berries alcoholic and chloroform extracts were evaluated using Ehrlich ascites carcinoma model. Data were presented as mean±SE, and data were analyzed by one-way analysis of variance test. Results and conclusion: Berries crude extract showed potent antioxidant activity followed with its fractions ethyl acetate and chloroform as compared with standard (V.C and BHT). Ethyl acetate fraction showed good reduction capability, metal ion chelation, hydrogen peroxide scavenging, nitric oxide scavenging and superoxide anion scavenging. Meanwhile, chloroform fraction produced the highest free radical scavenging activity and total antioxidant capacity. In respectable of lipid peroxidation inhibition, crude alcoholic extract and its fractions cleared weak inhibition in comparing with standard materials. Anti-inflammatory activity of V. agnus-castus berries chloroform fraction of vitex was best COX-2 inhibitor (IC₅₀, 135.41 µg/ ml) as compared to vitex alcoholic extract or ethyl acetate fraction with weak inhibitory effect on COX-1 (IC50, 778.432 µg/ ml), where the lowest effect on COX-1 was recorded with alcoholic extract. Alcoholic extract and its fractions showed weak COX-1 inhibition activity, whereas COX-2 was inhibited (100%), compared with celecoxib drug (72% at 1000ppm). The crude alcoholic and chloroform extracts of V. agnus-castus barries significantly reduced the viable Ehrlich cell count and increased nonviable count with amelioration of all hematological parameters. This amelioration was reflected on increasing median survival time and significant increase (P < 0.05) in lifespan.Keywords: anti-inflammatory, antioxidants, ehrlich ascites carcinoma, Vitex agnus-castus
Procedia PDF Downloads 144294 Diselenide-Linked Redox Stimuli-Responsive Methoxy Poly(Ethylene Glycol)-b-Poly(Lactide-Co-Glycolide) Micelles for the Delivery of Doxorubicin in Cancer Cells
Authors: Yihenew Simegniew Birhan, Hsieh Chih Tsai
Abstract:
The recent advancements in synthetic chemistry and nanotechnology fostered the development of different nanocarriers for enhanced intracellular delivery of pharmaceutical agents to tumor cells. Polymeric micelles (PMs), characterized by small size, appreciable drug loading capacity (DLC), better accumulation in tumor tissue via enhanced permeability and retention (EPR) effect, and the ability to avoid detection and subsequent clearance by the mononuclear phagocyte (MNP) system, are convenient to improve the poor solubility, slow absorption and non-selective biodistribution of payloads embedded in their hydrophobic cores and hence, enhance the therapeutic efficacy of chemotherapeutic agents. Recently, redox-responsive polymeric micelles have gained significant attention for the delivery and controlled release of anticancer drugs in tumor cells. In this study, we synthesized redox-responsive diselenide bond containing amphiphilic polymer, Bi(mPEG-PLGA)-Se₂ from mPEG-PLGA, and 3,3'-diselanediyldipropanoic acid (DSeDPA) using DCC/DMAP as coupling agents. The successful synthesis of the copolymers was verified by different spectroscopic techniques. Above the critical micelle concentration, the amphiphilic copolymer, Bi(mPEG-PLGA)-Se₂, self-assembled into stable micelles. The DLS data indicated that the hydrodynamic diameter of the micelles (123.9 ± 0.85 nm) was suitable for extravasation into the tumor cells through the EPR effect. The drug loading content (DLC) and encapsulation efficiency (EE) of DOX-loaded micelles were found to be 6.61 wt% and 54.9%, respectively. The DOX-loaded micelles showed initial burst release accompanied by sustained release trend where 73.94% and 69.54% of encapsulated DOX was released upon treatment with 6mM GSH and 0.1% H₂O₂, respectively. The biocompatible nature of Bi(mPEG-PLGA)-Se₂ copolymer was confirmed by the cell viability study. In addition, the DOX-loaded micelles exhibited significant inhibition against HeLa cells (44.46%), at a maximum dose of 7.5 µg/mL. The fluorescent microscope images of HeLa cells treated with 3 µg/mL (equivalent DOX concentration) revealed efficient internalization and accumulation of DOX-loaded Bi(mPEG-PLGA)-Se₂ micelles in the cytosol of cancer cells. In conclusion, the intelligent, biocompatible, and the redox stimuli-responsive behavior of Bi(mPEG-PLGA)-Se₂ copolymer marked the potential applications of diselenide-linked mPEG-PLGA micelles for the delivery and on-demand release of chemotherapeutic agents in cancer cells.Keywords: anticancer drug delivery, diselenide bond, polymeric micelles, redox-responsive
Procedia PDF Downloads 108293 Internet Protocol Television: A Research Study of Undergraduate Students Analyze the Effects
Authors: Sabri Serkan Gulluoglu
Abstract:
The study is aimed at examining the effects of internet marketing with IPTV on human beings. Internet marketing with IPTV is emerging as an integral part of business strategies in today’s technologically advanced world and the business activities all over the world are influences with the emergence of this modern marketing tool. As the population of the Internet and on-line users’ increases, new research issues have arisen concerning the demographics and psychographics of the on-line user and the opportunities for a product or service. In recent years, we have seen a tendency of various services converging to the ubiquitous Internet Protocol based networks. Besides traditional Internet applications such as web browsing, email, file transferring, and so forth, new applications have been developed to replace old communication networks. IPTV is one of the solutions. In the future, we expect a single network, the IP network, to provide services that have been carried by different networks today. For finding some important effects of a video based technology market web site on internet, we determine to apply a questionnaire on university students. Recently some researches shows that in Turkey the age of people 20 to 24 use internet when they buy some electronic devices such as cell phones, computers, etc. In questionnaire there are ten categorized questions to evaluate the effects of IPTV when shopping. There were selected 30 students who are filling the question form after watching an IPTV channel video for 10 minutes. This sample IPTV channel is “buy.com”, it look like an e-commerce site with an integrated IPTV channel on. The questionnaire for the survey is constructed by using the Likert scale that is a bipolar scaling method used to measure either positive or negative response to a statement (Likert, R) it is a common system that is used is the surveys. By following the Likert Scale “the respondents are asked to indicate their degree of agreement with the statement or any kind of subjective or objective evaluation of the statement. Traditionally a five-point scale is used under this methodology”. For this study also the five point scale system is used and the respondents were asked to express their opinions about the given statement by picking the answer from the given 5 options: “Strongly disagree, Disagree, Neither agree Nor disagree, Agree and Strongly agree”. These points were also rates from 1-5 (Strongly disagree, Disagree, Neither disagree Nor agree, Agree, Strongly agree). On the basis of the data gathered from the questionnaire some results are drawn in order to get the figures and graphical representation of the study results that can demonstrate the outcomes of the research clearly.Keywords: IPTV, internet marketing, online, e-commerce, video based technology
Procedia PDF Downloads 240292 Association of Nuclear – Mitochondrial Epistasis with BMI in Type 1 Diabetes Mellitus Patients
Authors: Agnieszka H. Ludwig-Slomczynska, Michal T. Seweryn, Przemyslaw Kapusta, Ewelina Pitera, Katarzyna Cyganek, Urszula Mantaj, Lucja Dobrucka, Ewa Wender-Ozegowska, Maciej T. Malecki, Pawel Wolkow
Abstract:
Obesity results from an imbalance between energy intake and its expenditure. Genome-Wide Association Study (GWAS) analyses have led to discovery of only about 100 variants influencing body mass index (BMI), which explain only a small portion of genetic variability. Analysis of gene epistasis gives a chance to discover another part. Since it was shown that interaction and communication between nuclear and mitochondrial genome are indispensable for normal cell function, we have looked for epistatic interactions between the two genomes to find their correlation with BMI. Methods: The analysis was performed on 366 T1DM patients using Illumina Infinium OmniExpressExome-8 chip and followed by imputation on Michigan Imputation Server. Only genes which influence mitochondrial functioning (listed in Human MitoCarta 2.0) were included in the analysis – variants of nuclear origin (MAF > 5%) in 1140 genes and 42 mitochondrial variants (MAF > 1%). Gene expression analysis was performed on GTex data. Association analysis between genetic variants and BMI was performed with the use of Linear Mixed Models as implemented in the package 'GENESIS' in R. Analysis of association between mRNA expression and BMI was performed with the use of linear models and standard significance tests in R. Results: Among variants involved in epistasis between mitochondria and nucleus we have identified one in mitochondrial transcription factor, TFB2M (rs6701836). It interacted with mitochondrial variants localized to MT-RNR1 (p=0.0004, MAF=15%), MT-ND2 (p=0.07, MAF=5%) and MT-ND4 (p=0.01, MAF=1.1%). Analysis of the interaction between nuclear variant rs6701836 (nuc) and rs3021088 localized to MT-ND2 mitochondrial gene (mito) has shown that the combination of the two led to BMI decrease (p=0.024). Each of the variants on its own does not correlate with higher BMI [p(nuc)=0.856, p(mito)=0.116)]. Although rs6701836 is intronic, it influences gene expression in the thyroid (p=0.000037). rs3021088 is a missense variant that leads to alanine to threonine substitution in the MT-ND2 gene which belongs to complex I of the electron transport chain. The analysis of the influence of genetic variants on gene expression has confirmed the trend explained above – the interaction of the two genes leads to BMI decrease (p=0.0308). Each of the mRNAs on its own is associated with higher BMI (p(mito)=0.0244 and p(nuc)=0.0269). Conclusıons: Our results show that nuclear-mitochondrial epistasis can influence BMI in T1DM patients. The correlation between transcription factor expression and mitochondrial genetic variants will be subject to further analysis.Keywords: body mass index, epistasis, mitochondria, type 1 diabetes
Procedia PDF Downloads 173291 Aframomum melegueta Improves Antioxidant Status of Type 2 Diabetes Rats Model
Authors: Aminu Mohammed, Shahidul Islam
Abstract:
Aframomum melegueta K.Schum commonly known as Grains of Paradise has been a popularly used spice in most of the African food preparation. Available data have shown that ethyl acetate fraction from crude ethanolic extract exhibited α-amylase and α-glucosidase inhibitory actions, improved pancreatic β-cell damage and ameliorated insulin resistance in diabetic rats. Additionally, 6-gingerol, 6-shogaol, 6-paradol and oleanolic acid are shown to be the compounds responsible for the antidiabetic action of A. melegueta. However, detail antioxidant potential of this spice in a diabetic animal model has not yet been reported. Thus, the present study investigates the effect of oral consumption of A. melegueta fruit on the in vivo antioxidant status of type 2 diabetes (T2D) model of rats. T2D was induced in rats by feeding a 10% fructose solution ad libitum for two weeks followed by a single intraperitoneal injection of streptozotocin (40 mg/kg body weight (bw)). The animals were orally administered with 150 (DAML) or 300 mg/kg bw (DAMH) of the fraction once daily for four weeks. Data were analyzed by using a statistical software package (SPSS for Windows, version 22, IBM Corporation, NY, USA) using Tukey’s-HSD multiple range post-hoc test. Values were considered significantly different at p < 0.05. According to the data, after four weeks of intervention, diabetic untreated animals showed significantly (p < 0.05) elevation of blood glucose levels. The levels of thiobarbituric acid reactive substances (TBARS) were observed to increase with concomitant reduction of reduced glutathione (GSH) levels in the serum and organs (liver, kidney, heart and pancreas) of diabetic untreated animals. The activities of endogenous antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and reductase) were greatly reduced in the serum and organs of diabetic untreated animals compared to the normal animals. These alterations were reverted to near-normal after the treatment of A. melegueta fruit in the treated groups (DAML & DAMH) within the study period, especially at the dose of 300 mg/kg bw. This potent antioxidant action may partly be attributed to the presence of the 6-Gingerol, 6-shogaol and 6-paradol are known to possess antioxidant action. The results of our study showed that A. melegueta intake improved the antioxidant status of T2D rats and therefore could be used to ameliorate the diabetes-induced oxidative damage.Keywords: Aframomum melegueta, antioxidant, ethyl acetate extract, type 2 diabetes
Procedia PDF Downloads 299290 Increases in Serum Erythropoietin Hormone in Recreational Breath-Hold Divers Following a Series of Repeated Apnoeas: Apnoea beyond Freediving
Authors: Antonis Elia, Theo Loizou, Gladys Onambele-Pearson, Matthew Barlow, Georgina Stebbings
Abstract:
Hypoxic conditions have been reported to enhance red blood cell production in both acclimatised low-landers and altitude adapted populations. This process is mediated by the erythropoietin hormone, which is released predominantly by the hypoxic kidney. A higher haemoglobin concentration was previously reported in elite breath-hold divers when compared to elite-skiers and untrained individuals. Therefore, the present study aimed to investigate whether apnoea induced hypoxia could induce a significant increase in serum erythropoietin concentration in recreational breath-hold divers which would provide an explanation to the higher haemoglobin levels observed in elite breath-hold divers. Identifying whether apnoea induced hypoxia induces a significant increase in serum erythropoietin might suggest that apnoea can be used as an alternative acclimatisation method to high altitude exposure. Seven healthy, recreational male breath-hold divers performed two sets of five 180 second breath-holds with a ten-minute supine rest between each set and a two-minute seated rest between each apnoea. During each breath-hold, participant’s heart rate and peripheral oxygen saturation levels were recorded every subsequent 10 seconds until the end of the 180 second breath-hold. After each 180 second breath-hold a capillary blood sample was collected from the finger to identify circulating haemoglobin levels. Following completion of the apnoeic protocol, three blood samples were collected at 30, 90 and 180 minutes to measure circulating erythropoietin levels. A significant interaction between erythropoietin and time was observed (F(3,18)= 4.72, p < 0.001), with significant increases in erythropoietin evident at 30 (t(6)= -5.035, p < 0.0590 (t(6)= -6.162, p < 0.05) and 180 (t(6)= - 7.232, p < 0.001) minutes post the last apnoea when compared to baseline. Corresponding average increases when compared to baseline were 16% at 30, 23% at 90 and 40% at 180 minutes post the last apnoea. A significant interaction between haemoglobin and time was observed (F(78,84)= 20.814, p < 0.001), with significant increases in haemoglobin evident at the fifth (t(29)= -1.124, p < 0.001), ninth (t(29)= -1.357, p < 0.001) and tenth (t(29)= -1.211, p < 0.05) apnoeas when compared to baseline. A significant interaction between peripheral oxygen saturation and time was observed (F(10,60)= 408.23, p < 0.001). The present study demonstrates that a series of ten 180 second breath-holds is sufficient to induce a significant increase in the circulating erythropoietin concentration of recreational breath hold divers. These observations may suggest that apnoea induced hypoxia may be used as an alternative acclimatisation method to high altitude exposure.Keywords: apnoea, breath-holding, diving reflex, erythropoietin, haemoglobin
Procedia PDF Downloads 178289 Pre-Implementation of Total Body Irradiation Using Volumetric Modulated Arc Therapy: Full Body Anthropomorphic Phantom Development
Authors: Susana Gonçalves, Joana Lencart, Anabela Gregório Dias
Abstract:
Introduction: In combination with chemotherapy, Total Body Irradiation (TBI) is most used as part of the conditioning regimen prior to allogeneic hematopoietic stem cell transplantation. Conventional TBI techniques have a long application time but non-conformality of beam-application with the inability to individually spare organs at risk. Our institution’s intention is to start using Volumetric Modulated Arc Therapy (VMAT) techniques to increase homogeneity of delivered radiation. As a first approach, a dosimetric plan was performed on a computed tomography (CT) scan of a Rando Alderson antropomorfic phantom (head and torso), using a set of six arcs distributed along the phantom. However, a full body anthropomorphic phantom is essential to carry out technique validation and implementation. Our aim is to define the physical and chemical characteristics and the ideal manufacturing procedure of upper and lower limbs to our anthropomorphic phantom, for later validate TBI using VMAT. Materials and Methods: To study the better fit between our phantom and limbs, a CT scan of Rando Alderson anthropomorphic phantom was acquired. CT was performed on GE Healthcare equipment (model Optima CT580 W), with slice thickness of 2.5 mm. This CT was also used to access the electronic density of soft tissue and bone through Hounsfield units (HU) analysis. Results: CT images were analyzed and measures were made for the ideal upper and lower limbs. Upper limbs should be build under the following measures: 43cm length and 7cm diameter (next to the shoulder section). Lower limbs should be build under the following measures: 79cm length and 16.5cm diameter (next to the thigh section). As expected, soft tissue and bone have very different electronic density. This is important to choose and analyze different materials to better represent soft tissue and bone characteristics. The approximate HU values of the soft tissue and for bone shall be 35HU and 250HU, respectively. Conclusion: At the moment, several compounds are being developed based on different types of resins and additives in order to be able to control and mimic the various constituent densities of the tissues. Concurrently, several manufacturing techniques are being explored to make it possible to produce the upper and lower limbs in a simple and non-expensive way, in order to finally carry out a systematic and appropriate study of the total body irradiation. This preliminary study was a good starting point to demonstrate the feasibility of TBI with VMAT.Keywords: TBI, VMAT, anthropomorphic phantom, tissue equivalent materials
Procedia PDF Downloads 78288 Leptospira Lipl32-Specific Antibodies: Therapeutic Property, Epitopes Characterization and Molecular Mechanisms of Neutralization
Authors: Santi Maneewatchararangsri, Wanpen Chaicumpa, Patcharin Saengjaruk, Urai Chaisri
Abstract:
Leptospirosis is a globally neglected disease that continues to be a significant public health and veterinary burden, with millions of cases reported each year. Early and accurate differential diagnosis of leptospirosis from other febrile illnesses and the development of a broad spectrum of leptospirosis vaccines are needed. The LipL32 outer membrane lipoprotein is a member of Leptospira adhesive matrices and has been found to exert hemolytic activity to erythrocytes in vitro. Therefore, LipL32 is regarded as a potential target for diagnosis, broad-spectrum leptospirosis vaccines, and for passive immunotherapy. In this study, we established LipL32-specific mouse monoclonal antibodies, mAbLPF1 and mAbLPF2, and their respective mouse- and humanized-engineered single chain variable fragment (ScFv). Their antibodies’ neutralizing activities against Leptospira-mediated hemolysis in vitro, and the therapeutic efficacy of mAbs against heterologous Leptospira infected hamsters were demonstrated. The epitope peptide of mAb LPF1 was mapped to a non-contiguous carboxy-terminal β-turn and amphipathic α-helix of LipL32 structure contributing to phospholipid/host cell adhesion and membrane insertion. We found that the mAbLPF2 epitope was located on the interacting loop of peptide binding groove of the LipL32 molecule responsible for interactions with host constituents. Epitope sequences are highly conserved among Leptospira spp. and are absent from the LipL32 superfamily of other microorganisms. Both epitopes are surface-exposed, readily accessible by mAbs, and immunogenic. However, they are less dominant when revealed by LipL32-specific immunoglobulins from leptospirosis-patient sera and rabbit hyperimmune serum raised by whole Leptospira. Our study also demonstrated an adhesion inhibitory activity of LipL32 protein to host membrane components and cells mediated by mAbs as well as an anti-hemolytic activity of the respective antibodies. The therapeutic antibodies, particularly the humanized-ScFv, have a potential for further development as non-drug therapeutic agent for human leptospirosis, especially in subjects allergic to antibiotics. The epitope peptides recognized by two therapeutic mAbs have potential use as tools for structure-function studies. Finally, protective peptides may be used as a target for epitope-based vaccines for control of leptospirosis.Keywords: leptospira lipl32-specific antibodies, therapeutic epitopes, epitopes characterization, immunotherapy
Procedia PDF Downloads 297287 Biosensor for Determination of Immunoglobulin A, E, G and M
Authors: Umut Kokbas, Mustafa Nisari
Abstract:
Immunoglobulins, also known as antibodies, are glycoprotein molecules produced by activated B cells that transform into plasma cells and result in them. Antibodies are critical molecules of the immune response to fight, which help the immune system specifically recognize and destroy antigens such as bacteria, viruses, and toxins. Immunoglobulin classes differ in their biological properties, structures, targets, functions, and distributions. Five major classes of antibodies have been identified in mammals: IgA, IgD, IgE, IgG, and IgM. Evaluation of the immunoglobulin isotype can provide a useful insight into the complex humoral immune response. Evaluation and knowledge of immunoglobulin structure and classes are also important for the selection and preparation of antibodies for immunoassays and other detection applications. The immunoglobulin test measures the level of certain immunoglobulins in the blood. IgA, IgG, and IgM are usually measured together. In this way, they can provide doctors with important information, especially regarding immune deficiency diseases. Hypogammaglobulinemia (HGG) is one of the main groups of primary immunodeficiency disorders. HGG is caused by various defects in B cell lineage or function that result in low levels of immunoglobulins in the bloodstream. This affects the body's immune response, causing a wide range of clinical features, from asymptomatic diseases to severe and recurrent infections, chronic inflammation and autoimmunity Transient infant hypogammaglobulinemia (THGI), IgM deficiency (IgMD), Bruton agammaglobulinemia, IgA deficiency (SIgAD) HGG samples are a few. Most patients can continue their normal lives by taking prophylactic antibiotics. However, patients with severe infections require intravenous immune serum globulin (IVIG) therapy. The IgE level may rise to fight off parasitic infections, as well as a sign that the body is overreacting to allergens. Also, since the immune response can vary with different antigens, measuring specific antibody levels also aids in the interpretation of the immune response after immunization or vaccination. Immune deficiencies usually occur in childhood. In Immunology and Allergy clinics, apart from the classical methods, it will be more useful in terms of diagnosis and follow-up of diseases, if it is fast, reliable and especially in childhood hypogammaglobulinemia, sampling from children with a method that is more convenient and uncomplicated. The antibodies were attached to the electrode surface via the poly hydroxyethyl methacrylamide cysteine nanopolymer. It was used to evaluate the anodic peak results obtained in the electrochemical study. According to the data obtained, immunoglobulin determination can be made with a biosensor. However, in further studies, it will be useful to develop a medical diagnostic kit with biomedical engineering and to increase its sensitivity.Keywords: biosensor, immunosensor, immunoglobulin, infection
Procedia PDF Downloads 101286 Sustainable Hydrogen Generation via Gasification of Pig Hair Biowaste with NiO/Al₂O₃ Catalysts
Authors: Jamshid Hussain, Kuen Song Lin
Abstract:
Over one thousand tons of pig hair biowaste (PHB) are produced yearly in Taiwan. The improper disposal of PHB can have a negative impact on the environment, consequently contributing to the spread of diseases. The treatment of PHB has become a major environmental and economic challenge. Innovative treatments must be developed because of the heavy metal and sulfur content of PHB. Like most organic materials, PHB is composed of many organic volatiles that contain large amounts of hydrogen. Hydrogen gas can be effectively produced by the catalytic gasification of PHB using a laboratory-scale fixed-bed gasifier, employing 15 wt% NiO/Al₂O₃ catalyst at 753–913 K. The derived kinetic parameters were obtained and refined using simulation calculations. FE–SEM microphotograph showed that NiO/Al₂O₃ catalyst particles are Spherical or irregularly shaped with diameters of 10–20 nm. HR–TEM represented that the fresh Ni particles were evenly dispersed and uniform in the microstructure of Al₂O₃ support. The sizes of the NiO nanoparticles were vital in determining catalyst activity. As displayed in the pre-edge XANES spectra of the NiO/Al₂O₃ catalysts, it exhibited a non-intensive absorbance nature for the 1s to 3d transition, which is prohibited by the selection rule for an ideal octahedral symmetry. Similarly, the populace of Ni(II) and Ni(0) onto Al₂O₃ supports are proportional to the strength of the 1s to 4pxy transition, respectively. The weak shoulder at 8329–8334 eV and a strong character at 8345–8353 eV were ascribed to the 1s to 4pxy shift, which suggested the presence of NiO types onto Al₂O₃ support in PHB catalytic gasification. As determined by the XANES analyses, Ni(II)→Ni(0) reduction was mostly observed. The oxidation of PHB onto the NiO/Al₂O₃ surface may have resulted in Ni(0) and the formation of tar during the gasification process. The EXAFS spectra revealed that the Ni atoms with Ni–Ni/Ni–O bonds were found. The Ni–O bonding proved that the produced syngas were unable to reduce NiO to Ni(0) completely. The weakness of the Ni–Ni bonds may have been caused by the highly dispersed Ni in the Al₂O₃ support. The central Ni atoms have Ni–O (2.01 Å) and Ni–Ni (2.34 Å) bond distances in the fresh NiO/Al₂O₃ catalyst. The PHB was converted into hydrogen-rich syngas (CO + H₂, >89.8% dry basis). When PHB (250 kg h−1) was catalytically gasified at 753–913 K, syngas was produced at approximately 5.45 × 105 kcal h−1 of heat recovery with 76.5%–83.5% cold gas efficiency. The simulation of the pilot-scale PHB catalytic gasification demonstrated that the system could provide hydrogen (purity > 99.99%) and generate electricity for an internal combustion engine of 100 kW and a proton exchange membrane fuel cell (PEMFC) of 175 kW. A projected payback for a PHB catalytic gasification plant with a capacity of 10- or 20-TPD (ton per day) was around 3.2 or 2.5 years, respectively.Keywords: pig hair biowaste, catalytic gasification, hydrogen production, PEMFC, resource recovery
Procedia PDF Downloads 5285 Connecting MRI Physics to Glioma Microenvironment: Comparing Simulated T2-Weighted MRI Models of Fixed and Expanding Extracellular Space
Authors: Pamela R. Jackson, Andrea Hawkins-Daarud, Cassandra R. Rickertsen, Kamala Clark-Swanson, Scott A. Whitmire, Kristin R. Swanson
Abstract:
Glioblastoma Multiforme (GBM), the most common primary brain tumor, often presents with hyperintensity on T2-weighted or T2-weighted fluid attenuated inversion recovery (T2/FLAIR) magnetic resonance imaging (MRI). This hyperintensity corresponds with vasogenic edema, however there are likely many infiltrating tumor cells within the hyperintensity as well. While MRIs do not directly indicate tumor cells, MRIs do reflect the microenvironmental water abnormalities caused by the presence of tumor cells and edema. The inherent heterogeneity and resulting MRI features of GBMs complicate assessing disease response. To understand how hyperintensity on T2/FLAIR MRI may correlate with edema in the extracellular space (ECS), a multi-compartmental MRI signal equation which takes into account tissue compartments and their associated volumes with input coming from a mathematical model of glioma growth that incorporates edema formation was explored. The reasonableness of two possible extracellular space schema was evaluated by varying the T2 of the edema compartment and calculating the possible resulting T2s in tumor and peripheral edema. In the mathematical model, gliomas were comprised of vasculature and three tumor cellular phenotypes: normoxic, hypoxic, and necrotic. Edema was characterized as fluid leaking from abnormal tumor vessels. Spatial maps of tumor cell density and edema for virtual tumors were simulated with different rates of proliferation and invasion and various ECS expansion schemes. These spatial maps were then passed into a multi-compartmental MRI signal model for generating simulated T2/FLAIR MR images. Individual compartments’ T2 values in the signal equation were either from literature or estimated and the T2 for edema specifically was varied over a wide range (200 ms – 9200 ms). T2 maps were calculated from simulated images. T2 values based on simulated images were evaluated for regions of interest (ROIs) in normal appearing white matter, tumor, and peripheral edema. The ROI T2 values were compared to T2 values reported in literature. The expanding scheme of extracellular space is had T2 values similar to the literature calculated values. The static scheme of extracellular space had a much lower T2 values and no matter what T2 was associated with edema, the intensities did not come close to literature values. Expanding the extracellular space is necessary to achieve simulated edema intensities commiserate with acquired MRIs.Keywords: extracellular space, glioblastoma multiforme, magnetic resonance imaging, mathematical modeling
Procedia PDF Downloads 233284 Antiulcer Potential of Heme Oxygenase-1 Inducers
Authors: Gaweł Magdalena, Lipkowska Anna, Olbert Magdalena, Frąckiewicz Ewelina, Librowski Tadeusz, Nowak Gabriel, Pilc Andrzej
Abstract:
Heme oxygenase-1 (HO-1), also known as heat shock protein 32 (HSP32), has been shown to be implicated in cytoprotection in various organs. Its activation plays a significant role in acute and chronic inflammation, protecting cells from oxidative injury and apoptosis. This inducible isoform of HO catalyzes the first and rate-limiting step in heme degradation to produce equimolar quantities of biologically active products: carbon monoxide (CO), free iron and biliverdin. CO has been reported to possess anti-apoptotic properties. Moreover, it inhibits the production of proinflammatory cytokines and stimulates the synthesis of the anti-inflammatory interleukin-10 (IL-10), as well as promotes vasodilatation at sites of inflammation. The second product of catalytic HO-1 activity, free cytotoxic iron, is promptly sequestered into the iron storage protein ferritin, which lowers the pro-oxidant state of the cell. The third product, biliverdin, is subsequently converted by biliverdin reductase into the bile pigment bilirubin, the most potent endogenous antioxidant among the constituents of human serum, which modulates immune effector functions and suppresses inflammatory response. Furthermore, being one of the so-called stress proteins, HO-1 adaptively responds to different stressors, such as reactive oxygen species (ROS), inflammatory cytokines and heavy metals and thus protects cells against such conditions as ischemia, hemorrhagic shock, heat shock or hypoxia. It is suggested that pharmacologic modulation of HO-1 may represent an effective strategy for prevention of stress and drug-induced gastrointestinal toxicity. HO-1 is constitutively expressed in normal gastric, intestinal and colonic mucosa and up-regulated during inflammation. It has been proven that HO-1 up-regulated by hemin, heme and cobalt-protoporphyrin ameliorates experimental colitis. In addition, the up-regulation of HO-1 partially explains the mechanism of action of 5-aminosalicylic acid (5-ASA), which is used clinically as an anti-colitis agent. In 2009 Ueda et al. has reported for the first time that mucosal protection by Polaprezinc, a chelate compound of zinc and L-carnosine used as an anti-ulcer drug in Japan, is also attributed to induction of HO-1 in the stomach. Since then, inducers of HO-1 are desired subject of research, as they may constitute therapeutically effective anti-ulcer drugs.Keywords: heme oxygenase-1, gastric lesions, gastroprotection, Polaprezinc
Procedia PDF Downloads 502283 The Incidence of Prostate Cancer in Previous Infected E. Coli Population
Authors: Andreea Molnar, Amalia Ardeljan, Lexi Frankel, Marissa Dallara, Brittany Nagel, Omar Rashid
Abstract:
Background: Escherichia coli is a gram-negative, facultative anaerobic bacteria that belongs to the family Enterobacteriaceae and resides in the intestinal tracts of individuals. E.Coli has numerous strains grouped into serogroups and serotypes based on differences in antigens in their cell walls (somatic, or “O” antigens) and flagella (“H” antigens). More than 700 serotypes of E. coli have been identified. Although most strains of E. coli are harmless, a few strains, such as E. coli O157:H7 which produces Shiga toxin, can cause intestinal infection with symptoms of severe abdominal cramps, bloody diarrhea, and vomiting. Infection with E. Coli can lead to the development of systemic inflammation as the toxin exerts its effects. Chronic inflammation is now known to contribute to cancer development in several organs, including the prostate. The purpose of this study was to evaluate the correlation between E. Coli and the incidence of prostate cancer. Methods: Data collected in this cohort study was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate patients infected with E.Coli infection and prostate cancer using the International Classification of Disease (ICD-10 and ICD-9 codes). Permission to use the database was granted by Holy Cross Health, Fort Lauderdale for the purpose of academic research. Data analysis was conducted through the use of standard statistical methods. Results: Between January 2010 and December 2019, the query was analyzed and resulted in 81, 037 patients after matching in both infected and control groups, respectively. The two groups were matched by Age Range and CCI score. The incidence of prostate cancer was 2.07% and 1,680 patients in the E. Coli group compared to 5.19% and 4,206 patients in the control group. The difference was statistically significant by a p-value p<2.2x10-16 with an Odds Ratio of 0.53 and a 95% CI. Based on the specific treatment for E.Coli, the infected group vs control group were matched again with a result of 31,696 patients in each group. 827 out of 31,696 (2.60%) patients with a prior E.coli infection and treated with antibiotics were compared to 1634 out of 31,696 (5.15%) patients with no history of E.coli infection (control) and received antibiotic treatment. Both populations subsequently developed prostate carcinoma. Results remained statistically significant (p<2.2x10-16), Odds Ratio=0.55 (95% CI 0.51-0.59). Conclusion: This retrospective study shows a statistically significant correlation between E.Coli infection and a decreased incidence of prostate cancer. Further evaluation is needed in order to identify the impact of E.Coli infection and prostate cancer development.Keywords: E. Coli, prostate cancer, protective, microbiology
Procedia PDF Downloads 213282 Immuno-Protective Role of Mucosal Delivery of Lactococcus lactis Expressing Functionally Active JlpA Protein on Campylobacter jejuni Colonization in Chickens
Authors: Ankita Singh, Chandan Gorain, Amirul I. Mallick
Abstract:
Successful adherence of the mucosal epithelial cells is the key early step for Campylobacter jejuni pathogenesis (C. jejuni). A set of Surface Exposed Colonization Proteins (SECPs) are among the major factors involved in host cell adherence and invasion of C. jejuni. Among them, constitutively expressed surface-exposed lipoprotein adhesin of C. jejuni, JlpA, interacts with intestinal heat shock protein 90 (hsp90α) and contributes in disease progression by triggering pro-inflammatory response via activation of NF-κB and p38 MAP kinase pathway. Together with its ability to express in the bacterial surface, higher sequence conservation and predicted predominance of several B cells epitopes, JlpA protein reserves its potential to become an effective vaccine candidate against wide range of Campylobacter sps including C. jejuni. Given that chickens are the primary sources for C. jejuni and persistent gut colonization remain as major cause for foodborne pathogenesis to humans, present study explicitly used chickens as model to test the immune-protective efficacy of JlpA protein. Taking into account that gastrointestinal tract is the focal site for C. jejuni colonization, to extrapolate the benefit of mucosal (intragastric) delivery of JlpA protein, a food grade Nisin inducible Lactic acid producing bacteria, Lactococcus lactis (L. lactis) was engineered to express recombinant JlpA protein (rJlpA) in the surface of the bacteria. Following evaluation of optimal surface expression and functionality of recombinant JlpA protein expressed by recombinant L. lactis (rL. lactis), the immune-protective role of intragastric administration of live rL. lactis was assessed in commercial broiler chickens. In addition to the significant elevation of antigen specific mucosal immune responses in the intestine of chickens that received three doses of rL. lactis, marked upregulation of Toll-like receptor 2 (TLR2) gene expression in association with mixed pro-inflammatory responses (both Th1 and Th17 type) was observed. Furthermore, intragastric delivery of rJlpA expressed by rL. lactis, but not the injectable form, resulted in a significant reduction in C. jejuni colonization in chickens suggesting that mucosal delivery of live rL. lactis expressing JlpA serves as a promising vaccine platform to induce strong immune-protective responses against C. jejuni in chickens.Keywords: chickens, lipoprotein adhesion of Campylobacter jejuni, immuno-protection, Lactococcus lactis, mucosal delivery
Procedia PDF Downloads 137281 Prenatal Paraben Exposure Impacts Infant Overweight Development and in vitro Adipogenesis
Authors: Beate Englich, Linda Schlittenbauer, Christiane Pfeifer, Isabel Kratochvil, Michael Borte, Gabriele I. Stangl, Martin von Bergen, Thorsten Reemtsma, Irina Lehmann, Kristin M. Junge
Abstract:
The worldwide production of endocrine disrupting compounds (EDC) has risen dramatically over the last decades, as so has the prevalence for obesity. Many EDCs are believed to contribute to this obesity epidemic, by enhancing adipogenesis or disrupting relevant metabolism. This effect is most tremendous in the early prenatal period when priming effects find a highly vulnerable time window. Therefore, we investigate the impact of parabens on childhood overweight development and adipogenesis in general. Parabens are ester of 4-hydroxy-benzoic acid and part of many cosmetic products or food packing. Therefore, ubiquitous exposure can be found in the westernized world, with exposure already starting during the sensitive prenatal period. We assessed maternal cosmetic product consumption, prenatal paraben exposure and infant BMI z-scores in the prospective German LINA cohort. In detail, maternal urinary concentrations (34 weeks of gestation) of methyl paraben (MeP), ethyl paraben (EtP), n-propyl paraben (PrP) and n-butyl paraben (BuP) were quantified using UPLC-MS/MS. Body weight and height of their children was assessed during annual clinical visits. Further, we investigated the direct influence of those parabens on adipogenesis in-vitro using a human mesenchymal stem cell (MSC) differentiation assay to mimic a prenatal exposure scenario. MSC were exposed to 0.1 – 50 µM paraben during the entire differentiation period. Differentiation outcome was monitored by impedance spectrometry, real-time PCR and triglyceride staining. We found that maternal cosmetic product consumption was highly correlated with urinary paraben concentrations at pregnancy. Further, prenatal paraben exposure was linked to higher BMI Z-scores in children. Our in-vitro analysis revealed that especially the long chained paraben BuP stimulates adipogenesis by increasing the expression of adipocyte specific genes (PPARγ, ADIPOQ, LPL, etc.) and triglyceride storage. Moreover, we found that adiponectin secretion is increased whereas leptin secretion is reduced under BuP exposure in-vitro. Further mechanistic analysis for receptor binding and activation of PPARγ and other key players in adipogenesis are currently in process. We conclude that maternal cosmetic product consumption is linked to prenatal paraben exposure of children and contributes to the development of infant overweight development by triggering key pathways of adipogenesis.Keywords: adipogenesis, endocrine disruptors, paraben, prenatal exposure
Procedia PDF Downloads 271280 The Effect of Chloride Dioxide and High Concentration of CO2 Gas Injection on the Quality and Shelf-Life for Exporting Strawberry 'Maehyang' in Modified Atmosphere Condition
Authors: Hyuk Sung Yoon, In-Lee Choi, Mohammad Zahirul Islam, Jun Pill Baek, Ho-Min Kang
Abstract:
The strawberry ‘Maehyang’ cultivated in South Korea has been increased to export to Southeast Asia. The degradation of quality often occurs in strawberries during short export period. Botrytis cinerea has been known to cause major damage to the export strawberries and the disease was caused during shipping and distribution. This study was conducted to find out the sterilized effect of chlorine dioxide(ClO2) gas and high concentration of CO2 gas injection for ‘Maehyang’ strawberry and it was packaged with oxygen transmission rate (OTR) films. The strawberry was harvested at 80% color changed stage and packaged with OTR film and perforated film (control). The treatments were a MAP used by with 20,000 cc·m-2·day·atm OTR film and gas injection in packages. The gas type of ClO2 and CO2 were injected into OTR film packages, and treatments were 6 mg/L ClO2, 15% CO2, and they were combined. The treated strawberries were stored at 3℃ for 30 days. Fresh weight loss rate was less than 1% in all OTR film packages but it was more than 15% in a perforated film treatment that showed severe deterioration of visual quality during storage. Carbon dioxide concentration within a package showed approximately 15% of the maximum CO2 concentration in all treatments except control until the 21st day, it was the tolerated range of maximum CO2 concentration of strawberry in recommended CA or MA conditions. But, it increased to almost 50% on the 30th day. Oxygen concentration showed a decrease down to approximately 0% in all treatments except control for 25 days. Ethylene concentration was shown to be steady until the 17th day, but it quickly increased on the 17th day and dropped down on the final storage day (30th day). All treatments did not show any significant differences in gas treatments. Firmness increased in CO2 (15%) and ClO2 (6mg/L) + CO2 (15%) treatments during storage. It might be the effect of high concentration CO2 known by reducing decay and cell wall degradation. The soluble solid decreased in all treatments during storage. These results were caused to use up the sugar by the increase of respiration during storage. The titratable acidity showed a similarity in all treatments. Incidence of fungi was 0% in CO2 (15%) and ClO2 (6mg/L)+ CO2 (15%), but was more than 20% in a perforated film treatment. Consequently, The result indicates that Chloride Dioxide(ClO2) and high concentration of CO2 inhibited fungi growth. Due to the fact that fresh weight loss rate and incidence of fungi were lower, the ClO2(6mg/L)+ CO2(15%) prove to be most efficient in sterilization. These results suggest that Chloride Dioxide (ClO2) and high concentration of CO2 gas injection treatments were an effective decontamination technique for improving the safety of strawberries.Keywords: chloride dioxide, high concentration of CO2, modified atmosphere condition, oxygen transmission rate films
Procedia PDF Downloads 338279 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials
Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu
Abstract:
The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.Keywords: analytic solution, braided composites, elasticity properties, technology factor
Procedia PDF Downloads 237278 Sintering of YNbO3:Eu3+ Compound: Correlation between Luminescence and Spark Plasma Sintering Effect
Authors: Veronique Jubera, Ka-Young Kim, U-Chan Chung, Amelie Veillere, Jean-Marc Heintz
Abstract:
Emitting materials and all solid state lasers are widely used in the field of optical applications and materials science as a source of excitement, instrumental measurements, medical applications, metal shaping etc. Recently promising optical efficiencies were recorded on ceramics which result from a cheaper and faster ways to obtain crystallized materials. The choice and optimization of the sintering process is the key point to fabricate transparent ceramics. It includes a high control on the preparation of the powder with the choice of an adequate synthesis, a pre-heat-treatment, the reproducibility of the sintering cycle, the polishing and post-annealing of the ceramic. The densification is the main factor needed to reach a satisfying transparency, and many technologies are now available. The symmetry of the unit cell plays a crucial role in the diffusion rate of the material. Therefore, the cubic symmetry compounds having an isotropic refractive index is preferred. The cubic Y3NbO7 matrix is an interesting host which can accept a high concentration of rare earth doping element and it has been demonstrated that SPS is an efficient way to sinter this material. The optimization of diffusion losses requires a microstructure of fine ceramics, generally less than one hundred nanometers. In this case, grain growth is not an obstacle to transparency. The ceramics properties are then isotropic thereby to free-shaping step by orienting the ceramics as this is the case for the compounds of lower symmetry. After optimization of the synthesis route, several SPS parameters as heating rate, holding, dwell time and pressure were adjusted in order to increase the densification of the Eu3+ doped Y3NbO7 pellets. The luminescence data coupled with X-Ray diffraction analysis and electronic diffraction microscopy highlight the existence of several distorted environments of the doping element in the studied defective fluorite-type host lattice. Indeed, the fast and high crystallization rate obtained to put in evidence a lack of miscibility in the phase diagram, being the final composition of the pellet driven by the ratio between niobium and yttrium elements. By following the luminescence properties, we demonstrate a direct impact on the SPS process on this material.Keywords: emission, niobate of rare earth, Spark plasma sintering, lack of miscibility
Procedia PDF Downloads 266277 Combination of Silver-Curcumin Nanoparticle for the Treatment of Root Canal Infection
Authors: M. Gowri, E. K. Girija, V. Ganesh
Abstract:
Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate C. albicans. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against Candida albicans. Detailed molecular studies were carried out with silver-curcumin nanoparticle on C. albicans pathogenicity. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on C. albicans was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against C. albicans. Silver-curcumin nanoparticle exerted time kill effect and post antifungal effect. When used in combination with fluconazole or nystatin, silver-curcumin nanoparticle revealed a minimum inhibitory concentration (MIC) decrease for both drugs used. In-depth molecular studies with silver-curcumin nanoparticle on C. albicans showed that silver-curcumin nanoparticle inhibited yeast to hyphae (Y-H) conversion. Further, SEM images of C. albicans showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of C. albicans and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Conclusion: The results of this study can pave the way for developing new antifungal agents with well deciphered mechanisms of action and can be a promising antifungal agent or medicament against root canal infection.Keywords: C. albicans, ex vivo dentine model, inhibition of biofilm formation, root canal infection, yeast to hyphae conversion inhibition
Procedia PDF Downloads 206