Search results for: effectiveness of macroprudential supervision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4527

Search results for: effectiveness of macroprudential supervision

1197 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals

Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao

Abstract:

Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).

Keywords: nanocomposites, polymers, EMI shielding, thermal imaging

Procedia PDF Downloads 108
1196 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 31
1195 Developing Students’ Academic Writing Skills through Scientific Reading: Using Questions and Answer Activities

Authors: Makhim Artikova, Shavkat Duschanov

Abstract:

So far, there have been a plethora of attempts to improve learners’ academic writing skills. However, this issue remains to be a real concern among the majority of students, especially those who are standing on their academic life threshold. The purpose of this research is improving students’ academic writing skills through 'Questions and Answer Reading' activities. Using well-prepared and well-chosen reading materials (from textbooks, scientific journals, or magazines) and applying questions and answer activities in the classroom facilitate learners to become great critical readers. Furthermore, it boosts their writing skills, which are the most crucial part of students’ personal and academic developments. In this activity, the class is divided into small groups of four. Then, the instructor will give students whether one section of the text or full text asking them to read and to find unfamiliar words within the group. After discovering the meaning of unknown words, each group has to share their findings with the class. In the next stage of the activity, students should be asked to create questions in a group based on the given reading material. Follow by each group should ask the other groups their questions which are an excellent opportunity to challenge leads to improve critical thinking skills. In the last part, the students are asked to write the text or article summary, which is the activity core that pilots to the writing skills perfection. This engaging activity highlights the effectiveness of incorporating reading materials into the classroom when it comes to improving students’ composition writings. Structural writing after every reading activity resulted in improving students’ coherence and cohesion in writing well-organized essays. Having experimented with high school 9th and 11th-grade students, implementing reading activities into the classroom is proved to be a productive tool to enhance one’s academic writing skills. In the future, this method planning to be implemented among university students.

Keywords: academic writing, coherence and cohesion, questions and answer activities, scientific reading

Procedia PDF Downloads 112
1194 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor

Authors: Tayyaba Azim, Bibi Amina

Abstract:

The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.

Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec

Procedia PDF Downloads 150
1193 Advanced Lithium Recovery from Brine: 2D-Based Ion Selectivity Membranes

Authors: Nour S. Abdelrahman, Seunghyun Hong, Hassan A. Arafat, Daniel Choi, Faisal Al Marzooqi

Abstract:

Abstract—The advancement of lithium extraction methods from water sources, particularly saltwater brine, is gaining prominence in the lithium recovery industry due to its cost-effectiveness. Traditional techniques like recrystallization, chemical precipitation, and solvent extraction for metal recovery from seawater or brine are energy-intensive and exhibit low efficiency. Moreover, the extensive use of organic solvents poses environmental concerns. As a result, there's a growing demand for environmentally friendly lithium recovery methods. Membrane-based separation technology has emerged as a promising alternative, offering high energy efficiency and ease of continuous operation. In our study, we explored the potential of lithium-selective sieve channels constructed from layers of 2D graphene oxide and MXene (transition metal carbides and nitrides), integrated with surface – SO₃₋ groups. The arrangement of these 2D sheets creates interplanar spacing ranging from 0.3 to 0.8 nm, which forms a barrier against multivalent ions while facilitating lithium-ion movement through nano capillaries. The introduction of the sulfonate group provides an effective pathway for Li⁺ ions, with a calculated binding energy of Li⁺ – SO³⁻ at – 0.77 eV, the lowest among monovalent species. These modified membranes demonstrated remarkably rapid transport of Li⁺ ions, efficiently distinguishing them from other monovalent and divalent species. This selectivity is achieved through a combination of size exclusion and varying binding affinities. The graphene oxide channels in these membranes showed exceptional inter-cation selectivity, with a Li⁺/Mg²⁺ selectivity ratio exceeding 104, surpassing commercial membranes. Additionally, these membranes achieved over 94% rejection of MgCl₂.

Keywords: ion permeation, lithium extraction, membrane-based separation, nanotechnology

Procedia PDF Downloads 74
1192 Development of Nursing Service System Integrated Case Manager Concept for the Patients with Epilepsy at the Tertiary Epilepsy Clinic of Thailand

Authors: C. Puangsawat, C. Limotai, P. Srikhachin

Abstract:

Bio-psycho-social caring was required for promoting the quality of life of the patients with epilepsy (PWE), despite controlled seizures. Multifaceted issues emerge at the epilepsy clinic. Unpredicted seizures, antiepileptic drug compliance problems/adverse effects, psychiatric, and social problems are all needed to be explored and managed. The Nursing Service System (NSS) at the tertiary epilepsy clinic (TEC) was consequently developed for improving the clinical care for PWE. Case manager concept was integrated as the framework guiding the processes and strategies used for developing the NSS as well as the roles of the multidisciplinary team at the clinic. This study aimed to report the outcomes of the developed NSS integrated case manager concept. The processes of our developed NSS program included 1) screening for patient’s problems using questionnaire prior to seeing epileptologists i.e., assessing the patient’s risk to develop acute seizures at the clinic, issues related to medication use, and uncovered psychiatric and social problems; and 2) assigning the patients at risk to be evaluated and managed by appropriate team. Nurses specializing in epilepsy in coordination with the multidisciplinary team implemented the NSS to promote coordinated work among the team which consists of epileptologists, nurses, pharmacists, psychologists, and social workers. Determination of the role of each person and their responsibilities along with joint care plan were clearly established. One year after implementation, the rate of acute seizure occurrence at the clinic was decreased, and satisfactory feedback from the patients was received. In order to achieve an optimal goal to promote self-management behaviors in PWE, continuing the NSS and systematic assessment of its effectiveness is required.

Keywords: case manager concept, nursing service system, patients with epilepsy, quality of life

Procedia PDF Downloads 127
1191 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.

Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making

Procedia PDF Downloads 76
1190 Preferred Character Size for Oblique Angles

Authors: Photjanat Phimnom, Haruetai Lohasiriwat

Abstract:

In today’s world, the LED display has been used for presenting visual information under various circumstances. Such information is an important intermediary in the human information processing. Researchers have been investigated diverse factors that influence this process effectiveness. The letter size is undoubtedly one major factor that has been tested and recommended by many standards and guidelines. However, viewing information on the display from direct perpendicular position is a typical assumption whereas many actual events are required viewing from the angles. This current research aims to study the effect of oblique viewing angle and viewing distance on ability to recognize alphabet, number, and English word. The total of ten participants was volunteered to our 3 x 4 x 4 within subject study. Independent variables include three distance levels (2, 6, and 12 m), four oblique angle (0, 45, 60, 75 degree), and four target types (alphabet, number, short words, and long words). Following the method of constant stimuli we found that the larger oblique angle, ranging from 0 to 75 degree from the line of sight, results in significant higher legibility threshold or larger font size required (p-value < 0.05). Viewing distance factor also shows to have significant effect on the threshold (p-value < 0.05). However, the effect from distance factor is expected to be confounded by the quality of the screen we used in our experiment. Lastly, our results show that single alphabet as well as single number are recognized at significant lower threshold (smaller font size) as compared to both short and long words (p-value < 0.05). Therefore, it is recommended that when designs information to be presented on LED display, understanding of all possible ranges of oblique angle should be taken into account in order to specify the preferred letter size. Additionally, the recommendation of letter size for 100 % readability in our tested conditions is provided in the paper.

Keywords: letter size, oblique angle, viewing distance, legibility threshold

Procedia PDF Downloads 395
1189 Behavior of Common Philippine-Made Concrete Hollow Block Structures Subjected to Seismic Load Using Rigid Body Spring-Discrete Element Method

Authors: Arwin Malabanan, Carl Chester Ragudo, Jerome Tadiosa, John Dee Mangoba, Eric Augustus Tingatinga, Romeo Eliezer Longalong

Abstract:

Concrete hollow blocks (CHB) are the most commonly used masonry block for walls in residential houses, school buildings and public buildings in the Philippines. During the recent 2013 Bohol earthquake (Mw 7.2), it has been proven that CHB walls are very vulnerable to severe external action like strong ground motion. In this paper, a numerical model of CHB structures is proposed, and seismic behavior of CHB houses is presented. In modeling, the Rigid Body Spring-Discrete Element method (RBS-DEM)) is used wherein masonry blocks are discretized into rigid elements and connected by nonlinear springs at preselected contact points. The shear and normal stiffness of springs are derived from the material properties of CHB unit incorporating the grout and mortar fillings through the volumetric transformation of the dimension using material ratio. Numerical models of reinforced and unreinforced walls are first subjected to linearly-increasing in plane loading to observe the different failure mechanisms. These wall models are then assembled to form typical model masonry houses and then subjected to the El Centro and Pacoima earthquake records. Numerical simulations show that the elastic, failure and collapse behavior of the model houses agree well with shaking table tests results. The effectiveness of the method in replicating failure patterns will serve as a basis for the improvement of the design and provides a good basis of strengthening the structure.

Keywords: concrete hollow blocks, discrete element method, earthquake, rigid body spring model

Procedia PDF Downloads 375
1188 The Evaluation of the Performance of CaCO3/Polymer Nano-Composites for the Preservation of Historic Limestone Monuments

Authors: Mohammed Badereldien, Rezk Diab, Mohamoud Ali, Ayman Aboelkassem

Abstract:

The stone surfaces of historical architectural heritage in Egypt are under threat from of various environmental factors such as temperature fluctuation, humidity, pollution, and microbes. Due to these factors, the facades of buildings are deteriorating deformation and disfiguration of external decoration and the formation of black accretion also often from the stone works. The aim of this study is to evaluate the effectiveness of CaCO₃ nano-particles as consolidation and protection material for calcareous stone monuments. Selected tests were carried out in order to estimate the superficial consolidating and protective effect of the treatment. When applied the nanoparticles dispersed in the acrylic copolymer; poly ethylmethacrylate (EMA)/methylacrylate (MA) (70/30, respectively) (EMA)/methylacrylate (MA) (70/30, respectively). The synthesis process of CaCO₃ nanoparticles/polymer nano-composite was prepared using in situ emulsion polymerization system. The consolidation and protection were characterized by TEM, while the penetration depth, re-aggregating effects of the deposited phase, and the surface morphology before and after treatment were examined by SEM (Scanning Electron Microscopy). Improvement of the stones' mechanical properties was evaluated by compressive strength tests. Changes in water-interaction properties were evaluated by water absorption capillarity measurements, and colorimetric measurements were used to evaluate the optical appearance. Together the results appear to demonstrate that CaCO₃/polymer nanocomposite is an efficient material for the consolidation of limestone architecture and monuments. As compared with samples treated with pure acrylic copolymer without Calcium carbonate nanoparticles, for example, CaCO₃ nanoparticles are completely compatible, strengthening limestone against thermal aging and improving its mechanical properties.

Keywords: calcium carbonate nanoparticles, consolidation, nanocomposites, calcareous stone, colorimetric measurements, compressive strength

Procedia PDF Downloads 137
1187 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model

Authors: Chongyang Ye, Rong Liu

Abstract:

Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.

Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction

Procedia PDF Downloads 114
1186 A Case Study on the Effectiveness of the Physical Therapy Home Exercise Program for Pelvic Floor Muscle Training in a Middle-Aged Female Post- Surgical Repair of Stage III Pelvic Organ Prolapse

Authors: Iwona Kasior

Abstract:

Purpose: Pelvic organ prolapse is the descent of pelvic organs into the vaginal opening. Currently, few trials have been conducted to determine the influence of pelvic floor muscle training in decreasing stage or symptoms associated with pelvic organ prolapse. The purpose of this case study is to determine whether pelvic floor muscle training can decrease the stage of pelvic organ prolapse and related symptoms. Case Presentation: This is the case of a 55-year-old female; recently diagnosed with midline cystocele, stage three. She has undergone corrective surgery that failed. She has now resorted to managing the condition with a home exercise regimen of voluntary pelvic floor muscle contractions, topical vaginal crème prescribed by her gynecologist, and slight lifestyle modifications. Methods: The patient was treated by a physical therapist for evaluation, vaginal exam, and educated in the ‘knack’ maneuver, lifestyle modifications, and proper technique of performing pelvic floor muscle contractions. The subject continued with a home exercise program with a specific regimen of pelvic floor muscle contractions and topical vaginal crème. Outcome: As determined by her physical therapist and the subject, her pelvic floor muscle strength had increased following the pelvic floor muscle training regimen and the use of the ‘knack’ maneuver. The subject reported a small decrease in the size of bulging prolapse and related symptoms of dryness, odor, vaginal discomfort, and the sensation of descent. Conclusion: Pelvic floor muscle training helped to lessen the degree of the prolapse, but not significantly enough to decrease the diagnosed stage.

Keywords: Kegel exercises, pelvic floor, pelvic organ prolapse, physical therapy

Procedia PDF Downloads 195
1185 Seismic Protection of Automated Stocker System by Customized Viscous Fluid Dampers

Authors: Y. P. Wang, J. K. Chen, C. H. Lee, G. H. Huang, M. C. Wang, S. W. Chen, Y. T. Kuan, H. C. Lin, C. Y. Huang, W. H. Liang, W. C. Lin, H. C. Yu

Abstract:

The hi-tech industries in the Science Park at southern Taiwan were heavily damaged by a strong earthquake early 2016. The financial loss in this event was attributed primarily to the automated stocker system handling fully processed products, and recovery of the automated stocker system from the aftermath proved to contribute major lead time. Therefore, development of effective means for protection of stockers against earthquakes has become the highest priority for risk minimization and business continuity. This study proposes to mitigate the seismic response of the stockers by introducing viscous fluid dampers in between the ceiling and the top of the stockers. The stocker is expected to vibrate less violently with a passive control force on top. Linear damper is considered in this application with an optimal damping coefficient determined from a preliminary parametric study. The damper is small in size in comparison with those adopted for building or bridge applications. Component test of the dampers has been carried out to make sure they meet the design requirement. Shake table tests have been further conducted to verify the proposed scheme under realistic earthquake conditions. Encouraging results have been achieved by effectively reducing the seismic responses of up to 60% and preventing the FOUPs from falling off the shelves that would otherwise be the case if left unprotected. Effectiveness of adopting a viscous fluid damper for seismic control of the stocker on top against the ceiling has been confirmed. This technique has been adopted by Macronix International Co., LTD for seismic retrofit of existing stockers. Demonstrative projects on the application of the proposed technique are planned underway for other companies in the display industry as well.

Keywords: hi-tech industries, seismic protection, automated stocker system, viscous fluid damper

Procedia PDF Downloads 358
1184 Effects of Aerodynamic on Suspended Cables Using Non-Linear Finite Element Approach

Authors: Justin Nwabanne, Sam Omenyi, Jeremiah Chukwuneke

Abstract:

This work presents structural nonlinear static analysis of a horizontal taut cable using Finite Element Analysis (FEA) method. The FEA was performed analytically to determine the tensions at each nodal point and subsequently, performed based on finite element displacement method computationally using the FEA software, ANSYS 14.0 to determine their behaviour under the influence of aerodynamic forces imposed on the cable. The convergence procedure is adapted into the method to prevent excessive displacements through the computations. The work compared the two FEA cases by examining the effectiveness of the analytical model in describing the response with few degrees of freedom and the ability of the nonlinear finite element procedure adopted to capture the complex features of cable dynamics with reference to the aerodynamic external influence. Results obtained from this work explain that the analytic FEM results without aerodynamic influence show a parabolic response with an optimum deflection at nodal points 12 and 13 with the cable weight at nodes 12 and 13 having the value -1.002936N while for the cable tension shows an optimum deflection value for nodes 12 and 13 at -189396.97kg/km. The maximum displacement for the cable system was obtained from ANSYS 14.0 as 4483.83 mm for X, Y and Z components of displacements at node number 2 while the maximum displacement obtained is 4218.75mm for all the directional components. The dynamic behaviour of a taut cable investigated has application in a typical power transmission line. Aerodynamic influences on the cables were considered using FEA approach by employing ANSYS 14.0 showed a complex modal behaviour as expected.

Keywords: aerodynamics, cable tension and weight, finite element analysis, nodal, non-linear model, optimum deflection, suspended cable, transmission line

Procedia PDF Downloads 280
1183 Health Effect of the Central European Diet in Postmenopausal Women with Increased Waist Circumference: A Preliminary Study

Authors: Joanna Bajerska, Agata Chmurzyńska, Agata Muzsik, Patrycja Krzyżanowska, Klaudia Łochocka, Jarosław Walkowiak

Abstract:

The Mediterranean diet (MED) is regarded as beneficial in the therapy of central obesity-associated metabolic abnormalities. However, in the traditional diet of the Central European countries, food items with positive nutritional profiles (rye bread, oats, buckwheat, herrings, linseed and rapeseed oil, berries, apples, plums, root vegetables etc.) are also used. We hypothesized that the Central European Diet (CED) may be comparatively effective in reducing symptoms of central obesity as MED. We tested the health effects of the CED, which is an environmentally friendly regional diet and the traditional MED diet in a group of postmenopausal centrally obese women. A total 58 with a mean age of 60 y (50-70y), body mass index (in kg/m(2)) of 33.4 (22.6-47.3), and waist circumference of 105 cm (87.5-137 cm) were randomly assigned to receive either the diet based on food items commonly used in Central Europe (the CED group; n = 29) or the Mediterranean diet (the MED group; n = 29) for 15 weeks. Body mass and body composition were measured with a Bod Pod (Cosmed, Italy). A non-elastic flexible measuring tape was used to measure waist circumference. Additionally, blood pressure, plasma lipid and glucose levels were assessed with the use of a biochemical analyzer. A total of 50 subjects [86% (CED 83%; MED 90%)] completed the intervention. A high dietary compliance for both described diets was achieved. The mean (±SEM) weight and waist circumference changes were -7.4 ± 0.7 kg; -8.3 ± 0.7 cm and -8.1 ± 0.5 kg; -7.1 ± 0.6 cm for the CED and MED groups, respectively. Moreover, there were no differences between the effectiveness of the diets used in terms of the influence on fat mass, blood pressure, and biochemical parameters. The preliminary data suggest that both described diets may be successfully used for improving central obesity-associated metabolic abnormalities. The project was financed by the National Science Centre awarded based on the number of decision DEC-013/09/B/NZ9/02365

Keywords: central european diet, central obesity, Mediterranean diet, metabolic abnormalities

Procedia PDF Downloads 429
1182 Vibro-Tactile Equalizer for Musical Energy-Valence Categorization

Authors: Dhanya Nair, Nicholas Mirchandani

Abstract:

Musical haptic systems can enhance a listener’s musical experience while providing an alternative platform for the hearing impaired to experience music. Current music tactile technologies focus on representing tactile metronomes to synchronize performers or encoding musical notes into distinguishable (albeit distracting) tactile patterns. There is growing interest in the development of musical haptic systems to augment the auditory experience, although the haptic-music relationship is still not well understood. This paper represents a tactile music interface that provides vibrations to multiple fingertips in synchronicity with auditory music. Like an audio equalizer, different frequency bands are filtered out, and the power in each frequency band is computed and converted to a corresponding vibrational strength. These vibrations are felt on different fingertips, each corresponding to a different frequency band. Songs with music from different spectrums, as classified by their energy and valence, were used to test the effectiveness of the system and to understand the relationship between music and tactile sensations. Three participants were trained on one song categorized as sad (low energy and low valence score) and one song categorized as happy (high energy and high valence score). They were trained both with and without auditory feedback (listening to the song while experiencing the tactile music on their fingertips and then experiencing the vibrations alone without the music). The participants were then tested on three songs from both categories, without any auditory feedback, and were asked to classify the tactile vibrations they felt into either category. The participants were blinded to the songs being tested and were not provided any feedback on the accuracy of their classification. These participants were able to classify the music with 100% accuracy. Although the songs tested were on two opposite spectrums (sad/happy), the preliminary results show the potential of utilizing a vibrotactile equalizer, like the one presented, for augmenting musical experience while furthering the current understanding of music tactile relationship.

Keywords: haptic music relationship, tactile equalizer, tactile music, vibrations and mood

Procedia PDF Downloads 182
1181 The Introduction of a Tourniquet Checklist to Identify and Record Tourniquet Related Complications

Authors: Akash Soogumbur

Abstract:

Tourniquets are commonly used in orthopaedic surgery to provide hemostasis during procedures on the upper and lower limbs. However, there is a risk of complications associated with tourniquet use, such as nerve damage, skin necrosis, and compartment syndrome. The British Orthopaedic Association (BOAST) guidelines recommend the use of tourniquets at a pressure of 300 mmHg or less for a maximum of 2 hours. Research Aim: The aim of this study was to evaluate the effectiveness of a tourniquet checklist in improving compliance with the BOAST guidelines. Methodology: This was a retrospective study of all orthopaedic procedures performed at a single institution over a 12-month period. The study population included patients who had a tourniquet applied during surgery. Data were collected from the patients' medical records, including the duration of tourniquet use, the pressure used, and the method of exsanguination. Findings: The results showed that the use of the tourniquet checklist significantly improved compliance with the BOAST guidelines. Prior to the introduction of the checklist, compliance with the guidelines was 83% for the duration of tourniquet use and 73% for pressure used. After the introduction of the checklist, compliance increased to 100% for both duration of tourniquet use and pressure used. Theoretical Importance: The findings of this study suggest that the use of a tourniquet checklist can be an effective way to improve compliance with the BOAST guidelines. This is important because it can help to reduce the risk of complications associated with tourniquet use. Data Collection: Data were collected from the patients' medical records. The data included the following information: Patient demographics, procedure performed, duration of tourniquet use, pressure used, method of exsanguination. Analysis Procedures: The data were analyzed using descriptive statistics. The compliance with the BOAST guidelines was calculated as the percentage of patients who met the guidelines for the duration of tourniquet use and pressure used. Question Addressed: The question addressed by this study was whether the use of a tourniquet checklist could improve compliance with the BOAST guidelines. Conclusion: The results of this study suggest that the use of a tourniquet checklist can be an effective way to improve compliance with the BOAST guidelines. This is important because it can help to reduce the risk of complications associated with tourniquet use.

Keywords: tourniquet, pressure, duration, complications, surgery

Procedia PDF Downloads 72
1180 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms

Authors: Eman Ayman, Gehan Nagy

Abstract:

The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.

Keywords: flexibility, learning space, immersive technology, learning environment, interior design

Procedia PDF Downloads 97
1179 Developing VR-Based Neurorehabilitation Support Tools: A Step-by-Step Approach for Cognitive Rehabilitation and Pain Distraction during Invasive Techniques in Hospital Settings

Authors: Alba Prats-Bisbe, Jaume López-Carballo, David Leno-Colorado, Alberto García Molina, Alicia Romero Marquez, Elena Hernández Pena, Eloy Opisso Salleras, Raimon Jané Campos

Abstract:

Neurological disorders are a leading cause of disability and premature mortality worldwide. Neurorehabilitation (NRHB) is a clinical process aimed at reducing functional impairment, promoting societal participation, and improving the quality of life for affected individuals. Virtual reality (VR) technology is emerging as a promising NRHB support tool. Its immersive nature fosters a strong sense of agency and embodiment, motivating patients to engage in meaningful tasks and increasing adherence to therapy. However, the clinical benefits of VR interventions are challenging to determine due to the high heterogeneity among health applications. This study explores a stepwise development approach for creating VR-based tools to assist individuals with neurological disorders in medical practice, aiming to enhance reproducibility, facilitate comparison, and promote the generalization of findings. Building on previous research, the step-by-step methodology encompasses: Needs Identification– conducting cross-disciplinary meetings to brainstorm problems, solutions, and address barriers. Intervention Definition– target population, set goals, and conceptualize the VR system (equipment and environments). Material Selection and Placement– choose appropriate hardware and software, place the device within the hospital setting, and test equipment. Co-design– collaboratively create VR environments, user interfaces, and data management strategies. Prototyping– develop VR prototypes, conduct user testing, and make iterative redesigns. Usability and Feasibility Assessment– design protocols and conduct trials with stakeholders in the hospital setting. Efficacy Assessment– conduct clinical trials to evaluate outcomes and long-term effects. Cost-Effectiveness Validation– assess reproducibility, sustainability, and balance between costs and benefits. NRHB is complex due to the multifaceted needs of patients and the interdisciplinary healthcare architecture. VR has the potential to support various applications, such as motor skill training, cognitive tasks, pain management, unilateral spatial neglect (diagnosis and treatment), mirror therapy, and ecologically valid activities of daily living. Following this methodology was crucial for launching a VR-based system in a real hospital environment. Collaboration with neuropsychologists lead to develop A) a VR-based tool for cognitive rehabilitation in patients with acquired brain injury (ABI). The system comprises a head-mounted display (HTC Vive Pro Eye) and 7 tasks targeting attention, memory, and executive functions. A desktop application facilitates session configuration, while database records in-game variables. The VR tool's usability and feasibility were demonstrated in proof-of-concept trials with 20 patients, and effectiveness is being tested through a clinical protocol with 12 patients completing 24-session treatment. Another case involved collaboration with nurses and paediatric physiatrists to create B) a VR-based distraction tool during invasive techniques. The goal is to alleviate pain and anxiety associated with botulinum toxin (BTX) injections, blood tests, or intravenous placements. An all-in-one headset (HTC Vive Focus 3) deploys 360º videos to improve the experience for paediatric patients and their families. This study presents a framework for developing clinically relevant and technologically feasible VR-based support tools for hospital settings. Despite differences in patient type, intervention purpose, and VR system, the methodology demonstrates usability, viability, reproducibility and preliminary clinical benefits. It highlights the importance approach centred on clinician and patient needs for any aspect of NRHB within a real hospital setting.

Keywords: neurological disorders, neurorehabilitation, stepwise development approach, virtual reality

Procedia PDF Downloads 36
1178 A Systematic Review on Lifelong Learning Programs for Community-Dwelling Older Adults

Authors: Xi Vivien Wu, Emily Neo Kim Ang, Yi Jung Tung, Wenru Wang

Abstract:

Background and Objective: The increase in life expectancy and emphasis on self-reliance for the older adults are global phenomena. As such, lifelong learning in the community is considered a viable means of promoting successful and active aging. This systematic review aims to examine various lifelong learning programs for community-dwelling older adults and to synthesize the contents and outcomes of these lifelong learning programs. Methods: A systematic search was conducted in July to December 2016. Two reviewers were engaged in the process to ensure creditability of the selection process. Narrative description and analysis were applied with the support of a tabulation of key data including study design, interventions, and outcomes. Results: Eleven articles, which consisted of five randomized controlled trials and six quasi-experimental studies, were included in this review. Interventions included e-health literacy programs with the aid of computers and the Internet (n=4), computer and Internet training (n=3), physical fitness programs (n=2), music program (n=1), and intergenerational program (n=1). All studies used objective measurement tools to evaluate the outcomes of the study. Conclusion: The systematic review indicated lifelong learning programs resulted in positive outcomes in terms of physical health, mental health, social behavior, social support, self-efficacy and confidence in computer usage, and increased e-health literacy efficacy. However, the lifelong learning programs face challenges such as funding shortages, program cuts, and increasing costs. A comprehensive lifelong learning program could be developed to enhance the well-being of the older adults at a more holistic level. Empirical research can be done to explore the effectiveness of this comprehensive lifelong learning program.

Keywords: community-dwelling older adults, e-health literacy program, lifelong learning program, the wellbeing of the older adults

Procedia PDF Downloads 166
1177 Geosynthetic Tubes in Coastal Structures a Better Substitute for Shorter Planning Horizon: A Case Study

Authors: A. Pietro Rimoldi, B. Anilkumar Gopinath, C. Minimol Korulla

Abstract:

Coastal engineering structure is conventionally designed for a shorter planning horizon usually 20 years. These structures are subjected to different offshore climatic externalities like waves, tides, tsunamis etc. during the design life period. The probability of occurrence of these different offshore climatic externalities varies. The impact frequently caused by these externalities on the structures is of concern because it has a significant bearing on the capital /operating cost of the project. There can also be repeated short time occurrence of these externalities in the assumed planning horizon which can cause heavy damage to the conventional coastal structure which are mainly made of rock. A replacement of the damaged portion to prevent complete collapse is time consuming and expensive when dealing with hard rock structures. But if coastal structures are made of Geo-synthetic containment systems such replacement is quickly possible in the time period between two successive occurrences. In order to have a better knowledge and to enhance the predictive capacity of these occurrences, this study estimates risk of encounter within the design life period of various externalities based on the concept of exponential distribution. This gives an idea of the frequency of occurrences which in turn gives an indication of whether replacement is necessary and if so at what time interval such replacements have to be effected. To validate this theoretical finding, a pilot project has been taken up in the field so that the impact of the externalities can be studied both for a hard rock and a Geosynthetic tube structure. The paper brings out the salient feature of a case study which pertains to a project in which Geosynthetic tubes have been used for reformation of a seawall adjacent to a conventional rock structure in Alappuzha coast, Kerala, India. The effectiveness of the Geosystem in combatting the impact of the short-term externalities has been brought out.

Keywords: climatic externalities, exponential distribution, geosystems, planning horizon

Procedia PDF Downloads 230
1176 Factors Affecting Autistic Children's Development during the Early Years in Elementary School: A Longitudinal Study in Taiwan

Authors: Huang Ying

Abstract:

The present study was to investigate factors affecting children's improvement through the first two years of elementary school on a population-based sample of children with autism in Taiwan. All the children were diagnosed with autism spectrum disorder (ASD) by clinical psychologists according to DSM-IV. Children's development was assessed by the Vineland Adaptive Behavior Scales-Chinese version (VABS-C) on the first and the third grade. Children's improvement was measured by the difference between the standardized total score of the third and the first year. In Taiwan, school-age children with special-education needs will be arranged into different classes, including normal classes (NC), resource classes (RC), and special classes (SC) by the government. Therefore, type of class was one of the independent variables. Moreover, as early intervention is considered to be crucial, the earliest age when intervention begins was collected from parents. Attention was also included in the analysis. Teachers were asked to evaluate children's attention with a 3-item Likert Scale. The frequency of paying attention to the class or the task was recorded and scores were summed up. Additionally, standardized scores of the VABS-C in the first grade were used as pretest scores representing children's developmental level at the beginning of elementary school. Multiple regression was conducted with improvement as the dependent variable. Results showed that children in special classes had smaller improvement compared to those in normal or resource classes. Attention positively predicted improvement yet the effect of earliest intervention age was not significant. Furthermore, scores in the first grade negatively predicted improvement, which indicated that children with higher developmental levels would make less progress in the following years. Results were to some degree consistent with previous findings through meta-analysis that the effectiveness of conventional intervention methods lacked sufficient evidence to support.

Keywords: attention, early intervention, elementary school, special education in Taiwan

Procedia PDF Downloads 293
1175 Enhancing the Resilience of Combat System-Of-Systems Under Certainty and Uncertainty: Two-Phase Resilience Optimization Model and Deep Reinforcement Learning-Based Recovery Optimization Method

Authors: Xueming Xu, Jiahao Liu, Jichao Li, Kewei Yang, Minghao Li, Bingfeng Ge

Abstract:

A combat system-of-systems (CSoS) comprises various types of functional combat entities that interact to meet corresponding task requirements in the present and future. Enhancing the resilience of CSoS holds significant military value in optimizing the operational planning process, improving military survivability, and ensuring the successful completion of operational tasks. Accordingly, this research proposes an integrated framework called CSoS resilience enhancement (CSoSRE) to enhance the resilience of CSoS from a recovery perspective. Specifically, this research presents a two-phase resilience optimization model to define a resilience optimization objective for CSoS. This model considers not only task baseline, recovery cost, and recovery time limit but also the characteristics of emergency recovery and comprehensive recovery. Moreover, the research extends it from the deterministic case to the stochastic case to describe the uncertainty in the recovery process. Based on this, a resilience-oriented recovery optimization method based on deep reinforcement learning (RRODRL) is proposed to determine a set of entities requiring restoration and their recovery sequence, thereby enhancing the resilience of CSoS. This method improves the deep Q-learning algorithm by designing a discount factor that adapts to changes in CSoS state at different phases, simultaneously considering the network’s structural and functional characteristics within CSoS. Finally, extensive experiments are conducted to test the feasibility, effectiveness and superiority of the proposed framework. The obtained results offer useful insights for guiding operational recovery activity and designing a more resilient CSoS.

Keywords: combat system-of-systems, resilience optimization model, recovery optimization method, deep reinforcement learning, certainty and uncertainty

Procedia PDF Downloads 19
1174 AI-Assisted Business Chinese Writing: Comparing the Textual Performances Between Independent Writing and Collaborative Writing

Authors: Stephanie Liu Lu

Abstract:

With the proliferation of artificial intelligence tools in the field of education, it is crucial to explore their impact on language learning outcomes. This paper examines the use of AI tools, such as ChatGPT, in practical writing within business Chinese teaching to investigate how AI can enhance practical writing skills and teaching effectiveness. The study involved third and fourth-year university students majoring in accounting and finance from a university in Hong Kong within the context of a business correspondence writing class. Students were randomly assigned to a control group, who completed business letter writing independently, and an experimental group, who completed the writing with the assistance of AI. In the latter, the AI-assisted business letters were initially drafted by the students issuing commands and interacting with the AI tool, followed by the students' revisions of the draft. The paper assesses the performance of both groups in terms of grammatical expression, communicative effect, and situational awareness. Additionally, the study collected dialogue texts from interactions between students and the AI tool to explore factors that affect text generation and the potential impact of AI on enhancing students' communicative and identity awareness. By collecting and comparing textual performances, it was found that students assisted by AI showed better situational awareness, as well as more skilled organization and grammar. However, the research also revealed that AI-generated articles frequently lacked a proper balance of identity and writing purpose due to limitations in students' communicative awareness and expression during the instruction and interaction process. Furthermore, the revision of drafts also tested the students' linguistic foundation, logical thinking abilities, and practical workplace experience. Therefore, integrating AI tools and related teaching into the curriculum is key to the future of business Chinese teaching.

Keywords: AI-assistance, business Chinese, textual analysis, language education

Procedia PDF Downloads 60
1173 Analysis of a IncResU-Net Model for R-Peak Detection in ECG Signals

Authors: Beatriz Lafuente Alcázar, Yash Wani, Amit J. Nimunkar

Abstract:

Cardiovascular Diseases (CVDs) are the leading cause of death globally, and around 80% of sudden cardiac deaths are due to arrhythmias or irregular heartbeats. The majority of these pathologies are revealed by either short-term or long-term alterations in the electrocardiogram (ECG) morphology. The ECG is the main diagnostic tool in cardiology. It is a non-invasive, pain free procedure that measures the heart’s electrical activity and that allows the detecting of abnormal rhythms and underlying conditions. A cardiologist can diagnose a wide range of pathologies based on ECG’s form alterations, but the human interpretation is subjective and it is contingent to error. Moreover, ECG records can be quite prolonged in time, which can further complicate visual diagnosis, and deeply retard disease detection. In this context, deep learning methods have risen as a promising strategy to extract relevant features and eliminate individual subjectivity in ECG analysis. They facilitate the computation of large sets of data and can provide early and precise diagnoses. Therefore, the cardiology field is one of the areas that can most benefit from the implementation of deep learning algorithms. In the present study, a deep learning algorithm is trained following a novel approach, using a combination of different databases as the training set. The goal of the algorithm is to achieve the detection of R-peaks in ECG signals. Its performance is further evaluated in ECG signals with different origins and features to test the model’s ability to generalize its outcomes. Performance of the model for detection of R-peaks for clean and noisy ECGs is presented. The model is able to detect R-peaks in the presence of various types of noise, and when presented with data, it has not been trained. It is expected that this approach will increase the effectiveness and capacity of cardiologists to detect divergences in the normal cardiac activity of their patients.

Keywords: arrhythmia, deep learning, electrocardiogram, machine learning, R-peaks

Procedia PDF Downloads 189
1172 Enhancement of Road Defect Detection Using First-Level Algorithm Based on Channel Shuffling and Multi-Scale Feature Fusion

Authors: Yifan Hou, Haibo Liu, Le Jiang, Wandong Su, Binqing Wang

Abstract:

Road defect detection is crucial for modern urban management and infrastructure maintenance. Traditional road defect detection methods mostly rely on manual labor, which is not only inefficient but also difficult to ensure their reliability. However, existing deep learning-based road defect detection models have poor detection performance in complex environments and lack robustness to multi-scale targets. To address this challenge, this paper proposes a distinct detection framework based on the one stage algorithm network structure. This article designs a deep feature extraction network based on RCSDarknet, which applies channel shuffling to enhance information fusion between tensors. Through repeated stacking of RCS modules, the information flow between different channels of adjacent layer features is enhanced to improve the model's ability to capture target spatial features. In addition, a multi-scale feature fusion mechanism with weighted dual flow paths was adopted to fuse spatial features of different scales, thereby further improving the detection performance of the model at different scales. To validate the performance of the proposed algorithm, we tested it using the RDD2022 dataset. The experimental results show that the enhancement algorithm achieved 84.14% mAP, which is 1.06% higher than the currently advanced YOLOv8 algorithm. Through visualization analysis of the results, it can also be seen that our proposed algorithm has good performance in detecting targets of different scales in complex scenes. The above experimental results demonstrate the effectiveness and superiority of the proposed algorithm, providing valuable insights for advancing real-time road defect detection methods.

Keywords: roads, defect detection, visualization, deep learning

Procedia PDF Downloads 14
1171 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus

Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo

Abstract:

Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.

Keywords: eco-drive, electric bus, energy management, prototype

Procedia PDF Downloads 143
1170 The Psychology of Virtual Relationships Provides Solutions to the Challenges of Online Learning: A Pragmatic Review and Case Study from the University of Birmingham, UK

Authors: Catherine Mangan, Beth Anderson

Abstract:

There has been a significant drive to use online or hybrid learning in Higher Education (HE) over recent years. HEs with a virtual presence offer their communities a range of benefits, including the potential for greater inclusivity, diversity, and collaboration; more flexible learning packages; and more engaging, dynamic content. Institutions can also experience significant challenges when seeking to extend learning spaces in this way, as can learners themselves. For example, staff members’ and learners’ digital literacy varies (as do their perceptions of technologies in use), and there can be confusion about optimal approaches to implementation. Furthermore, the speed with which HE institutions have needed to shift to fully online or hybrid models, owing to the COVID19 pandemic, has highlighted the significant barriers to successful implementation. HE environments have been shown to predict a range of organisational, academic, and experiential outcomes, both positive and negative. Much research has focused on the social aspect of virtual platforms, as well as the nature and effectiveness of the technologies themselves. There remains, however, a relative paucity of synthesised knowledge on the psychology of learners’ relationships with their institutions; specifically, how individual difference and interpersonal factors predict students’ ability and willingness to engage with novel virtual learning spaces. Accordingly, extending learning spaces remains challenging for institutions, and wholly remote courses, in particular, can experience high attrition rates. Focusing on the last five years, this pragmatic review summarises evidence from the psychological and pedagogical literature. In particular, the review highlights the importance of addressing the psychological and relational complexities of students’ shift from offline to online engagement. In doing so, it identifies considerations for HE institutions looking to deliver in this way.

Keywords: higher education, individual differences, interpersonal relationships, online learning, virtual environment

Procedia PDF Downloads 178
1169 Development of Electronic Waste Management Framework at College of Design Art, Design and Technology

Authors: Wafula Simon Peter, Kimuli Nabayego Ibtihal, Nabaggala Kimuli Nashua

Abstract:

The worldwide use of information and communications technology (ICT) equipment and other electronic equipment is growing and consequently, there is a growing amount of equipment that becomes waste after its time in use. This growth is expected to accelerate since equipment lifetime decreases with time and growing consumption. As a result, e-waste is one of the fastest-growing waste streams globally. The United Nations University (UNU) calculates in its second Global E-waste Monitor 44.7 million metric tonnes (Mt) of e-waste were generated globally in 2016. The study population was 80 respondents, from which a sample of 69 respondents was selected using simple and purposive sampling techniques. This research was carried out to investigate the problem of e-waste and come up with a framework to improve e-waste management. The objective of the study was to develop a framework for improving e-waste management at the College of Engineering, Design, Art and Technology (CEDAT). This was achieved by breaking it down into specific objectives, and these included the establishment of the policy and other Regulatory frameworks being used in e-waste management at CEDAT, the determination of the effectiveness of the e-waste management practices at CEDAT, the establishment of the critical challenges constraining e-waste management at the College, development of a framework for e-waste management. The study reviewed the e-waste regulatory framework used at the college and then collected data which was used to come up with a framework. The study also established that weak policy and regulatory framework, lack of proper infrastructure, improper disposal of e-waste and a general lack of awareness of the e-waste and the magnitude of the problem are the critical challenges of e-waste management. In conclusion, the policy and regulatory framework should be revised, localized and strengthened to contextually address the problem. Awareness campaigns, the development of proper infrastructure and extensive research to establish the volumes and magnitude of the problems will come in handy. The study recommends a framework for the improvement of e-waste.

Keywords: e-waste, treatment, disposal, computers, model, management policy and guidelines

Procedia PDF Downloads 80
1168 Nurturing of Children with Results from Their Nature (DNA) Using DNA-MILE

Authors: Tan Lay Cheng (Cheryl), Low Huiqi

Abstract:

Background: All children learn at different pace. Individualized learning is an approach that tailors to the individual learning needs of each child. When implementing this approach, educators have to base their lessons on the understanding that all students learn differently and that what works for one student may not work for another. In the current early childhood environment, individualized learning is for children with diverse needs. However, a typical developing child is also able to benefit from individualized learning. This research abstract explores the concept of utilizing DNA-MILE, a patented (in Singapore) DNA-based assessment tool that can be used to measure a variety of factors that can impact learning. The assessment report includes the dominant intelligence of the user or, in this case, the child. From the result, a personalized learning plan that is tailored to each individual student's needs. Methods: A study will be conducted to investigate the effectiveness of DNA-MILE in supporting individualized learning. The study will involve a group of 20 preschoolers who were randomly assigned to either a DNA-MILE-assessed group (experimental group) or a control group. 10 children in each group. The experimental group will receive DNA Mile assessments and personalized learning plans, while the control group will not. The children in the experimental group will be taught using the dominant intelligence (as shown in the DNA-MILE report) to enhance their learning in other domains. The children in the control group will be taught using the curriculum and lesson plan set by their teacher for the whole class. Parents’ and teachers’ interviews will be conducted to provide information about the children before the study and after the study. Results: The results of the study will show the difference in the outcome of the learning, which received DNA Mile assessments and personalized learning plans, significantly outperformed the control group on a variety of measures, including standardized tests, grades, and motivation. Conclusion: The results of this study suggest that DNA Mile can be an effective tool for supporting individualized learning. By providing personalized learning plans, DNA Mile can help to improve learning outcomes for all students.

Keywords: individualized, DNA-MILE, learning, preschool, DNA, multiple intelligence

Procedia PDF Downloads 120