Search results for: data logging
22057 Black Masculinity, Media Stereotyping And Its Influence on Policing in the United States: A Functionalist Perspective
Authors: Jack Santiago Monell
Abstract:
In America, misrepresentations of black males have been perpetuated throughout the history of popular culture. Because of these narratives, varying communities have developed biases and stereotypes about what black male masculinity represents and more importantly, how they respond to them. The researcher explored the perspectives of police officers in the following states, Maryland, Pennsylvania, and North Carolina. Because of the nature of police and community relations, and national attention to high profile cases, having officers provide context into how black males are viewed from their lens, was critical while expanding on the theoretical explanations to describe attitudes towards police confrontations. As one of the objectives was to identify specific themes relevant to why police officers may view African American males differently, hence, responding more aggressively, this proved to be the most beneficial method of initial analysis to identify themes. The following nodes (appearance, acting suspicious/ troublesome behavior, upbringing about black males, excessive force) were identified to analyze the transcripts to discern associations. The data was analyzed through NVivo 11, and several themes resulted to elaborate on the data received. In analyzing the data, four themes were identified: appearance, acting suspicious/ troublesome behavior, upbringing about black males, and excessive force. The data conveyed that continuous stereotypes about African American men will ultimately result in excessive use of force or pervasive shootings, albeit the men are armed or unarmed. African American males are consistently targeted because of their racial makeup and appearance over any other probable circumstances. As long as racial bias and stereotypical practices continue in policing, African American males will endlessly be unjustly targeted and at times, the victims of violent encounters with police officers in the United States.Keywords: African American males, police perceptions, masculinity, popular culture
Procedia PDF Downloads 11822056 Serum Granulocyte Colony Stimulating Factor is a Potent Stimulator of Hematopoeitic Progenitor Cells Mobilization in Trauma Hemorrhagic Shock
Authors: Manoj Kumar, Sujata Mohanty, D. N. Rao, Arul Selvi, Sanjeev K. Bhoi
Abstract:
Background: Hematopoietic progenitor cells (HPC) mobilized from bone marrow to peripheral blood has been observed in severe trauma and hemorrhagic shock patients. Granulocyte-colony stimulating factor (G-CSF) is a potent stimulator that mobilized HPC from bone marrow to peripheral blood. Objective: Our aim of the study was to investigate the serum G-CSF levels and correlate with HPC and outcome. Methods: Peripheral blood sample from 50 hemorrhagic shock patients was collected on arrival for determination of G-CSF and peripheral blood HPC (PBHPC) and compared with healthy control (n=15). Determination of serum levels of G-CSF by sandwich ELISA and PBHPC by Sysmex XE-2100. Data were categorized by age, sex, Injury Severity Score (ISS), and laboratory data was prospectively collected. Data are expressed as mean±SD and median (min, max). Results: Significantly increased the serum level of G-CSF (264.8 vs. 79.1 pg/ml) and peripheral blood HPC (0.1 vs. 0.01 %) in the T/HS patients when compared with control group. Conclusions: Our studies suggest serum G-CSF elevated in T/HS patients. The elevated in G-CSF was also associated with mobilization of HPC from BM to peripheral blood HPC. Increased the levels of G-CSF in T/HS may play a significant role in the alteration of the hematopoietic compartment.Keywords: granulocyte colony stimulating factor, G-CSF, hematopoietic progenitor cells, HPC, trauma hemorrhagic shock, T/HS, outcome
Procedia PDF Downloads 34122055 The Effect of Kaizen Implementation on Employees’ Affective Attitude in Textile Company in Ethiopia
Authors: Meseret Teshome
Abstract:
This study has the objective of assessing the effect of kaizen (5S, Muda elimination and Quality Control Circle (QCC) on employees’ affective attitude (job satisfaction, commitment and job stress) in Kombolcha Textile Share Company. A conceptual model was developed to describe the relationship between Kaizen and Employees’ Affective Attitude (EAA) factors. The three factors of Employee Affective Attitude were measured using questionnaire derived from other validated questionnaire. In the data collection to conduct this study; questionnaire, unstructured interview, written documents and direct observations are used. To analyze the data, SPSS and Microsoft Excel were used. In addition, the internal consistency of similar items in the questionnaire instrument was measured for their equivalence by using the cronbach’s alpha test. In this study, the effect of 5S, Muda elimination and QCC on job satisfaction, commitment and job stress in Kombolcha Textile Share Company is assessed and factors that reduce employees’ job satisfaction with respect to kaizen implementation are identified. The total averages of means from the questionnaire are 3.1 for job satisfaction, 4.31 for job commitment and 4.2 for job stress. And results from interview and secondary data show that kaizen implementation have effect on EAA. In general, based on the thesis results it was concluded that kaizen (5S, muda elimination and QCC) have positive effect for improving EAA factors at KTSC. Finally, recommendations for improvement are given based on the results.Keywords: kaizen, job satisfaction, job commitment, job stress
Procedia PDF Downloads 22122054 Tunnel Convergence Monitoring by Distributed Fiber Optics Embedded into Concrete
Authors: R. Farhoud, G. Hermand, S. Delepine-lesoille
Abstract:
Future underground facility of French radioactive waste disposal, named Cigeo, is designed to store intermediate and high level - long-lived French radioactive waste. Intermediate level waste cells are tunnel-like, about 400m length and 65 m² section, equipped with several concrete layers, which can be grouted in situ or composed of tunnel elements pre-grouted. The operating space into cells, to allow putting or removing waste containers, should be monitored for several decades without any maintenance. To provide the required information, design was performed and tested in situ in Andra’s underground laboratory (URL) at 500m under the surface. Based on distributed optic fiber sensors (OFS) and backscattered Brillouin for strain and Raman for temperature interrogation technics, the design consists of 2 loops of OFS, at 2 different radiuses, around the monitored section (Orthoradiale strains) and longitudinally. Strains measured by distributed OFS cables were compared to classical vibrating wire extensometers (VWE) and platinum probes (Pt). The OFS cables were composed of 2 cables sensitive to strains and temperatures and one only for temperatures. All cables were connected, between sensitive part and instruments, to hybrid cables to reduce cost. The connection has been made according to 2 technics: splicing fibers in situ after installation or preparing each fiber with a connector and only plugging them together in situ. Another challenge was installing OFS cables along a tunnel mad in several parts, without interruption along several parts. First success consists of the survival rate of sensors after installation and quality of measurements. Indeed, 100% of OFS cables, intended for long-term monitoring, survived installation. Few new configurations were tested with relative success. Measurements obtained were very promising. Indeed, after 3 years of data, no difference was observed between cables and connection methods of OFS and strains fit well with VWE and Pt placed at the same location. Data, from Brillouin instrument sensitive to strains and temperatures, were compensated with data provided by Raman instrument only sensitive to temperature and into a separated fiber. These results provide confidence in the next steps of the qualification processes which consists of testing several data treatment approach for direct analyses.Keywords: monitoring, fiber optic, sensor, data treatment
Procedia PDF Downloads 13122053 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems
Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.Keywords: rubber bumper, data acquisition, finite element analysis, support vector regression
Procedia PDF Downloads 47722052 Working Capital Management and Profitability of Uk Firms: A Contingency Theory Approach
Authors: Ishmael Tingbani
Abstract:
This paper adopts a contingency theory approach to investigate the relationship between working capital management and profitability using data of 225 listed British firms on the London Stock Exchange for the period 2001-2011. The paper employs a panel data analysis on a series of interactive models to estimate this relationship. The findings of the study confirm the relevance of the contingency theory. Evidence from the study suggests that the impact of working capital management on profitability varies and is constrained by organizational contingencies (environment, resources, and management factors) of the firm. These findings have implications for a more balanced and nuanced view of working capital management policy for policy-makers.Keywords: working capital management, profitability, contingency theory approach, interactive models
Procedia PDF Downloads 35622051 Modeling and Experimental Verification of Crystal Growth Kinetics in Glass Forming Alloys
Authors: Peter K. Galenko, Stefanie Koch, Markus Rettenmayr, Robert Wonneberger, Evgeny V. Kharanzhevskiy, Maria Zamoryanskaya, Vladimir Ankudinov
Abstract:
We analyze the structure of undercooled melts, crystal growth kinetics and amorphous/crystalline microstructure of rapidly solidifying glass-forming Pd-based and CuZr-based alloys. A dendrite growth model is developed using a combination of the kinetic phase-field model and mesoscopic sharp interface model. The model predicts features of crystallization kinetics in alloys from thermodynamically controlled growth (governed by the Gibbs free energy change on solidification) to the kinetically limited regime (governed by atomic attachment-detachment processes at the solid/liquid interface). Comparing critical undercoolings observed in the crystallization kinetics with experimental data on melt viscosity, atomistic simulation's data on liquid microstructure and theoretically predicted dendrite growth velocity allows us to conclude that the dendrite growth kinetics strongly depends on the cluster structure changes of the melt. The obtained data of theoretical and experimental investigations are used for interpretation of microstructure of samples processed in electro-magnetic levitator on board International Space Station in the frame of the project "MULTIPHAS" (European Space Agency and German Aerospace Center, 50WM1941) and "KINETIKA" (ROSKOSMOS).Keywords: dendrite, kinetics, model, solidification
Procedia PDF Downloads 12522050 Exploring the Impact of Asset Diversification on Financial Performance: An Explanatory Study of Ethiopian Commercial Banks
Authors: Mitku Malede Ymer
Abstract:
The study was mainly intended to explore the impact of asset diversification on the financial performance of thirteen purposely selected Ethiopian commercial banks with seven consecutive years of data for the period 2011-2017, considering the availability of data. An explanatory research design has been employed to determine the impact of asset diversification on financial performance. In the meantime, a quantitative approach was used to construct the empirical model. Banks’ financial performance was measured using return on asset, and the four variables used to measure asset diversification were cash holding, fixed assets, foreign deposits, and NBE Bills, which were predictor variables. Again, the size of the bank was considered as a control variable. Then, a pooled panel regression model was employed to analyze the collected data. The result pretends that cash holding has a positive but marginally insignificant effect on financial performance, fixed assets, and foreign bank deposits have a positive and significant effect on financial performance, and NBE Bills have a negative and significant effect on banks' financial performance. Ultimately, it has been concluded that asset diversification has a significant effect on financial performance in the Ethiopian commercial banking sector. Hence, a researcher suggests that banks need to optimize their asset diversification so as to realize maximum profit and minimize the cost of funds based on the result of the study.Keywords: asset diversification, financial performance, role, commercial banks
Procedia PDF Downloads 2622049 The Role of Predictive Modeling and Optimization in Enhancing Smart Factory Efficiency
Authors: Slawomir Lasota, Tomasz Kajdanowicz
Abstract:
This research examines the application of predictive modelling and optimization algorithms to improve production efficiency in smart factories. Utilizing gradient boosting and neural networks, the study builds robust KPI estimators to predict production outcomes based on real-time data. Optimization methods, including Bayesian optimization and gradient-based algorithms, identify optimal process configurations that maximize availability, efficiency, and quality KPIs. The paper highlights the modular architecture of a recommender system that integrates predictive models, data visualization, and adaptive automation. Comparative analysis across multiple production processes reveals significant improvements in operational performance, laying the foundation for scalable, self-regulating manufacturing systems.Keywords: predictive modeling, optimization, smart factory, efficiency
Procedia PDF Downloads 1622048 Linguistic Analysis of Borderline Personality Disorder: Using Language to Predict Maladaptive Thoughts and Behaviours
Authors: Charlotte Entwistle, Ryan Boyd
Abstract:
Recent developments in information retrieval techniques and natural language processing have allowed for greater exploration of psychological and social processes. Linguistic analysis methods for understanding behaviour have provided useful insights within the field of mental health. One area within mental health that has received little attention though, is borderline personality disorder (BPD). BPD is a common mental health disorder characterised by instability of interpersonal relationships, self-image and affect. It also manifests through maladaptive behaviours, such as impulsivity and self-harm. Examination of language patterns associated with BPD could allow for a greater understanding of the disorder and its links to maladaptive thoughts and behaviours. Language analysis methods could also be used in a predictive way, such as by identifying indicators of BPD or predicting maladaptive thoughts, emotions and behaviours. Additionally, associations that are uncovered between language and maladaptive thoughts and behaviours could then be applied at a more general level. This study explores linguistic characteristics of BPD, and their links to maladaptive thoughts and behaviours, through the analysis of social media data. Data were collected from a large corpus of posts from the publicly available social media platform Reddit, namely, from the ‘r/BPD’ subreddit whereby people identify as having BPD. Data were collected using the Python Reddit API Wrapper and included all users which had posted within the BPD subreddit. All posts were manually inspected to ensure that they were not posted by someone who clearly did not have BPD, such as people posting about a loved one with BPD. These users were then tracked across all other subreddits of which they had posted in and data from these subreddits were also collected. Additionally, data were collected from a random control group of Reddit users. Disorder-relevant behaviours, such as self-harming or aggression-related behaviours, outlined within Reddit posts were coded to by expert raters. All posts and comments were aggregated by user and split by subreddit. Language data were then analysed using the Linguistic Inquiry and Word Count (LIWC) 2015 software. LIWC is a text analysis program that identifies and categorises words based on linguistic and paralinguistic dimensions, psychological constructs and personal concern categories. Statistical analyses of linguistic features could then be conducted. Findings revealed distinct linguistic features associated with BPD, based on Reddit posts, which differentiated these users from a control group. Language patterns were also found to be associated with the occurrence of maladaptive thoughts and behaviours. Thus, this study demonstrates that there are indeed linguistic markers of BPD present on social media. It also implies that language could be predictive of maladaptive thoughts and behaviours associated with BPD. These findings are of importance as they suggest potential for clinical interventions to be provided based on the language of people with BPD to try to reduce the likelihood of maladaptive thoughts and behaviours occurring. For example, by social media tracking or engaging people with BPD in expressive writing therapy. Overall, this study has provided a greater understanding of the disorder and how it manifests through language and behaviour.Keywords: behaviour analysis, borderline personality disorder, natural language processing, social media data
Procedia PDF Downloads 35822047 KPI and Tool for the Evaluation of Competency in Warehouse Management for Furniture Business
Authors: Kritchakhris Na-Wattanaprasert
Abstract:
The objective of this research is to design and develop a prototype of a key performance indicator system this is suitable for warehouse management in a case study and use requirement. In this study, we design a prototype of key performance indicator system (KPI) for warehouse case study of furniture business by methodology in step of identify scope of the research and study related papers, gather necessary data and users requirement, develop key performance indicator base on balance scorecard, design pro and database for key performance indicator, coding the program and set relationship of database and finally testing and debugging each module. This study use Balance Scorecard (BSC) for selecting and grouping key performance indicator. The system developed by using Microsoft SQL Server 2010 is used to create the system database. In regard to visual-programming language, Microsoft Visual C# 2010 is chosen as the graphic user interface development tool. This system consists of six main menus: menu login, menu main data, menu financial perspective, menu customer perspective, menu internal, and menu learning and growth perspective. Each menu consists of key performance indicator form. Each form contains a data import section, a data input section, a data searches – edit section, and a report section. The system generates outputs in 5 main reports, the KPI detail reports, KPI summary report, KPI graph report, benchmarking summary report and benchmarking graph report. The user will select the condition of the report and period time. As the system has been developed and tested, discovers that it is one of the ways to judging the extent to warehouse objectives had been achieved. Moreover, it encourages the warehouse functional proceed with more efficiency. In order to be useful propose for other industries, can adjust this system appropriately. To increase the usefulness of the key performance indicator system, the recommendations for further development are as follows: -The warehouse should review the target value and set the better suitable target periodically under the situation fluctuated in the future. -The warehouse should review the key performance indicators and set the better suitable key performance indicators periodically under the situation fluctuated in the future for increasing competitiveness and take advantage of new opportunities.Keywords: key performance indicator, warehouse management, warehouse operation, logistics management
Procedia PDF Downloads 43822046 The Meaning of the Best Interests of the Child in Indonesia’s Rampant Phenomenon of Child Marriage
Authors: Elisabeth Sundari, Anny Retnowati
Abstract:
This research aims to examine the meaning of 'the best interests of the child' in Indonesia's rampant phenomenon of child marriage. The methodology used empirical and normative legal research by examining the parent's reason and the judges' considerations in granting child marriage dispensation applications. It takes data samples from judges' decisions purposively in two courts that differ in geographical and religious backgrounds to see data variation. Namely, the District Court and Religious Court of Yogyakarta City, as well as Gunung Kidul Regency, in the last three years (2020-2022). It analyses the data qualitatively to explore how judges interpreted 'the best interests of the child' in their decision. The results show that judges granted 100% of all child marriage dispensation applications filed by parents. The three reasons parents gave for applying for dispensation were that they were ashamed of having a pregnant child without being married, followed religious teachings, and obtained legal status for the baby. The judges supported those reasons by granting the dispensation application. The external factor of the child itself influenced the meaning of 'The best interests of the child' in marrying off children in Indonesia, such as cultural taboos, religious teachings, and obtaining legal status for the baby, rather than internal factors of the child, such as the will to marry, the mental and psychological readiness of the child to become a mother, as well as a wife. This research contributes to the finding that external factors, such as local culture and religion, can influence the meaning of 'the best interests of the child.'Keywords: interests, child, Indonesia, marriage
Procedia PDF Downloads 7622045 Neuropsychological Testing in a Multi-Lingual Society: Normative Data for South African Adults in More Than Eight Languages
Authors: Sharon Truter, Ann B. Shuttleworth-Edwards
Abstract:
South Africa is a developing country with significant diversity in languages spoken and quality of education available, creating challenges for fair and accurate neuropsychological assessments when most available neuropsychological tests are obtained from English-speaking developed countries. The aim of this research was to compare normative data on a spectrum of commonly used neuropsychological tests for English- and Afrikaans-speaking South Africans with relatively high quality of education and South Africans with relatively low quality of education who speak Afrikaans, Sesotho, Setswana, Sepedi, Tsonga, Venda, Xhosa or Zulu. The participants were all healthy adults aged 18-60 years, with 8-12 years of education. All the participants were tested in their first language on the following tests: two non-verbal tests (Rey Osterrieth Complex Figure Test and Bell Cancellation Test), four verbal fluency tests (category, phonemic, verb and 'any words'), one verbal learning test (Rey Auditory Verbal Leaning Test) and three tests that have a verbal component (Trail Making Test A & B; Symbol Digit Modalities Test and Digit Span). Descriptive comparisons of mean scores and standard deviations across the language groups and between the groups with relatively high versus low quality of education highlight the importance of using normative data that takes into account language and quality of education.Keywords: cross-cultural, language, multi-lingual, neuropsychological testing, quality of education
Procedia PDF Downloads 18322044 Pre-Service Science Teachers' Perceptions Related to the Concept of Laboratory: A Metaphorical Analysis
Authors: Salih Uzun
Abstract:
The laboratory activities are seen an indispensable part of science, teaching, and learning. In this study, the aim was to identify pre-service science teachers’ perceptions related to the concept of laboratory through metaphors. It is expressed that metaphors can be used as a powerful research tool in order to understand personal perceptions. Therefore, metaphors were used with the aim of revealing a picture regarding how pre-service science teachers perceive laboratory. Within the scope of this aim, phenomenographic research design was adopted for this study and an answer was sought to the question; ‘What are pre-service science teachers’ perceptions about the concept of laboratory?’. The sample of this study was a total of 80 pre-service science teachers at various grade levels in Turkey. Participants were asked to complete the sentence; ‘Laboratory is like…; because…’. Documents including pre-service science teachers’ answers to the open-ended questions were used as data sources and the data were analysed with content analysis.Keywords: laboratory, metaphor, phenomenology, pre-service science teachers
Procedia PDF Downloads 43822043 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process
Authors: Dariush Jafari, Seyed Ali Jafari
Abstract:
The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.Keywords: ANN, biosorption, cadmium, packed-bed, potable water
Procedia PDF Downloads 43522042 The Effects of Virtual Reality Technology in Maternity Delivery: A Systematic Review and Meta-Analysis
Authors: Nuo Xu, Sijing Chen
Abstract:
Background: Childbirth is considered a critical traumatic event throughout our lives, positively or negatively impacting the mother's physiology, psychology, and even the whole family. Adverse birth experiences, such as labor pain, anxiety, and fear can negatively impact the mother. Studies had shown that the immersive nature of VR can distract attention from pain and increase focus on interventions for pain relief. However, the existing studies that applied VR to maternal delivery were still in their infancy and showed disparate results, and the small sample size is not representative, so this review analyzed the effects of VR in labor, such as on maternal pain and anxiety, with a view to providing a basis for future applications. Search strategy: We searched Pubmed, Embase, Web of Science, the Cochrane Library, CINAHL, China National Knowledge Infrastructure, Wan-Fang database from the building to November 17, 2021. Selection Criteria: Randomized controlled trials (RCTs) that intervened the pregnant women aged 18-35 years with gestational >34 weeks and without complications with VR technology were contained within this review. Data Collection and Analysis: Two researchers completed the study selection, data extraction, and assessment of study quality. For quantitative data we used MD or SMD, and RR (risk ratio) for qualitative data. Random-effects model and 95% confidence interval (95% CI) were used. Main Results: 12 studies were included. Using VR could relieve pain during labor (MD=-1.81, 95% CI (-2.04, -1.57), P< 0.00001) and active period (SMD=-0.41, 95% CI (-0.68, -0.14), P= 0.003), reduce anxiety (SMD=-1.39, 95% CI (-1.99, -0.78), P< 0.00001) and improve satisfaction (RR = 1.32; 95% CI (1.10, 1.59); P = 0.003), but the effect on the duration of first (SMD=-1.12, 95% CI (-2.38, 0.13), P=0.08) and second (SMD=-0.22, 95% CI (-0.67, 0.24), P=0.35) stage of labor was not statistically significant. Conclusions: Compared with conventional care, VR technology can relieve labor pain and anxiety and improve satisfaction. However, extensive experimental validation is still needed.Keywords: virtual reality, delivery, labor pain, anxiety, meta-analysis, systematic review
Procedia PDF Downloads 9422041 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models
Authors: V. Mantey, N. Findlay, I. Maddox
Abstract:
The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.Keywords: building detection, disaster relief, mask-RCNN, satellite mapping
Procedia PDF Downloads 17422040 Tank Barrel Surface Damage Detection Algorithm
Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský
Abstract:
The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank
Procedia PDF Downloads 14222039 Deployment of Matrix Transpose in Digital Image Encryption
Authors: Okike Benjamin, Garba E J. D.
Abstract:
Encryption is used to conceal information from prying eyes. Presently, information and data encryption are common due to the volume of data and information in transit across the globe on daily basis. Image encryption is yet to receive the attention of the researchers as deserved. In other words, video and multimedia documents are exposed to unauthorized accessors. The authors propose image encryption using matrix transpose. An algorithm that would allow image encryption is developed. In this proposed image encryption technique, the image to be encrypted is split into parts based on the image size. Each part is encrypted separately using matrix transpose. The actual encryption is on the picture elements (pixel) that make up the image. After encrypting each part of the image, the positions of the encrypted images are swapped before transmission of the image can take place. Swapping the positions of the images is carried out to make the encrypted image more robust for any cryptanalyst to decrypt.Keywords: image encryption, matrices, pixel, matrix transpose
Procedia PDF Downloads 42522038 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images
Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou
Abstract:
This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning
Procedia PDF Downloads 13322037 Outdoor Performances of Micro Scale Wind Turbine Stand Alone System
Authors: Ahmed. A. Hossam Eldin, Karim H. Youssef, Kareem M. AboRas
Abstract:
Recent current rapid industrial development and energy shortage are essential problems, which face most of the developing countries. Moreover, increased prices of fossil fuel and advanced energy conversion technology lead to the need for renewable energy resources. A study, modelling and simulation of an outdoor micro scale stand alone wind turbine was carried out. For model validation an experimental study was applied. In this research the aim was to clarify effects of real outdoor operating conditions and the instantaneous fluctuations of both wind direction and wind speed on the actual produced power. The results were compared with manufacturer’s data. The experiments were carried out in Borg Al-Arab, Alexandria. This location is on the north Western Coast of Alexandria. The results showed a real max output power for outdoor micro scale wind turbine, which is different from manufacturer’s value. This is due to the fact that the direction of wind speed is not the same as that of the manufacturer’s data. The measured wind speed and direction by the portable metrological weather station anemometer varied with time. The blade tail response could not change the blade direction at the same instant of the wind direction variation. Therefore, designers and users of micro scale wind turbine stand alone system cannot rely on the maker’s name plate data to reach the required power.Keywords: micro-turbine, wind turbine, inverters, renewable energy, hybrid system
Procedia PDF Downloads 48422036 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 10322035 Study of Temperature and Precipitation Changes Based on the Scenarios (IPCC) in the Caspian Sea City: Case Study in Gillan Province
Authors: Leila Rashidian, Mina Rajabali
Abstract:
Industrialization has made progress and comfort for human beings in many aspects. It is not only achievement for the global environment but also factor for destruction and disruption of the Earth's climate. In this study, we used LARS.WG model and down scaling of general circulation climate model HADCM-3 daily precipitation amounts, minimum and maximum temperature and daily sunshine hours. These data are provided by the meteorological organization for Caspian Sea coastal station such as Anzali, Manjil, Rasht, Lahijan and Astara since their establishment is from 1982 until 2010. According to the IPCC scenarios, including series A1b, A2, B1, we tried to simulate data from 2010 to 2040. The rainfall pattern has changed. So we have a rainfall distribution inappropriate in different months.Keywords: climate change, Lars.WG, HADCM3, Gillan province, climatic parameters, A2 scenario
Procedia PDF Downloads 28822034 Investigating Climate Change Trend Based on Data Simulation and IPCC Scenario during 2010-2030 AD: Case Study of Fars Province
Authors: Leila Rashidian, Abbas Ebrahimi
Abstract:
The development of industrial activities, increase in fossil fuel consumption, vehicles, destruction of forests and grasslands, changes in land use, and population growth have caused to increase the amount of greenhouse gases especially CO2 in the atmosphere in recent decades. This has led to global warming and climate change. In the present paper, we have investigated the trend of climate change according to the data simulation during the time interval of 2010-2030 in the Fars province. In this research, the daily climatic parameters such as maximum and minimum temperature, precipitation and number of sunny hours during the 1977-2008 time interval for synoptic stations of Shiraz and Abadeh and during 1995-2008 for Lar stations and also the output of HADCM3 model in 2010-2030 time interval have been used based on the A2 propagation scenario. The results of the model show that the average temperature will increase by about 1 degree centigrade and the amount of precipitation will increase by 23.9% compared to the observational data. In conclusion, according to the temperature increase in this province, the amount of precipitation in the form of snow will be reduced and precipitations often will occur in the form of rain. This 1-degree centigrade increase during the season will reduce production by 6 to 10% because of shortening the growing period of wheat.Keywords: climate change, Lars WG, HADCM3, Gillan province, climatic parameters, A2 scenario
Procedia PDF Downloads 21922033 “Congratulations, I Am Sorry for Your Loss”. A Qualitative Study to Help Healthcare Providers Search for Words When a Baby Dies
Authors: Liesbeth Van Kelst, Jozefiene Jansens
Abstract:
Background: All care providers within mother and child care are confronted, at some point in their career, with the care for parents who (will) lose or have lost a baby. Obtaining the correct attitude and communicating well during these difficult moments are aspects that many healthcare provides continue to struggle with. Parents still encounter well-intentioned but inappropriate communication from healthcare providers. Aim: To study how communication, both verbal and non-verbal, around the death of a baby during pregnancy, birth, or in the first ten days postnatal was experienced by parents and healthcare providers. Methods: A qualitative study using grounded theory principles was conducted. Data were collected through 22 individual face-to-face in-depth interviews with parents who had lost a baby (n = 12) and intramural caregivers, such as midwives, nurses, gynecologists and neonatologists (n=10). In the first phase, data were analyzed within each group separately (parents and healthcare providers) and in the second phase, findings from both groups were compared and analyzed according to meta-synthesis principles. Results: The themes that emerged from the data demonstrated congruent experiences between the group of the parents and the health care providers. Both strengths and weaknesses in current care were named and suggestions for appropriate communication were formulated. Conclusion: Since most health care providers only occasionally care for parents with a deceased baby, a communication tool can optimize communication between healthcare professionals and parents who lose a baby. This is very important as the words which are said at this difficult period last a lifetime in the heads of parents.Keywords: communication, death, perinatal loss, stillbirth
Procedia PDF Downloads 23222032 Investigating the Body Paragraphs of English as a Second Language Students' English Academic Essays: Genre Analysis and Needs Analysis
Authors: Chek K. Loi
Abstract:
The present study has two objectives. Firstly, it investigates the rhetorical strategies employed in the body paragraphs of ESL (English as a Second Language) undergraduate students’ English academic essays. Peacock’s (2002) model of the discussion section was used as the starting points in this study to investigate the rhetorical moves employed in the data. Secondly, it investigates the writing problems as perceived by these ESL students through an interview. Interview responses serve as accompanying data to the move analysis. Apart from this, students’ English academic writing problems are diagnosed. The findings have pedagogical implications in an EAP (English for Academic Purposes) classroom.Keywords: academic essays, move analysis, pedagogical implication, rhetorical strategies
Procedia PDF Downloads 27822031 Aerial Survey and 3D Scanning Technology Applied to the Survey of Cultural Heritage of Su-Paiwan, an Aboriginal Settlement, Taiwan
Authors: April Hueimin Lu, Liangj-Ju Yao, Jun-Tin Lin, Susan Siru Liu
Abstract:
This paper discusses the application of aerial survey technology and 3D laser scanning technology in the surveying and mapping work of the settlements and slate houses of the old Taiwanese aborigines. The relics of old Taiwanese aborigines with thousands of history are widely distributed in the deep mountains of Taiwan, with a vast area and inconvenient transportation. When constructing the basic data of cultural assets, it is necessary to apply new technology to carry out efficient and accurate settlement mapping work. In this paper, taking the old Paiwan as an example, the aerial survey of the settlement of about 5 hectares and the 3D laser scanning of a slate house were carried out. The obtained orthophoto image was used as an important basis for drawing the settlement map. This 3D landscape data of topography and buildings derived from the aerial survey is important for subsequent preservation planning as well as building 3D scan provides a more detailed record of architectural forms and materials. The 3D settlement data from the aerial survey can be further applied to the 3D virtual model and animation of the settlement for virtual presentation. The information from the 3D scanning of the slate house can also be used for further digital archives and data queries through network resources. The results of this study show that, in large-scale settlement surveys, aerial surveying technology is used to construct the topography of settlements with buildings and spatial information of landscape, as well as the application of 3D scanning for small-scale records of individual buildings. This application of 3D technology, greatly increasing the efficiency and accuracy of survey and mapping work of aboriginal settlements, is much helpful for further preservation planning and rejuvenation of aboriginal cultural heritage.Keywords: aerial survey, 3D scanning, aboriginal settlement, settlement architecture cluster, ecological landscape area, old Paiwan settlements, slat house, photogrammetry, SfM, MVS), Point cloud, SIFT, DSM, 3D model
Procedia PDF Downloads 17822030 Assessing the Role of Water Research and Development Investment towards Water Security in South Africa: During the Five Years Period (2009/10 - 2013/14)
Authors: Hlamulo Makelane
Abstract:
The study aims at providing new insights regarding research and development (R&D) public and private activities based on the national R&D survey of the past five years. The main question of the study is what role does water R&D plays on water security; to then analyze what lessons could be extracted to improve the security of water through R&D. In particular, this work concentrates on three main aspects of R&D investments: (i) the level of expenditures, (ii) the sources of funding related to water R&D, and (iii) the personnel working in the field, both for the public and private sectors. The nonlinear regression approached will be used for data analysis based on secondary data gathered from the South African nation R&D survey conducted annually by the Centre for science, technology and innovation indicators (CeSTII).Keywords: water, R&D, investment, public sector, private sector
Procedia PDF Downloads 24122029 Knowledge of Operation Rooms’ Staff toward Sources, Prevention and Control of Fires at Governmental Hospitals in Sana’a, Yemen
Authors: Abdulnasser Ahmed Haza’a, Marzoq Ali Odhah, Saddam Ahmed Al-Ahdal, Abdulfatah Saleh Al-Jaradi, Gamil Ghaleb Alrubaiee
Abstract:
Patient safety in hospitals is an essential professional indicator that should be noticed. The threat of fires is potentially the most dangerous risk that could harm patients and personnel. The aim of the study is to assess the knowledge of operating room (OR) staff toward prevention and control sources of fires. Between March 1 and March 30, 2022, data collection was done. A descriptive cross-sectional study was conducted. The sample of the study consisted of 89 OR staff from different governmental hospitals. Convenient sampling was applied to select the sample size. Official approvals were obtained from selected settings for start collection data. Data were collected using a close-ended questionnaire and tested for knowledge. This study was conducted in four governmental hospitals in Sana'a, Yemen. Most of the OR staff were male. Of these, 50.6% of them were operation technician professionals. More than two-thirds of OR staff have less than ten years of experience; 93% of OR staff had inadequate knowledge of sources of fires, and inadequate knowledge of them toward controls and prevention of fires (73%, 79.8%), respectively; 77.5% of OR staff had inadequate knowledge of prevention and control sources of fires. The study concluded that most of OR staff had inadequate knowledge of sources, controls, and prevention of fires, while 22.5% of them had adequate knowledge of prevention and control sources of fires. We recommended the implementation of training programs toward sources, controls, and prevention of fires or related workshops in their educational planning for OR staff of hospitals.Keywords: knowledge, operation rooms staff, fires, prevention
Procedia PDF Downloads 10822028 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction
Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota
Abstract:
Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety
Procedia PDF Downloads 174