Search results for: cloud network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5313

Search results for: cloud network

2043 Comparison of Security Challenges and Issues of Mobile Computing and Internet of Things

Authors: Aabiah Nayeem, Fariha Shafiq, Mustabshra Aftab, Rabia Saman Pirzada, Samia Ghazala

Abstract:

In this modern era of technology, the concept of Internet of Things is very popular in every domain. It is a widely distributed system of things in which the data collected from sensory devices is transmitted, analyzed locally/collectively then broadcasted to network where action can be taken remotely via mobile/web apps. Today’s mobile computing is also gaining importance as the services are provided during mobility. Through mobile computing, data are transmitted via computer without physically connected to a fixed point. The challenge is to provide services with high speed and security. Also, the data gathered from the mobiles must be processed in a secured way. Mobile computing is strongly influenced by internet of things. In this paper, we have discussed security issues and challenges of internet of things and mobile computing and we have compared both of them on the basis of similarities and dissimilarities.

Keywords: embedded computing, internet of things, mobile computing, wireless technologies

Procedia PDF Downloads 318
2042 A Review of the Parameters Used in Gateway Selection Schemes for Internet Connected MANETs

Authors: Zainab S. Mahmood, Aisha H. Hashim, Wan Haslina Hassan, Farhat Anwar

Abstract:

The wide use of the internet-based applications bring many challenges to the researchers to guarantee the continuity of the connections needed by the mobile hosts and provide reliable Internet access for them. One of proposed solutions by Internet Engineering Task Force (IETF) is to connect the local, multi-hop, and infrastructure-less Mobile Ad hoc Network (MANET) with Internet structure. This connection is done through multi-interface devices known as Internet Gateways. Many issues are related to this connection like gateway discovery, hand off, address auto-configuration and selecting the optimum gateway when multiple gateways exist. Many studies were done proposing gateway selection schemes with a single selection criterion or weighted multiple criteria. In this research, a review of some of these schemes is done showing the differences, the features, the challenges and the drawbacks of each of them.

Keywords: Internet Gateway, MANET, mobility, selection criteria

Procedia PDF Downloads 425
2041 Optimal MPPT Charging Battery System for Photovoltaic Standalone Applications

Authors: Kelaiaia Mounia Samira, Labar Hocine, Mesbah Tarek, Kelaiaia samia

Abstract:

The photovoltaic panel produces green power, and because of its availability across the globe, it can supply isolated loads (site away of the electrical network or difficult of access). Unfortunately this energy remains very expensive. The most application of these types of power needs storage devices, the Lithium batteries are commonly used because of its powerful storage capability. Using a solar panel or an array of panels without a controller that can perform MPPT will often result in wasted power, which results in the need to install more panels for the same power requirement. For devices that have the battery connected directly to the panel, this will also result in premature battery failure or capacity loss. In this paper it is proposed a modified P&O algorithm for the MPPT which takes in account the battery’s internal resistance vs temperature and stage of charging. Of course the temperature variation and irradiation of the PV panel are also introduced.

Keywords: modeling, battery, MPPT, charging, PV Panel

Procedia PDF Downloads 526
2040 A New Approach for PE100 Characterization; An in-Reactor HDPE Alloy with Semi Hard and Soft Segments

Authors: Sasan Talebnezhad, Parviz Hamidia

Abstract:

GPC and RMS analysis showed no distinct difference between PE 100 On, Off, and Reference grade. But FTIR spectra and multiple endothermic peaks obtained from SSA analysis, attributed to heterogeneity of ethylene sequence length, lamellar thickness and also the non-uniformity of short chain branching, showed sharp discrepancy and proposed a blend structure of high-density polyethylenes in PE 100 grade. Catalysis along with process parameters dictates poly blend PE 100 structure. This in-reactor blend is a mixture of compatible co-crystallized phases with different crystalinity, forming a physical semi hard and soft segment network responsible for improved impact properties in PE 100 pipe grade. We propose a new approach for PE100 evaluation that is more efficient than normal microstructure characterization.

Keywords: HDPE, pipe grade, in-reactor blend, hard and soft segments

Procedia PDF Downloads 448
2039 Post-Quantum Resistant Edge Authentication in Large Scale Industrial Internet of Things Environments Using Aggregated Local Knowledge and Consistent Triangulation

Authors: C. P. Autry, A. W. Roscoe, Mykhailo Magal

Abstract:

We discuss the theoretical model underlying 2BPA (two-band peer authentication), a practical alternative to conventional authentication of entities and data in IoT. In essence, this involves assembling a virtual map of authentication assets in the network, typically leading to many paths of confirmation between any pair of entities. This map is continuously updated, confirmed, and evaluated. The value of authentication along multiple disjoint paths becomes very clear, and we require analogues of triangulation to extend authentication along extended paths and deliver it along all possible paths. We discover that if an attacker wants to make an honest node falsely believe she has authenticated another, then the length of the authentication paths is of little importance. This is because optimal attack strategies correspond to minimal cuts in the authentication graph and do not contain multiple edges on the same path. The authentication provided by disjoint paths normally is additive (in entropy).

Keywords: authentication, edge computing, industrial IoT, post-quantum resistance

Procedia PDF Downloads 201
2038 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification

Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui

Abstract:

Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.

Keywords: EEG, ICA, SVM, wavelet

Procedia PDF Downloads 384
2037 Training a Neural Network Using Input Dropout with Aggressive Reweighting (IDAR) on Datasets with Many Useless Features

Authors: Stylianos Kampakis

Abstract:

This paper presents a new algorithm for neural networks called “Input Dropout with Aggressive Re-weighting” (IDAR) aimed specifically at datasets with many useless features. IDAR combines two techniques (dropout of input neurons and aggressive re weighting) in order to eliminate the influence of noisy features. The technique can be seen as a generalization of dropout. The algorithm is tested on two different benchmark data sets: a noisy version of the iris dataset and the MADELON data set. Its performance is compared against three other popular techniques for dealing with useless features: L2 regularization, LASSO and random forests. The results demonstrate that IDAR can be an effective technique for handling data sets with many useless features.

Keywords: neural networks, feature selection, regularization, aggressive reweighting

Procedia PDF Downloads 458
2036 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 155
2035 Fabrication of Chitosan/Polyacrylonitrile Blend and SEMI-IPN Hydrogel with Epichlorohydrin

Authors: Muhammad Omer Aijaz, Sajjad Haider, Fahad S. Al Mubddal, Yousef Al-Zeghayer, Waheed A. Al Masry

Abstract:

The present study is focused on the preparation of chitosan-based blend and Semi-Interpenetrating Polymer Network (SEMI-IPN) with polyacrylonitrile (PAN). Blend Chitosan/Polyacrylonitrile (PAN) hydrogel films were prepared by solution blending and casting technique. Chitosan in the blend was cross-linked with epichlorohydrin (ECH) to prepare SEMI-IPN. The developed Chitosan/PAN blend and SEMI-IPN hydrogels were characterized with SEM, FTIR, TGA, and DSC. The result showed good miscibility between chitosan and PAN, crosslinking of chitosan in the blend, and improved thermal properties for SEMI-IPN. The swelling of the different blended and SEMI-IPN hydrogels samples were examined at room temperature. Blend (C80/P20) sample showed highest swelling (2400%) and fair degree of stability (28%) whereas SEMI-IPN hydrogel exhibited relatively low degree of swelling (244%) and high degree of aqueous stability (85.5%).

Keywords: polymer hydrogels, chitosan, SEMI-IPN, polyacrylonitrile, epichlorohydrin

Procedia PDF Downloads 376
2034 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 128
2033 A Low-Power, Low-Noise and High Linearity 60 GHz LNA for WPAN Applications

Authors: Noha Al Majid, Said Mazer, Moulhime El Bekkali, Catherine Algani, Mahmoud Mehdi

Abstract:

A low noise figure (NF) and high linearity V-band Low Noise Amplifier (LNA) is reported in this article. The LNA compromises a three-stage cascode configuration. This LNA will be used as a part of a WPAN (Wireless Personal Area Network) receiver in the millimeter-wave band at 60 GHz. It is designed according to the MMIC technology (Monolithic Microwave Integrated Circuit) in PH 15 process from UMS foundry and uses a 0.15 μm GaAs PHEMT (Pseudomorphic High Electron Mobility Transistor). The particularity of this LNA compared to other LNAs in literature is its very low noise figure which is equal to 1 dB and its high linearity (IIP3 is about 22 dB). The LNA consumes 0.24 Watts, achieving a high gain which is about 23 dB, an input return loss better than -10 dB and an output return loss better than -8 dB.

Keywords: low noise amplifier, V-band, MMIC technology, LNA, amplifier, cascode, pseudomorphic high electron mobility transistor (PHEMT), high linearity

Procedia PDF Downloads 517
2032 Implementation of Distributed Randomized Algorithms for Resilient Peer-to-Peer Networks

Authors: Richard Tanaka, Ying Zhu

Abstract:

This paper studies a few randomized algorithms in application-layer peer-to-peer networks. The significant gain in scalability and resilience that peer-to-peer networks provide has made them widely used and adopted in many real-world distributed systems and applications. The unique properties of peer-to-peer networks make them particularly suitable for randomized algorithms such as random walks and gossip algorithms. Instead of simulations of peer-to-peer networks, we leverage the Docker virtual container technology to develop implementations of the peer-to-peer networks and these distributed randomized algorithms running on top of them. We can thus analyze their behaviour and performance in realistic settings. We further consider the problem of identifying high-risk bottleneck links in the network with the objective of improving the resilience and reliability of peer-to-peer networks. We propose a randomized algorithm to solve this problem and evaluate its performance by simulations.

Keywords: distributed randomized algorithms, peer-to-peer networks, virtual container technology, resilient networks

Procedia PDF Downloads 219
2031 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: foot recognition, deep learning, knee rehabilitation, convolutional neural network

Procedia PDF Downloads 163
2030 Analysis and Forecasting of Bitcoin Price Using Exogenous Data

Authors: J-C. Leneveu, A. Chereau, L. Mansart, T. Mesbah, M. Wyka

Abstract:

Extracting and interpreting information from Big Data represent a stake for years to come in several sectors such as finance. Currently, numerous methods are used (such as Technical Analysis) to try to understand and to anticipate market behavior, with mixed results because it still seems impossible to exactly predict a financial trend. The increase of available data on Internet and their diversity represent a great opportunity for the financial world. Indeed, it is possible, along with these standard financial data, to focus on exogenous data to take into account more macroeconomic factors. Coupling the interpretation of these data with standard methods could allow obtaining more precise trend predictions. In this paper, in order to observe the influence of exogenous data price independent of other usual effects occurring in classical markets, behaviors of Bitcoin users are introduced in a model reconstituting Bitcoin value, which is elaborated and tested for prediction purposes.

Keywords: big data, bitcoin, data mining, social network, financial trends, exogenous data, global economy, behavioral finance

Procedia PDF Downloads 355
2029 Urban Poor: The Situations and Characteristics of the Problem and Social Welfare Service of Bangkok Metropolis

Authors: Sanchai Ratthanakwan

Abstract:

This research aims to study situations and characteristics of the problems facing the urban poor. The data and information are collected by focus group and in-depth interview leader and members of Four Regions Slum Network, community representatives and the social welfare officer. The research can be concluded that the problems of the urban poor faced with three major problems: Firstly, the shortage of housing and stability issues in housing; secondly, the problem of substandard quality of life; and thirdly, the debt problem. The study found that a solution will be found in two ways: First way is the creation of housing for the urban poor in slums or community intrusion by the state. Second way is the stability in the housing and subsistence provided by the community center called “housing stability”.

Keywords: urban poor, social welfare, Bangkok metropolis, housing stability

Procedia PDF Downloads 425
2028 NFC Communications with Mutual Authentication Based on Limited-Use Session Keys

Authors: Chalee Thammarat

Abstract:

Mobile phones are equipped with increased short-range communication functionality called Near Field Communication (or NFC for short). NFC needs no pairing between devices but suitable for little amounts of data in a very restricted area. A number of researchers presented authentication techniques for NFC communications, however, they still lack necessary authentication, particularly mutual authentication and security qualifications. This paper suggests a new authentication protocol for NFC communication that gives mutual authentication between devices. The mutual authentication is a one of property, of security that protects replay and man-in-the-middle (MitM) attack. The proposed protocols deploy a limited-use offline session key generation and use of distribution technique to increase security and make our protocol lightweight. There are four sub-protocols: NFCAuthv1 is suitable for identification and access control and NFCAuthv2 is suitable for the NFC-enhanced phone by a POS terminal for digital and physical goods and services.

Keywords: cryptographic protocols, NFC, near field communications, security protocols, mutual authentication, network security

Procedia PDF Downloads 433
2027 Use of Artificial Intelligence Based Models to Estimate the Use of a Spectral Band in Cognitive Radio

Authors: Danilo López, Edwin Rivas, Fernando Pedraza

Abstract:

Currently, one of the major challenges in wireless networks is the optimal use of radio spectrum, which is managed inefficiently. One of the solutions to existing problem converges in the use of Cognitive Radio (CR), as an essential parameter so that the use of the available licensed spectrum is possible (by secondary users), well above the usage values that are currently detected; thus allowing the opportunistic use of the channel in the absence of primary users (PU). This article presents the results found when estimating or predicting the future use of a spectral transmission band (from the perspective of the PU) for a chaotic type channel arrival behavior. The time series prediction method (which the PU represents) used is ANFIS (Adaptive Neuro Fuzzy Inference System). The results obtained were compared to those delivered by the RNA (Artificial Neural Network) algorithm. The results show better performance in the characterization (modeling and prediction) with the ANFIS methodology.

Keywords: ANFIS, cognitive radio, prediction primary user, RNA

Procedia PDF Downloads 422
2026 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 130
2025 Analysis of the Social Impact of Agro-Allied Industries on the Rural Dwellers in Benue State, Nigeria

Authors: Ali Ocholi

Abstract:

The study was conducted to analyze the impact of agro-allied industries on rural dwellers in Benue state, Nigeria. Stratified random sampling technique was used to select the respondents for the study. Primary data were collected through the use of structured questionnaires administered on 366 respondents from the selected communities; the data were analyzed using both descriptive and inferential statistics. The result of Mann-Whitney (U) statistics showed that water availability (14350) and good road network (15082.00) were the only social impact derived from the industries by the rural dwellers. The study recommended that right and proper policies and programmes should be put in place by the government to mandate all private and public agro-allied industries to embark on projects that would be in favour of the rural dwellers where the agro-allied industries are situated.

Keywords: agriculture, agro-allied industry, rural dwellers, Benue state

Procedia PDF Downloads 253
2024 Evaluation of Interaction Between Fans and Celebrities in New Media

Authors: Mohadese Motahari

Abstract:

In general, we consider the phenomenon of "fandism" or extreme fandom to be an aspect of fandom for a person, a group, or a collection, which leads to extreme support for them. So, for example, we consider a fan or a "fanatic" (which literally means a "fanatical person") to be a person who is extremely interested in a certain topic or topics and has a special passion and fascination for that issue. It may also be beyond the scope of logic and normal behavior of the society. With the expansion of the media and the advancement of technology, the phenomenon of fandom also underwent many changes and not only became more intense, but a large economy was also formed alongside it, and it is becoming more and more important every day. This economy, which emerged from the past with the formation of the first media, has now taken a different form with the development of media and social networks, as well as the change in the interaction between celebrities and audiences. Earning huge amounts of money with special methods in every social network and every media is achieved through fans and fandoms. In this article, we have studied the relationship between fans and famous people with reference to the economic debates surrounding it.

Keywords: fandism, famous people, social media, new media

Procedia PDF Downloads 91
2023 Marketing–Operations Alignment: A Systematic Literature and Citation Network Analysis Review

Authors: Kedwadee Sombultawee, Sakun Boon-Itt

Abstract:

This research demonstrates a systematic literature review of 62 peer-reviewed articles published in academic journals from 2000-2016 focusing on the operation and marketing interface area. The findings show the three major clusters of recent research domains, which is a review of the alignment between operations and marketing, identification of variables that impact the company and analysis of the effect of interface. Moreover, the Main Path Analysis (MPA) is mapped to show the knowledge structure of the operation and marketing interface issue. Most of the empirical research focused on company performance and new product development then analyzed the data by the structural equation model or regression. Whereas, some scholars studied the conflict of these two functions and proposed the requirement or step for alignment. Finally, the gaps in the literature are provided for future research directions.

Keywords: operations management, marketing, interface, systematic literature review

Procedia PDF Downloads 278
2022 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 125
2021 An Autopilot System for Static Zone Detection

Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo

Abstract:

Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.

Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement

Procedia PDF Downloads 103
2020 Toward Understanding the Glucocorticoid Receptor Network in Cancer

Authors: Swati Srivastava, Mattia Lauriola, Yuval Gilad, Adi Kimchi, Yosef Yarden

Abstract:

The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer.

Keywords: epidermal growth factor, glucocorticoid receptor, protein complementation assay, transcription factor

Procedia PDF Downloads 228
2019 Resource Allocation Scheme For IEEE802.16 Networks

Authors: Elmabruk Laias

Abstract:

IEEE Standard 802.16 provides QoS (Quality of Service) for the applications such as Voice over IP, video streaming and high bandwidth file transfer. With the ability of broadband wireless access of an IEEE 802.16 system, a WiMAX TDD frame contains one downlink subframe and one uplink subframe. The capacity allocated to each subframe is a system parameter that should be determined based on the expected traffic conditions. a proper resource allocation scheme for packet transmissions is imperatively needed. In this paper, we present a new resource allocation scheme, called additional bandwidth yielding (ABY), to improve transmission efficiency of an IEEE 802.16-based network. Our proposed scheme can be adopted along with the existing scheduling algorithms and the multi-priority scheme without any change. The experimental results show that by using our ABY, the packet queuing delay could be significantly improved, especially for the service flows of higher-priority classes.

Keywords: IEEE 802.16, WiMAX, OFDMA, resource allocation, uplink-downlink mapping

Procedia PDF Downloads 476
2018 Parental Monitoring of Learners’ Cell Phone Use in the Eastern Cape, South Africa

Authors: Melikhaya Skhephe, Robert Mawuli Kwasi Boadzo, Zanoxolo Berington Gobingca

Abstract:

This research study sought to examine parental monitoring of learners’ cell phone use in the Eastern Cape, South Africa. To this end, the researchers employed a quantitative approach. Data were obtained through questionnaires, with a sample of 15 parents having been purposively selected. The findings revealed that parents are unaware that they have to monitor the learner’s cell phone. Another finding was that parents in the 21-century did not support the use of mobile phones in education. The researchers recommend that parent’s discussion forums be created to educate parents on how a cell phone can be used in education. Cellphone companies need to be encouraged to educate parents on how they monitor cell phones used by learners. Another recommendation was that network providers need to restrict access to searching on the internet according to age.

Keywords: parental monitoring, app blocking services, learner’s cell phone use, cell phone

Procedia PDF Downloads 163
2017 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery

Authors: C. Hamamura, V. Gialluca

Abstract:

Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.

Keywords: image pattern recognition, trees pruning, trees recognition, neural network

Procedia PDF Downloads 500
2016 Governance Framework for an Emerging Trust Ecosystem with a Blockchain-Based Supply Chain

Authors: Ismael Ávila, José Reynaldo F. Filho, Vasco Varanda Picchi

Abstract:

The ever-growing consumer awareness of food provenance in Brazil is driving the creation of a trusted ecosystem around the animal protein supply chain. The traceability and accountability requirements of such an ecosystem demand a blockchain layer to strengthen the weak links in that chain. For that, direct involvement of the companies in the blockchain transactions, including as validator nodes of the network, implies formalizing a partnership with the consortium behind the ecosystem. Yet, their compliance standards usually require that a formal governance structure is in place before they agree with any membership terms. In light of such a strategic role of blockchain governance, the paper discusses a framework for tailoring a governance model for a blockchain-based solution aimed at the meat supply chain and evaluates principles and attributes in terms of their relevance to the development of a robust trust ecosystem.

Keywords: blockchain, governance, trust ecosystem, supply chain, traceability

Procedia PDF Downloads 122
2015 Contraceptive Uptake among Women in Low Socio-Economic Areas in Kenya: Quantitative Analysis of Secondary Data

Authors: J. Waita, S. Wamuhu, J. Makoyo, M. Rachel, T. Ngangari, W. Christine, M. Zipporah

Abstract:

Contraceptive use is one of the key global strategies to alleviate maternal mortality. Global efforts through advocating for contraceptive uptake and service provision has led improved contraceptive prevalence. In Kenya maternal mortality rate has remained a challenged despites efforts by government and non-governmental organizations. Objective: To describe the uptake of contraceptives among women in Tunza Clinics, Kenya. Design and Methods: Ps Kenya through health care marketing fund is implementing a family planning program among its 350 Tunza fractional franchise facilities. Through private partnership, private owned facilities in low socio-economic areas are recruited and trained on contraceptive technology update. The providers are supported through facilitative supervision through a mobile based application Health Network Quality Improvement System (HNQIS) and interpersonal communication through 150 community based volunteers. The data analyzed in this paper was collected between January to July 2017 to show the uptake of modern Contraceptives among women in the Tunza franchise, method mix, age and distribution among the age bracket. Further analysis compares two different service delivery strategies; outreach and walk ins. Supportive supervision HNQIS scores was analyzed. Results: During the time period, a total of 132121 family planning clients were attended in 350 facilities. The average age of clients was 29.6 years. The average number of clients attended in the facilities per month was 18874. 73.7 %( n=132121) of the clients attended in the Tunza facilities were aged above 25 years while 22.1% 20-24 years and 4.2% 15-19 years. On contraceptive method mix, intra uterine device insertions clients contributed to 7.5%, implant insertions 15.3%, pills 11.2%, injections 62.7% while condoms and emergency pills had 2.7% and 0.6% respectively. Analysis of service delivery strategy indicated more than 79% of the clients were walk ins while 21% were attended to during outreaches. Uptake of long term contraceptive methods during outreaches was 73% of the clients while short term modern methods were 27%. Health Network Quality Improvement system assessment scores indicated 51% of the facilities scored over 90%, 25% scoring 80-89% while 21% scored below 80%. Conclusion: Preference for short term methods by women is possibly associated to cost as they are cheaper and easy to administer. When the cost of intra uterine device Implants is meant affordable during outreaches, the uptake is observed to increase. Making intra uterine device and implants affordable to women is a key strategy in increasing contraceptive prevalence hence averting maternal mortality.

Keywords: contraceptives, contraceptive uptake, low socio economic, supportive supervision

Procedia PDF Downloads 169
2014 Internet Based Teleoperation of the Quad Rotor with Force Feedback Using Smith Predictor

Authors: K. Senthil Kumar, A. Vasumalaikannan

Abstract:

In this paper, teleoperation of the quadrotor using Internet with Force feedback is addressed. Teleoperation with Force feedback is the ability to remotely control a robot, where contact (obstacle) or environment (wind gust etc) information (force feedback) is communicated from the quadrotor to the master joystick and thus giving the operator a sense of telepresence. The stability and performance of such a teleoperator is highly dependent on the amount of time delay present in the control loop. This problem is further complicated given the fact that for network based communication the time delay is itself time varying and highly non deterministic. In this paper, a novel method using Neural based Smith Predictor at the master side the stability is achieved. The performance of the system even during worst case scenario is within acceptable.

Keywords: teleoperation, quadrotor, neural smith predictor, time delay

Procedia PDF Downloads 616