Search results for: preposition error detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5253

Search results for: preposition error detection

1923 Eco-Friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent

Authors: Hebat‑Allah S. Tohamy, Mohamed El‑Sakhawy, Samir Kamel

Abstract:

Fluorescent carbon quantum dots (CQDs) were prepared by an economical, green, and single-step procedure based on microwave heating of urea with sugarcane bagasse (SCB), cellulose (C), or carboxymethyl cellulose (CMC). The prepared CQDs were characterized using a series of spectroscopic techniques, and they had small size, strong absorption in the UV, and excitation wavelength-dependent fluorescence. The prepared CQDs were used for Pb(II) adsorption from an aqueous solution. The removal efficiency percentages (R %) were 99.16, 96.36, and 98.48 for QCMC, QC, and QSCB. The findings validated the efficiency of CQDs synthesized from CMC, cellulose, and SCB as excellent materials for further utilization in the environmental fields of wastewater pollution detection, adsorption, and chemical sensing applications. The kinetics and isotherms studied found that all CQD isotherms fit well with the Langmuir model than Freundlich and Temkin models. According to R², the pseudo-second-order fits the adsorption of QCMC, while the first-order one fits with QC and QSCB.

Keywords: carbon quantum dots, graphene quantum dots, fluorescence, quantum yield, water treatment, agricultural wastes

Procedia PDF Downloads 135
1922 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator

Procedia PDF Downloads 256
1921 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy

Procedia PDF Downloads 379
1920 Data Analytics of Electronic Medical Records Shows an Age-Related Differences in Diagnosis of Coronary Artery Disease

Authors: Maryam Panahiazar, Andrew M. Bishara, Yorick Chern, Roohallah Alizadehsani, Dexter Hadleye, Ramin E. Beygui

Abstract:

Early detection plays a crucial role in enhancing the outcome for a patient with coronary artery disease (CAD). We utilized a big data analytics platform on ~23,000 patients with CAD from a total of 960,129 UCSF patients in 8 years. We traced the patients from their first encounter with a physician to diagnose and treat CAD. Characteristics such as demographic information, comorbidities, vital, lab tests, medications, and procedures are included. There are statistically significant gender-based differences in patients younger than 60 years old from the time of the first physician encounter to coronary artery bypass grafting (CABG) with a p-value=0.03. There are no significant differences between the patients between 60 and 80 years old (p-value=0.8) and older than 80 (p-value=0.4) with a 95% confidence interval. This recognition would affect significant changes in the guideline for referral of the patients for diagnostic tests expeditiously to improve the outcome by avoiding the delay in treatment.

Keywords: electronic medical records, coronary artery disease, data analytics, young women

Procedia PDF Downloads 151
1919 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States

Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi

Abstract:

The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.

Keywords: economic growth, energy demand, income, real GDP, urbanization, VECM

Procedia PDF Downloads 315
1918 Prevalence of Oral Mucosal Lesions in Malaysia: A Teaching Hospital Based Study

Authors: Renjith George Pallivathukal, Preethy Mary Donald

Abstract:

Asymptomatic oral lesions are often ignored by the patients and usually will be identified only in advanced stages. Early detection of precancerous lesions is important for better prognosis. It is also important for the oral health care person to be aware of the regional prevalence of oral lesions in order to provide early care for the same. We conducted a retrospective study to assess the prevalence of oral lesions based on the information available from patient records in a teaching dental school. Dental records of patients who attended the department of Oral medicine and diagnosis between September 2014 and September 2016 were retrieved and verified for oral lesions. Results: The ages of the patients ranged from 13 to 38 years with a mean age of 21.8 years. The lesions were classified as white (40.5%), red (23%), ulcerated (10.5%), pigmented (15.2%) and soft tissue enlargements (10.8%). 52% of the patients were unaware of the oral lesions before the dental visit. Overall, the prevalence of lesions in dental patients lower to national estimates, but the prevalence of some lesions showed variations.

Keywords: oral mucosal lesion, pre-cancer, prevalence, soft tissue lesion

Procedia PDF Downloads 352
1917 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: electrocardiogram, dictionary learning, sparse coding, classification

Procedia PDF Downloads 389
1916 Parameters of Validation Method of Determining Polycyclic Aromatic Hydrocarbons in Drinking Water by High Performance Liquid Chromatography

Authors: Jonida Canaj

Abstract:

A simple method of extraction and determination of fifteen priority polycyclic aromatic hydrocarbons (PAHs) from drinking water using high performance liquid chromatography (HPLC) has been validated with limits of detection (LOD) and limits of quantification (LOQ), method recovery and reproducibility, and other factors. HPLC parameters, such as mobile phase composition and flow standardized for determination of PAHs using fluorescent detector (FLD). PAH was carried out by liquid-liquid extraction using dichloromethane. Linearity of calibration curves was good for all PAH (R², 0.9954-1.0000) in the concentration range 0.1-100 ppb. Analysis of standard spiked water samples resulted in good recoveries between 78.5-150%(0.1ppb) and 93.04-137.47% (10ppb). The estimated LOD and LOQ ranged between 0.0018-0.98 ppb. The method described has been used for determination of the fifteen PAHs contents in drinking water samples.

Keywords: high performance liquid chromatography, HPLC, method validation, polycyclic aromatic hydrocarbons, PAHs, water

Procedia PDF Downloads 106
1915 SCANet: A Workflow for Single-Cell Co-Expression Based Analysis

Authors: Mhaned Oubounyt, Jan Baumbach

Abstract:

Differences in co-expression networks between two or multiple cells (sub)types across conditions is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to define those co-variations that differ between or among cell types and/or conditions and phenotypes to examine small regulatory networks that can explain mechanistic differences. To this end, we developed SCANet, an all-in-one Python package that uses state-of-the-art algorithms to facilitate the workflow of a combined single-cell GCN (Gene Correlation Network) and GRN (Gene Regulatory Networks) pipeline, including inference of gene co-expression modules from scRNA-seq, followed by trait and cell type associations, hub gene detection, co-regulatory networks, and drug-gene interactions. In an example case, we illustrate how SCANet can be applied to identify regulatory drivers behind a cytokine storm associated with mortality in patients with acute respiratory illness. SCANet is available as a free, open-source, and user-friendly Python package that can be easily integrated into systems biology pipelines.

Keywords: single-cell, co-expression networks, drug-gene interactions, co-regulatory networks

Procedia PDF Downloads 159
1914 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: agricultural mobile robot, image processing, path recognition, hough transform

Procedia PDF Downloads 148
1913 Infection of Phlebotomus Sergenti with Leishmania Tropica in a Classical Focus of Leishmania Major in Tunisia

Authors: Kaouther Jaouadi, Jihene Bettaieb, Amira Bennour, Ghassen Kharroubi, Sadok Salem, Afif Ben Salah

Abstract:

In Tunisia, chronic cutaneous leishmaniasis due to Leishmania (L) tropica is an important health problem. Its spreading has not been fully elucidated. Information on sandfly vectors, as well as their associated Leishmania species, is of paramount importance since vector dispersion is one of the major factors responsible for pathogen dissemination. In total, 650 sandflies were captured between June and August 2015 using sticky paper traps in the governorate of Sidi Bouzid, a classical focus of L. major in the Central-West of Tunisia. Polymerase chain reaction-restriction fragment length polymorphism analysis of the internal transcribed spacer 1 and sequencing were used for Leishmania detection and identification. Ninety-seven unfed females were tested for the presence of Leishmania parasite DNA. Six Phlebotomus sergenti were found positive for L. tropica. This finding enhances the understanding of the cycle extension of L. tropica outside its original focus of Tataouine in the South-East of the country.

Keywords: cutaneous leishmaniasis, Leishmania tropica, sandflies, Tunisia

Procedia PDF Downloads 160
1912 A Transformer-Based Approach for Multi-Human 3D Pose Estimation Using Color and Depth Images

Authors: Qiang Wang, Hongyang Yu

Abstract:

Multi-human 3D pose estimation is a challenging task in computer vision, which aims to recover the 3D joint locations of multiple people from multi-view images. In contrast to traditional methods, which typically only use color (RGB) images as input, our approach utilizes both color and depth (D) information contained in RGB-D images. We also employ a transformer-based model as the backbone of our approach, which is able to capture long-range dependencies and has been shown to perform well on various sequence modeling tasks. Our method is trained and tested on the Carnegie Mellon University (CMU) Panoptic dataset, which contains a diverse set of indoor and outdoor scenes with multiple people in varying poses and clothing. We evaluate the performance of our model on the standard 3D pose estimation metrics of mean per-joint position error (MPJPE). Our results show that the transformer-based approach outperforms traditional methods and achieves competitive results on the CMU Panoptic dataset. We also perform an ablation study to understand the impact of different design choices on the overall performance of the model. In summary, our work demonstrates the effectiveness of using a transformer-based approach with RGB-D images for multi-human 3D pose estimation and has potential applications in real-world scenarios such as human-computer interaction, robotics, and augmented reality.

Keywords: multi-human 3D pose estimation, RGB-D images, transformer, 3D joint locations

Procedia PDF Downloads 84
1911 NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine

Authors: Anas Rao, Hao Duan, Fanhua Ma

Abstract:

The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated.

Keywords: quasi-dimensional combustion , thermal NO, prompt NO, NO packet

Procedia PDF Downloads 253
1910 Automatic Detection of Proliferative Cells in Immunohistochemically Images of Meningioma Using Fuzzy C-Means Clustering and HSV Color Space

Authors: Vahid Anari, Mina Bakhshi

Abstract:

Visual search and identification of immunohistochemically stained tissue of meningioma was performed manually in pathologic laboratories to detect and diagnose the cancers type of meningioma. This task is very tedious and time-consuming. Moreover, because of cell's complex nature, it still remains a challenging task to segment cells from its background and analyze them automatically. In this paper, we develop and test a computerized scheme that can automatically identify cells in microscopic images of meningioma and classify them into positive (proliferative) and negative (normal) cells. Dataset including 150 images are used to test the scheme. The scheme uses Fuzzy C-means algorithm as a color clustering method based on perceptually uniform hue, saturation, value (HSV) color space. Since the cells are distinguishable by the human eye, the accuracy and stability of the algorithm are quantitatively compared through application to a wide variety of real images.

Keywords: positive cell, color segmentation, HSV color space, immunohistochemistry, meningioma, thresholding, fuzzy c-means

Procedia PDF Downloads 212
1909 Novel Ultrasensitive Point of Care Device for Diagnosis of Human Schistosomiasis Mansoni

Authors: Ibrahim Aly, Waleed Elawamy, Hanan Taher, Amira Matar

Abstract:

Schistosomiasis is infection with blood flukes of the genus Schistosoma, which are acquired trans-cutaneously by swimming or wading in contaminated freshwater. The present study was proposed to produce ultra-sensitive, field-friendly high-throughput rapid immunochromatography diagnostic device for accurate detection of asymptomatic parasite carriers in schistosomiasis pre-elimination settings.For assessing diagnostic potential of rapid device, 50 blood samples from patients with schistosomiasis mansoni, 29 other proven parasitic diseases and 25 blood samples as negative control were from healthy individuals were used. The sensitivity of Quantitative antigen-capture nano-ELISAwas 82 %, and specificity was 87.1 %, where the sensitivity of Nano Dot- ELISA was 86 % and specificity was 90.7 %. The sensitivity of diagnostic device was 78 % and specificity was 85.2 %, with PPV and NPV of 86.2 % and 83.1 %, respectively.The Point of care device resulted in a good performance for the diagnosis of low-intensity infections, it was able to identify 19 out of 25 (76 %) individuals with ⩽7 eggs, 10 out of 14 individuals (71.4 %) with 11–99 eggs and 100 % of individuals with 100–399 eggs.

Keywords: schistosomiasis, immunochromatography, naon-dot-ELISa, diagnostis device

Procedia PDF Downloads 80
1908 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages

Procedia PDF Downloads 276
1907 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 93
1906 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder

Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen

Abstract:

Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.

Keywords: count data, meta-analytic prior, negative binomial, poisson

Procedia PDF Downloads 123
1905 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor

Authors: Panupong Makvichian

Abstract:

Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.

Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor

Procedia PDF Downloads 202
1904 Highly Sensitive and Selective H2 Gas Sensor Based on Pd-Pt Decorated Nanostructured Silicon Carbide Thin Films for Extreme Environment Application

Authors: Satyendra Mourya, Jyoti Jaiswal, Gaurav Malik, Brijesh Kumar, Ramesh Chandra

Abstract:

Present work describes the fabrication and sensing characteristics of the Pd-Pt decorated nanostructured silicon carbide (SiC) thin films on anodized porous silicon (PSi) substrate by RF magnetron sputtering. The gas sensing performance of Pd-Pt/SiC/PSi sensing electrode towards H2 gas under low (10–400 ppm) detection limit and high operating temperature regime (25–600 °C) were studied in detail. The chemiresistive sensor exhibited high selectivity, good sensing response, fast response/recovery time with excellent stability towards H2 at high temperature. The selectivity measurement of the sensing electrode was done towards different oxidizing and reducing gases and proposed sensing mechanism discussed in detail. Therefore, the investigated Pd-Pt/SiC/PSi structure may be a highly sensitive and selective hydrogen gas sensing electrode for deployment in extreme environment applications.

Keywords: RF Sputtering, silicon carbide, porous silicon, hydrogen gas sensor

Procedia PDF Downloads 309
1903 Analyzing On-Line Process Data for Industrial Production Quality Control

Authors: Hyun-Woo Cho

Abstract:

The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users.

Keywords: detection, filtering, monitoring, process data

Procedia PDF Downloads 562
1902 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 358
1901 Early Detection of Lymphedema in Post-Surgery Oncology Patients

Authors: Sneha Noble, Rahul Krishnan, Uma G., D. K. Vijaykumar

Abstract:

Breast-Cancer related Lymphedema is a major problem that affects many women. Lymphedema is the swelling that generally occurs in the arms or legs caused by the removal of or damage to lymph nodes as a part of cancer treatment. Treating it at the earliest possible stage is the best way to manage the condition and prevent it from leading to pain, recurrent infection, reduced mobility, and impaired function. So, this project aims to focus on the multi-modal approaches to identify the risks of Lymphedema in post-surgical oncology patients and prevent it at the earliest. The Kinect IR Sensor is utilized to capture the images of the body and after image processing techniques, the region of interest is obtained. Then, performing the voxelization method will provide volume measurements in pre-operative and post-operative periods in patients. The formation of a mathematical model will help in the comparison of values. Clinical pathological data of patients will be investigated to assess the factors responsible for the development of lymphedema and its risks.

Keywords: Kinect IR sensor, Lymphedema, voxelization, lymph nodes

Procedia PDF Downloads 142
1900 Wrong Site Surgery Should Not Occur In This Day And Age!

Authors: C. Kuoh, C. Lucas, T. Lopes, I. Mechie, J. Yoong, W. Yoong

Abstract:

For all surgeons, there is one preventable but still highly occurring complication – wrong site surgeries. They can have potentially catastrophic, irreversible, or even fatal consequences on patients. With the exponential development of microsurgery and the use of advanced technological tools, the consequences of operating on the wrong side, anatomical part, or even person is seen as the most visible and destructive of all surgical errors and perhaps the error that is dreaded by most clinicians as it threatens their licenses and arouses feelings of guilt. Despite the implementation of the WHO surgical safety checklist more than a decade ago, the incidence of wrong-site surgeries remains relatively high, leading to tremendous physical and psychological repercussions for the clinicians involved, as well as a financial burden for the healthcare institution. In this presentation, the authors explore various factors which can lead to wrong site surgery – a combination of environmental and human factors and evaluate their impact amongst patients, practitioners, their families, and the medical industry. Major contributing factors to these “never events” include deviations from checklists, excessive workload, and poor communication. Two real-life cases are discussed, and systems that can be implemented to prevent these errors are highlighted alongside lessons learnt from other industries. The authors suggest that reinforcing speaking-up, implementing medical professional trainings, and higher patient’s involvements can potentially improve safety in surgeries and electrosurgeries.

Keywords: wrong side surgery, never events, checklist, workload, communication

Procedia PDF Downloads 186
1899 Transparent Photovoltaic Skin for Artificial Thermoreceptor and Nociceptor Memory

Authors: Priyanka Bhatnagar, Malkeshkumar Patel, Joondong Kim, Joonpyo Hong

Abstract:

Artificial skin and sensory memory platforms are produced using a flexible, transparent photovoltaic (TPV) device. The TPV device is composed of a metal oxide heterojunction (nZnO/p-NiO) and transmits visible light (> 50%) while producing substantial electric power (0.5 V and 200 μA cm-2 ). This TPV device is a transparent energy interface that can be used to detect signals and propagate information without an external energy supply. The TPV artificial skin offers a temperature detection range (0 C75 C) that is wider than that of natural skin (5 C48 °C) due to the temperature-sensitive pyrocurrent from the ZnO layer. Moreover, the TPV thermoreceptor offers sensory memory of extreme thermal stimuli. Much like natural skin, artificial skin uses the nociceptor mechanism to protect tissue from harmful damage via signal amplification (hyperalgesia) and early adaption (allodynia). This demonstrates the many features of TPV artificial skin, which can sense and transmit signals and memorize information under self-operation mode. This transparent photovoltaic skin can provide sustainable energy for use in human electronics.

Keywords: transparent, photovoltaics, thermal memory, artificial skin, thermoreceptor

Procedia PDF Downloads 115
1898 A Case Study for User Rating Prediction on Automobile Recommendation System Using Mapreduce

Authors: Jiao Sun, Li Pan, Shijun Liu

Abstract:

Recommender systems have been widely used in contemporary industry, and plenty of work has been done in this field to help users to identify items of interest. Collaborative Filtering (CF, for short) algorithm is an important technology in recommender systems. However, less work has been done in automobile recommendation system with the sharp increase of the amount of automobiles. What’s more, the computational speed is a major weakness for collaborative filtering technology. Therefore, using MapReduce framework to optimize the CF algorithm is a vital solution to this performance problem. In this paper, we present a recommendation of the users’ comment on industrial automobiles with various properties based on real world industrial datasets of user-automobile comment data collection, and provide recommendation for automobile providers and help them predict users’ comment on automobiles with new-coming property. Firstly, we solve the sparseness of matrix using previous construction of score matrix. Secondly, we solve the data normalization problem by removing dimensional effects from the raw data of automobiles, where different dimensions of automobile properties bring great error to the calculation of CF. Finally, we use the MapReduce framework to optimize the CF algorithm, and the computational speed has been improved times. UV decomposition used in this paper is an often used matrix factorization technology in CF algorithm, without calculating the interpolation weight of neighbors, which will be more convenient in industry.

Keywords: collaborative filtering, recommendation, data normalization, mapreduce

Procedia PDF Downloads 220
1897 Estimation of the Road Traffic Emissions and Dispersion in the Developing Countries Conditions

Authors: Hicham Gourgue, Ahmed Aharoune, Ahmed Ihlal

Abstract:

We present in this work our model of road traffic emissions (line sources) and dispersion of these emissions, named DISPOLSPEM (Dispersion of Poly Sources and Pollutants Emission Model). In its emission part, this model was designed to keep the consistent bottom-up and top-down approaches. It also allows to generate emission inventories from reduced input parameters being adapted to existing conditions in Morocco and in the other developing countries. While several simplifications are made, all the performance of the model results are kept. A further important advantage of the model is that it allows the uncertainty calculation and emission rate uncertainty according to each of the input parameters. In the dispersion part of the model, an improved line source model has been developed, implemented and tested against a reference solution. It provides improvement in accuracy over previous formulas of line source Gaussian plume model, without being too demanding in terms of computational resources. In the case study presented here, the biggest errors were associated with the ends of line source sections; these errors will be canceled by adjacent sections of line sources during the simulation of a road network. In cases where the wind is parallel to the source line, the use of the combination discretized source and analytical line source formulas minimizes remarkably the error. Because this combination is applied only for a small number of wind directions, it should not excessively increase the calculation time.

Keywords: air pollution, dispersion, emissions, line sources, road traffic, urban transport

Procedia PDF Downloads 449
1896 Unauthorized License Verifier and Secure Access to Vehicle

Authors: G. Prakash, L. Mohamed Aasiq, N. Dhivya, M. Jothi Mani, R. Mounika, B. Gomathi

Abstract:

In our day to day life, many people met with an accident due to various reasons like over speed, overload in the vehicle, violation of the traffic rules, etc. Driving license system is difficult task for the government to monitor. To prevent non-licensees from driving who are causing most of the accidents, a new system is proposed. The proposed system consists of a smart card capable of storing the license details of a particular person. Vehicles such as cars, bikes etc., should have a card reader capable of reading the particular license. A person, who wishes to drive the vehicle, should insert the card (license) in the vehicle and then enter the password in the keypad. If the license data stored in the card and database about the entire license holders in the microcontroller matches, he/she can proceed for ignition after the automated opening of the fuel tank valve, otherwise the user is restricted to use the vehicle. Moreover, overload detector in our proposed system verifies and then prompts the user to avoid overload before driving. This increases the security of vehicles and also ensures safe driving by preventing accidents.

Keywords: license, verifier, EEPROM, secure, overload detection

Procedia PDF Downloads 246
1895 The Proactive Approach of Digital Forensics Methodology against Targeted Attack Malware

Authors: Mohamed Fadzlee Sulaiman, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin

Abstract:

Each individual organization has their own mechanism to build up cyber defense capability in protecting their information infrastructures from data breaches and cyber espionage. But, we can not deny the possibility of failing to detect and stop cyber attacks especially for those targeting credential information and intellectual property (IP). In this paper, we would like to share the modern approach of effective digital forensic methodology in order to identify the artifacts in tracing the trails of evidence while mitigating the infection from the target machine/s. This proposed approach will suit the digital forensic investigation to be conducted while resuming the business critical operation after mitigating the infection and minimizing the risk from the identified attack to transpire. Therefore, traditional digital forensics methodology has to be improvised to be proactive which not only focusing to discover the root caused and the threat actor but to develop the relevant mitigation plan in order to prevent from the same attack.

Keywords: digital forensic, detection, eradication, targeted attack, malware

Procedia PDF Downloads 281
1894 The Search of New Laws for a Gluten Kingdom

Authors: Mohammed Saleem Tariq

Abstract:

The enthusiasm for gluten avoidance in a growing market is met by improvements in sensitive detection methods for analysing gluten content. Paradoxically, manufacturers employ no such systems in the production process but continue to market their product as gluten free, a significant risk posed to an undetermined coeliac population. The paper resonates with an immunological response that causes gastrointestinal scarring and villous atrophy with the conventional description of personal injury. The current developing regime in the UK however, it is discussed, has avoided creating specific rules to provide an adequate level of protection for this type of vulnerable ‘characteristic’. Due to the struggle involved with identifying an appropriate cause of action, this paper analyses whether a claim brought in misrepresentation, negligence and/or under the Consumer Protect Act 1987 could be sustained. A necessary comparison is then made with the approach adopted by the Americans with Disability Act 1990 which recognises this chronic disease as a disability. The ongoing failure to introduce a level of protection which matches that afforded to those who fall into any one of the ‘protected characteristics’ under the Equality Act 2010, is inconceivable given the outstanding level of legal vulnerability.

Keywords: coeliac, litigation, misrepresentation, negligence

Procedia PDF Downloads 365