Search results for: tyrosinase inhibitors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 415

Search results for: tyrosinase inhibitors

115 Eudesmane-Type Sesquiterpenes from Laggera alata Inhibiting Angiogenesis

Authors: Liang Ning, Chung Hau Yin

Abstract:

Angiogenesis is the process of new blood vessel development. It has been recognized as a therapeutic target for blocking cancer growth four decades ago. Vascular sprouting is initiated by pro-angiogenic factors. Vascular endothelial cell growth factor (VEGF) plays a central role in angiogenic initiation, many patients with cancer or ocular neovascularization have been benefited from anti-VEGF therapy. Emerging approaches impacting in the later stages of vessel remodeling and maturation are expected to improve clinical efficacy. TIE receptor as well as the corresponding angiopoietin ligands, were identified as another endothelial cell specific receptor tyrosine kinase signaling system. Much efforts were made to reduce the activity of angiopoietin-TIE receptor axis. Two eudesmane-type sesquiterpenes from laggera alata, namely, 15-dihydrocostic acid and ilicic acid were found with strong anti-angiogenic properties in zebrafish model. Meanwhile, the mRNA expression levels of VEGFR2 and TIE2 pathway related genes were down-regulated in the sesquiterpenes treated zebrafish embryos. Besides, in human umbilical vein endothelial cells (HUVECs), the sesquiterpenes have the ability to inhibit VEGF-induced HUVECs proliferation and migration at non-toxic concentration. Moreover, angiopoietin-2 induced TIE2 phosphorylation was inhibited by the sesquiterpenes, the inhibitory effect was detected in angiopoietin-1 induced HUVECs proliferation as well. Thus, we hypothesized the anti-angiogenic activity of the compounds may via the inhibition of VEGF and TIE2 related pathways. How the compounds come into play as the pathways inhibitors need to be evaluated in the future.

Keywords: Laggera alata, eudesmane-type sesquiterpene, anti-angiogenesis, VEGF, angiopoietin, TIE2

Procedia PDF Downloads 187
114 An In-Depth Experimental Study of Wax Deposition in Pipelines

Authors: Arias M. L., D’Adamo J., Novosad M. N., Raffo P. A., Burbridge H. P., Artana G.

Abstract:

Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevents wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of Y-TEC's flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 mts long equipped with a solid detector system, online microscope to visualize crystals, temperature and pressure sensors along the loop pipe. A baseline test was performed with diesel with no paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin added to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods. Finally, we scrutinized the effect of adding a chemical inhibitor to the working fluid on the dynamics of the process of wax deposition in the loop.

Keywords: paraffin desposition, flow assurance, chemical inhibitors, flow loop

Procedia PDF Downloads 83
113 Preparation of Flurbiprofen Derivative for Enhanced Brain Penetration

Authors: Jungkyun Im

Abstract:

Nonsteroidal anti-inflammatory drugs (NSAIDs) are effective for relieving pain and reducing inflammation. They are nonselective inhibitors of two isoforms of COX, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), and thereby inhibiting the production of hormone-like lipid compounds such as, prostaglandins and thromboxanes which cause inflammation, pain, fever, platelet aggregation, etc. In addition, recently there are many research articles reporting the neuroprotective effect of NSAIDs in neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). However, the clinical use of NSAIDs in these diseases is limited by low brain distribution. Therefore, in order to assist the in-depth investigation on the pharmaceutical mechanism of flurbiprofen in neuroprotection and to make flurbiprofen a more potent drug to prevent or alleviate neurodegenerative diseases, delivery of flurbiprofen to brain should be effective and sufficient amount of flurbiprofen must penetrate the BBB thus gaining access into the patient’s brain. We have recently developed several types of guanidine-rich molecular carriers with high molecular weights and good water solubility that readily cross the blood-brain barrier (BBB) and display efficient distributions in the mouse brain. The G8 (having eight guanidine groups) molecular carrier based on D-sorbitol was found to be very effective in delivering anticancer drugs to a mouse brain. In the present study, employing the same molecular carrier, we prepared the flurbiprofen conjugate and studied its BBB permeation by mouse tissue distribution study. Flurbiprofen was attached to a molecular carrier with a fluorescein probe and multiple terminal guanidiniums. The conjugate was found to internalize into live cells and readily cross the BBB to enter the mouse brain. Our novel synthetic flurbiprofen conjugate will hopefully delivery NSAIDs into brain, and is therefore applicable to the neurodegenerative diseases treatment or prevention.

Keywords: flurbiprofen, drug delivery, molecular carrier, organic synthesis

Procedia PDF Downloads 213
112 Anti-TNF: Possibilities of Rising Anti-Phosphorylcholine Antibodies

Authors: Md. Mizanur Rahman, Anquan Liu, Anna Frostegård, Johan Frostegård

Abstract:

The role of the human immune system is essential in cardiovascular diseases and atherosclerosis. Activated cells in atherosclerosis produce abundant amounts of cytokines, but the exact mechanisms involved in the effects of these inflammatory cytokines are not clear in atherosclerosis. In a large clinical cohort, we have previously determined that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with both development of atherosclerosis and also a low risk of cardiovascular disease. Further, we reported that rheumatoid arthritis patients who were non-responders to TNF-inhibitors, where those with low anti-PC levels. Upon anti-TNF treatment, anti-PC levels increased. We, therefore, hypothesised that proinflammatory cytokines such as TNF could play a role in anti-PC regulation. Peripheral blood mononuclear cells (PBMC) were cultured with or without TNF and anti-TNF. The cell supernatants were collected after six days for ELISA measurements. In separate experiments, cells were cultured for 24 hours in both polystyrene plates and ELISPOT plates under a similar condition for ELISA and ELISPOT assays respectively. Total RNA was extracted after 6 hours of cell culture to perform RT-qPCR. Cell viability was confirmed by trypan blue staining and MTT assays. ELISA measurements detected less than 40% of anti-PC in TNF-treated cells, in comparison to control cells, whereas anti-PC production was recovered by anti-TNF treatment. ELISPOT assays showed that TNF suppresses anti-PC production by inhibiting anti-PC producing B-cells. In addition, RT-qPCR and ELISA showed that TNF also has effects also on B-cell activation as BAFF expression was inhibited by TNF treatment. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC is a protection marker for atherosclerosis development. Our findings show that TNF is a negative regulator of anti-PC production. Immune modulation and rising of anti-PC could be of major significance for the patients.

Keywords: anti-PC, Anti-TNF, atherosclerosis, cardiovascular diseases, phosphorylecholine

Procedia PDF Downloads 221
111 Susceptibility of Spodoptera littoralis, Field Populations in Egypt to Chlorantraniliprole and the Role of Detoxification Enzymes

Authors: Mohamed H. Khalifa, Fikry I. El-Shahawi, Nabil A. Mansour

Abstract:

The cotton leafworm, Spodoptera littoralis (Boisduval) is a major insect pest of vegetables and cotton crops in Egypt, and exhibits different levels of tolerance to certain insecticides. Chlorantraniliprole has been registered recently in Egypt for control this insect. The susceptibilities of three S. littoralis populations collected from El Behaira governorate, north Egypt to chlorantraniliprole were determined by leaf-dipping technique on 4th instar larvae. Obvious variation of toxicity was observed among the laboratory susceptible, and three field populations with LC50 values ranged between 1.53 µg/ml and 6.22 µg/ml. However, all the three field populations were less susceptible to chlorantraniliprole than a laboratory susceptible population. The most tolerant populations were sampled from El Delengat (ED) Province where S. littoralis had been frequently challenged by insecticides. Certain enzyme activity assays were carried out to be correlated with the mechanism of the observed field population tolerance. All field populations showed significantly enhanced activities of detoxification enzymes compared with the susceptible strain. The regression analysis between chlorantraniliprole toxicities and enzyme activities revealed that the highest correlation is between α-esterase or β-esterase (α-β-EST) activity and collected field strains susceptibility, otherwise this correlation is not significant (P > 0.05). Synergism assays showed the ED and susceptible strains could be synergized by known detoxification inhibitors such as piperonyl butoxide (PBO), triphenyl phosphate (TPP) and diethyl-maleate (DEM) at different levels (1.01-8.76-fold and 1.09-2.94 fold, respectively), TPP showed the maximum synergism in both strains. The results show that there is a correlation between the enzyme activity and tolerance, and carboxylic-esterase (Car-EST) is likely the main detoxification mechanism responsible for tolerance of S. littoralis to chlorantraniliprole.

Keywords: chlorantraniliprole, detoxification enzymes, Egypt, Spodoptera littoralis

Procedia PDF Downloads 256
110 Mechanism of Modeling the Level of Bcr-Abl Oncoprotein by Ubiquitin-Proteasome System in Chronic Myeloid Leukemia

Authors: Svitlana Antonenko, Gennady Telegeev

Abstract:

Introductive statement: The development of chronic myeloid leukemia (CML) is caused by Bcr-Abl oncoprotein. Modern treatments with tyrosine kinase inhibitors are greatly complicated by the mutational variability of the Bcr-Abl oncoprotein, which causes drug resistance. Therefore, there is an urgent need to develop new approaches to the treatment of the disease, which will allow modeling the level of Bcr-Abl oncoprotein in the cell. Promising in this direction is the identification of proteases that can selectively promote cellular proteolysis of oncoproteins. The aim of the study was to study the effect of the interaction of Bcr-Abl with deubiquitinase USP1 on the level of oncoprotein in CML cells. Methodology: K562 cells were selected for the experiment. Сells were incubated with ML323 inhibitor for 24 hours. Precipitation of endogenous proteins from K562 cell lysate was performed using anti-Bcr-Abl antibodies. Cell lysates and precipitation results were studied by Western blot. Subcellular localization of proteins was studied by immunofluorescence analysis followed by confocal microscopy. The results were analyzed quantitatively and statistically. Major findings: The Bcr-Abl/USP1 protein complex was detected in CML cells, and it was found that inhibition of USP1 deubiquitinating activity by the compound ML323 leads to disruption of this protein complex and a decrease in the level of Bcr-Abl oncoprotein in cells. The interaction of Bcr-Abl with USP1 may result in deubiquitination of the oncoprotein, which disrupts its proteasomal degradation and leads to the accumulation of CML in cells. Conclusion: We believe that the interaction of oncoprotein with USP1 may be one of the prerequisites that contribute to malignant cell transformation due to the deubiquitination of oncoprotein, which leads to its accumulation and disease progression. A correlation was found between the deubiquitinating activity of USP1 and the level of oncoprotein in CML cells. Thus, we identify deubiquitinase USP1 as a promising therapeutic target for the development of a new strategy for the treatment of CML by modulating the level of Bcr-Abl in the cell.

Keywords: chronic myeloid leukemia, Bcr-Abl, USP1, deubiquitination Bcr-Abl, K562 cell

Procedia PDF Downloads 46
109 Synthesis and Biological Activities of Novel -1,2,3-Triazoles Derivatives

Authors: Zahra Dehghani, Hoda Dehghani, Elham Zarenezhad

Abstract:

1,2,3-Triazole derivatives are important compounds in medicinal chemistry owing to their wide applications in drug discovery. They can readily associate with biologically targets through the hydrogen bonding and dipole interactions. The 1,2,3-triazole core is a key structural motif in many bioactive compounds, exhibiting a broad spectrum of biological activities, such as antiviral, anticancer, anti-HIV, antibiotic, antibacterial, and antimicrobial. Additionally, they have found significant industrial applications as dyes, agrochemicals, corrosion inhibitors, photo stabilizers, and photographic materials. we disclose the synthesis and characterization of 1-azido-3-(aryl-2-yloxy)propan-2-ol drivatives. The chemistry works well with various ß-azido alcohols involving aryloxy, alkoxy and alkyl residues, and also tolerates a wide spectrum of electron-donating and electron-withdrawing functional groups in both alkyne and azide molecules. Most of ß-azidoalcohols used in these experiments were pre-synthesized by the regioselective ring opening reaction of corresponded epoxides with sodium azide, whereas the majority of terminal alkynes were prepared via SN2-type reaction of propargyl bromide and corresponded nucleophiles. To evaluate the bioactivity of title compounds, the in vitro antifungal activity of all compound was investigated against several pathogenic fungi including Candida albicans, Candida krusei, Aspergillus niger, and Trichophyton rubrum , clotrimazole and fluconazole was used as standard antifungal drugs, also To understand the antibacterial activity of synthesized compounds, they were in vitro screened against E. coli and S. aureus as Gram-negative and Gram-positive bacteria, respectively. The in vitro tests have shown the promising antifungal but marginal antibacterial activity against tested fungi and bacteria.

Keywords: biological activities, antibacterial, antifungal, 1, 2, 3-Triazole

Procedia PDF Downloads 411
108 Combined Treatment of Aged Rats with Donepezil and the Gingko Extract EGb 761® Enhances Learning and Memory Superiorly to Monotherapy

Authors: Linda Blümel, Bettina Bert, Jan Brosda, Heidrun Fink, Melanie Hamann

Abstract:

Age-related cognitive decline can eventually lead to dementia, the most common mental illness in elderly people and an immense challenge for patients, their families and caregivers. Cholinesterase inhibitors constitute the most commonly used antidementia prescription medication. The standardized Ginkgo biloba leaf extract EGb 761® is approved for treating age-associated cognitive impairment and has been shown to improve the quality of life in patients suffering from mild dementia. A clinical trial with 96 Alzheimer´s disease patients indicated that the combined treatment with donepezil and EGb 761® had fewer side effects than donepezil alone. In an animal model of cognitive aging, we compared the effect of combined treatment with EGb 761® or donepezil monotherapy and vehicle. We compared the effect of chronic treatment (15 days of pretreatment) with donepezil (1.5 mg/kg p. o.), EGb 761® (100 mg/kg p. o.), or the combination of the two drugs, or vehicle in 18 – 20 month old male OFA rats. Learning and memory performance were assessed by Morris water maze testing, motor behavior in an open field paradigm. In addition to chronic treatment, the substances were administered orally 30 minutes before testing. Compared to the first day and to the control group, only the combination group showed a significant reduction in latency to reach the hidden platform on the second day of testing. Moreover, from the second day of testing onwards, the donepezil, the EGb 761® and the combination group required less time to reach the hidden platform compared to the first day. The control group did not reach the same latency reduction until day three. There were no effects on motor behavior. These results suggest a superiority of the combined treatment of donepezil with EGb 761® compared to monotherapy.

Keywords: age-related cognitive decline, dementia, ginkgo biloba leaf extract EGb 761®, learning and memory, old rats

Procedia PDF Downloads 344
107 Associations between Physical Activity and Risk Factors for Type II Diabetes in Prediabetic Adults

Authors: Rukia Yosuf

Abstract:

Diabetes is a national healthcare crisis related to both macrovascular and microvascular complications. We hypothesized that higher levels of physical activity are associated with lower total and visceral fat mass, lower systolic blood pressure, and increased insulin sensitivity. Participant inclusion criteria: 21-50 years old, BMI ≥ 30 kg/m2, hemoglobin A1C 5.7-6.4, fasting glucose 100-125 mg/dL, and HOMA IR ≥ 2.5. Exclusion criteria: history of diabetes, hypertension, HIV, renal disease, hearing loss, alcoholic intake over four drinks daily, use of organic nitrates or PDE5 inhibitors, and decreased cardiac function. Total physical activity was measured using accelerometers, body composition using DXA, and insulin resistance via fsIVGTT. Clinical and biochemical cardiometabolic risk factors, blood pressure and heart rate were obtained using a calibrated sphygmomanometer. Anthropometric measures, fasting glucose, insulin, lipid profile, C-reactive protein, and BMP were analyzed using standard procedures. Within our study, we found correlations between levels of physical activity in a heterogeneous group of prediabetic adults. Patients with more physical activity had a higher degree of insulin sensitivity, lower blood pressure, total visceral adipose tissue, and overall lower total mass. Total physical activity levels showed small, but significant correlations with systolic blood pressure, visceral fat, lean mass and insulin sensitivity. After normalizing for the race, age, and gender using multiple regression, these associations were no longer significant considering our small sample size. More research into prediabetes will decrease the population of diabetics overall. In the future, we could increase sample size and conduct cross sectional and longitudinal studies in various populations with prediabetes.

Keywords: diabetes, kidney disease, nephrology, prediabetes

Procedia PDF Downloads 171
106 Investigating the Flavin-Dependent Thymidylate Synthase (FDTS) Enzyme from Clostridioides Difficile (C. diff)

Authors: Sidra Shaw, Sarenna Shaw, Chae Joon Lee, Irimpan Mathews, Eric Koehn

Abstract:

One of the biggest public health concerns of our time is increasing antimicrobial resistance. As of 2019, the CDC has documented more than 2.8 million serious antibiotic resistant infections in the United States. Currently, antibiotic resistant infections are directly implicated in over 750,000 deaths per year globally. On our current trajectory, British economist Jim O’Neill predicts that by 2050, an additional 10 million people (about half the population of New York) will die annually due to drug resistant infections. As a result, new biochemical pathways must be targeted to generate next generation antibiotic drugs that will be effective against drug resistant bacteria. One enticing target is the biosynthesis of DNA within bacteria, as few drugs interrupt this essential life process. Thymidylate synthase enzymes are essential for life as they catalyze the synthesis of a DNA building block, 2′-deoxythymidine-5′-monophosphate (dTMP). In humans, the thymidylate synthase enzyme (TSase) has been shown to be distinct from the flavin-dependent thymidylate synthase (FDTS) produced by many pathogenic bacteria. TSase and FDTS have distinct structures and mechanisms of catalysis, which should allow selective inhibition of FDTS over human TSase. Currently, C. diff is one of the most antibiotic resistant bacteria, and no drugs that target thymine biosynthesis exist for C. diff. Here we present the initial biochemical characterization of FDTS from C. diff. Specifically, we examine enzyme kinetics and binding features of this enzyme to determine the nature of interaction with ligands/inhibitors and understand the molecular mechanism of catalysis. This research will provide more insight into the targetability of the C. diff FDTS enzyme for novel antibiotic drugs.

Keywords: flavin-dependent thymidylate synthase, FDTS, clostridioides difficile, C. diff, antibiotic resistance, DNA synthesis, enzyme kinetics, binding features

Procedia PDF Downloads 74
105 Identification and Application of Biocontrol Agents against Cotton Leaf Curl Virus Disease in Gossypium hirsutum under Green House Conditions

Authors: Memoona Ramzan, Bushra Tabassum, Anwar Khan, Muhammad Tariq, Mudassar Fareed Awan, Idrees Ahmad Nasir, Zahida Qamar, Naila Shahid, Tayyab Husnain

Abstract:

Biological control is a novel approach being used in crop protection nowadays. Bacteria like Bacillus and Pseudomonas are reported for this purpose and few of their products are commercially available too. Rhizosphere and phyllosphere of healthy cotton plants were used as a source to isolate bacteria capable of exhibiting properties worthy for selection as biocontrol agent. For this purpose all isolated strains were screened for the activities like phosphate solubilization, Indole acetic acid (IAA) production and biocontrol against fungi. Two strains S1HL3 and S1HL4 showed phosphate solubilization and IAA production simultaneously while two other JS2HR4 and JS3HR2 were good inhibitors of fungal pathogens. Through biochemical and molecular characterization these bacteria were identified as P. aeruginosa, Burkholderia and Bacillus respectively. In green house trials of these isolates against Cotton leaf curl virus (CLCuV), seven treatments including individual bacterial isolate and consortia were included. Treated plants were healthy as compared to control plants in which upto 74% CLCuV symptomatic plants exist. Maximum inhibition of CLCuV was observed in T7 treated plants where viral load was only 0.4% as compared to control where viral load was upto 74%. This treatment consortium included Bacillus and Pseudomonas isolates; S1HL3, S1HL4, JS2HR4 and JS3HR2. Principal Component Biplot depicted highly significant correlation between percentage viral load and the disease incidence.

Keywords: cotton leaf curl virus, biological control, bacillus, pseudomonas

Procedia PDF Downloads 361
104 Anaerobic Fermentation Process for Production of Biohydrogen from Pretreated Fruit Wastes

Authors: A. K. R. Gobinath, He Jianzhong, Kun-Lin Yang

Abstract:

Fruit waste was used as a feedstock to produce biohydrogen in this study. Fruit waste used in this study was collected from several fruit juice stalls in Singapore. Based on our observation, the fruit waste contained 35-40% orange, 10-20% watermelon, 10-15% apple, 10-15% pineapple, 1-5% mango. They were mixed with water (1:1 ratio based on wet biomass) and blended to attain homogenous mixtures. Later, fruit waste was subjected to one of the following pretreatments: autoclave (121 °C for 20min), microwave (20min) or both. After pretreatment, the total sugar concentration in the hydrolysate was high (>12g/l) when both autoclave and microwave were applied. In contrast, samples without pretreatment measured only less than 2g/l of sugar. While using these hydrolysates as carbon sources, Clostridium strain BOH3 produces 2526-3126 ml/l of hydrogen after 72h of anaerobic fermentation. The hydrogen yield was 295-300 ml/g of sugar which is close to the hydrogen yields from glucose (338 ml/gm) and xylose (330 ml/gm). Our HPLC analysis showed that fruit waste hydrolysate contained oligosugars (25-27%), sucrose (18-23%), fructose (25-30%), glucose (10-15%) and mannose (2-5%). Additionally, pretreatment led to the release of free amino acids (160-512 mg/l), calcium (7.8-12.9 ppm), magnesium (4.32-6.55 ppm), potassium (5.4-65.1 ppm) and sodium (0.4-0.5 ppm) into the hydrolysate. These nutrients were able to support strain-BOH3 to grow and produce high level of hydrogen. Notably, unlike other pretreatment methods (with strong acids and bases), these pretreatment techniques did not generate any inhibitors (e.g. furfural and phenolic acids) to suppress the hydrogen production. Interestingly, strain BOH3 can also ferment pretreated fruit waste slurry and produce hydrogen with a high yield (156-343 ml/gm fruit waste). While fermenting pretreated fruit waste slurry, strain-BOH3 excreted several saccharolytic enzymes majorly xylanase (1.84U/ml), amylase (1.10U/ml), pectinase (0.36U/ml) and cellulase (0.43U/ml). Due to expressions of these enzymes, strain BOH3 was able to directly utilize pretreated fruit waste hydrolysate and produces high-level of hydrogen.

Keywords: autoclave pretreatment, biohydrogen production, clostridial fermentation, fruit waste, and microwave pretreatment

Procedia PDF Downloads 517
103 Combinational Therapeutic Targeting of BRD4 and CDK7 Synergistically Induces Anticancer Effects in Hepatocellular Carcinoma

Authors: Xinxiu Li, Chuqian Zheng, Yanyan Qian, Hong Fan

Abstract:

Objectives: In hepatocellular carcinoma (HCC), oncogenes are continuously and robustly transcribed due to aberrant expression of essential components of the trans-acting super-enhancers (SE) complex. Preclinical and clinical trials are now being conducted on small-molecule inhibitors that target core-transcriptional components, including as transcriptional bromodomain protein 4 (BRD4) and cyclin-dependent kinase 7 (CDK7), in a number of malignant tumors. This study aims to explore whether co-overexpression of BRD4 and CDK7 is a potential marker of worse prognosis and a combined therapeutic target in HCC. Methods: The expression pattern of BRD4 and CDK7 and their correlation with prognosis in HCC were analyzed by RNA sequencing data and survival data of HCC patients from TCGA and GEO datasets. The protein levels of BRD4 and CDK7 were determined by immunohistochemistry (IHC), and survival data of patients were analyzed using the Kaplan-Meier method. The mRNA expression levels of genes in HCC cell lines were evaluated by quantitative PCR (q-PCR). CCK-8 and colony formation assays were conducted to assess cell proliferation of HCC upon treatment with BRD4 inhibitor JQ1 or/and CDK7 inhibitor THZ1. Results: It was shown that BRD4 and CDK7 were often overexpressed in HCCs and were associated with poor prognosis of HCC by analyzing the TCGA and GEO datasets. BRD4 or CDK7 overexpression was related to a lower survival rate. It's interesting to note that co-overexpression of CDK7 and BRD4 was a worse prognostic factor in HCC. Treatment with JQ1 or THZ1 alone had an inhibitory effect on cell proliferation; however, when JQ1 and THZ1 were combined, there was a more notable suppression of cell growth. At the same time, the combined use of JQ1 and THZ1 synergistically suppresses the expression of HCC driver genes. Conclusion: Our research revealed that BRD4 and CDK7 coupled can be a useful biomarker in HCC prognosis and the combination of JQ1 and THZ1 can be a promising therapeutic therapy against HCC.

Keywords: BRD4, CDK7, cell proliferation, combined inhibition

Procedia PDF Downloads 39
102 Treatment of Type 2 Diabetes Mellitus: Physicians’ Adherence to the American Diabetes Association Guideline in Central Region, Saudi Arabia

Authors: Ibrahim Mohammed

Abstract:

Background: Diabetes mellitus is a chronic disease that can cause devastating secondary complications, reducing the quality and length of life as well as increasing medical costs for the patient and society. The guidelines recommend both clinical and preventive strategies for diabetes management and are regularly updated. The aim of the study is to assess the level of adherence of physicians to American Diabetes Association Guidelines. Method: Observational multicenter retrospective study will be conducted among different hospitals in the central region. Patient data will be collected from the records of the last three years (2017- 2020). Records will be selected randomly after a complete randomized design. The study focuses on the management of type 2 according to ADA not changed in the last three updating; those standards; all patients should be taking Metformin 1500 to 2000 mg/day as recommended dose and should be received a high dose of statin if the high risk to ASCVD or moderate statin if not at risk, patients with hypertension and diabetes should taking ACE or ARBS. Result: The study aimed to evaluate the commitment of physicians in the central region to the ADA. Out of the 153 selected patients, only 17 % were able to control their diabetes with an average A1c below 7. ADA stated that to reach the minimum benefit of using Metformin, the daily dose should be between 1500 and 2000 mg. Results showed that 110 patients were on Metformin, where 68% of them were on the recommended dose. ADA recommended the intake of high statin for diabetic patients with ASCVD risk, while diabetic patients without ASCVD risk should be on a moderate statin. Results showed that 61.5% of patients with ASCVD risk were at high statin while only 36% of patients without ASCVD risk were at moderate statin. Results showed that 89 patients have hypertension, and 80% of them are getting ACE/ARBs as recommended by the ADA. Recommendation: It is necessary to implement periodic training courses for some physicians to enhance and update their knowledge.

Keywords: American Diabetic Association, diabetes mellitus, atherosclerotic cardiovascular disease, ACE inhibitors

Procedia PDF Downloads 70
101 Raw Japanese Quail Egg Produces Analgesic, Anti-Inflammatory and Gastro-Protective Effects in Rats

Authors: Sani Ismaila, Shafiu Yau, Abubakar Salisu, Buhari Salisu, Sharifat Balogun, Mustapha Abubakar, Biobaku Khalid, Agaie Bello

Abstract:

Over the years, Japanese quail egg has been in use in the management of diseases. The objective of this study was to evaluate the analgesic, anti-inflammatory and gastroprotective effects of raw Quail egg (yolk + albumin) in rats. Pain was assessed in rats by recording the latent period and writing reflex, anti-inflammatory effect was determined using both motility and compression test, while the gastro-protective effects were assessed by observing the histology of the stomach after diclofenac-induced gastric ulcers and subsequent treatment with the quail egg, Rats were randomly assigned into 4 groups; Groups I: were the control non-treated (NT), Group II were treated with Tramadol 50 mg/kg/Os (TMD) or Indomethacin (IND) 5mg/kg/Os (positive control for the writhing reflex determination), while group III and IV were treated with 3 and 6g/kg of raw quail egg respectively). Groups treated with quail egg in both doses showed a significant increase in the latent period (p <0 .05) when compared to the control NT, but lower than the group treated with tramadol at 20mins interval (p<0.05). Writing reflexes decrease in groups II, III, and IV compared to the NT group (p < 0.05). While motility increases significantly (p < 0.05) in groups II, compared to I (p<0.05). Control non-treated rats showed a quicker and extensive response to compression using the Vanier calliper on the inflamed paw compared to groups II-IV (p < 0.05). Histological studies of the stomach revealed sloughing of the epithelia, cellular infiltration with micro abscesses in the non-treated, while groups treated concurrently with quail egg showed proliferation of the glandular epithelia and goblet cells, and those treated 30 minutes before diclofenac administration showed proliferation of glands and thickening of the squamous epithelia. This study showed that quail egg has analgesic, anti-inflammatory and gastro-protective potentials and can be used as adjuvant treatment whenever COX-2 enzymes inhibitors are indicated.

Keywords: analgesia, anti-inflammatory, gastroprotective effect, japanese quail egg

Procedia PDF Downloads 362
100 Relationship of Epidermal Growth Factor Receptor Gene Mutations Andserum Levels of Ligands in Non-Small Cell Lung Carcinoma Patients

Authors: Abdolamir Allameh, Seyyed Mortaza Haghgoo, Adnan Khosravi, Esmaeil Mortaz, Mihan Pourabdollah-Toutkaboni, Sharareh Seifi

Abstract:

Non-Small Cell Lung Carcinoma (NSCLC) is associated with a number of gene mutations in epidermal growth factor receptor (EGFR). The prognostic significance of mutations in exons 19 and 21, together with serum levels of EGFR, amphiregulin (AR), and Transforming Growth Factor-alpha (TGF-α) are implicated in diagnosis and treatment. The aim of this study was to examine the relationship of EGFR mutations in selected exons with the expression of relevant ligands in sera samples of NSCLC patients. For this, a group of NSCLC patients (n=98) referred to the hospital for lung surgery with a mean age of 59±10.5 were enrolled (M/F: 75/23). Blood specimen was collected from each patient. Besides, formalin fixed paraffin embedded tissues were processed for DNA extraction. Gene mutations in exons 19 and 21 were detected by direct sequencing, following DNA amplification which was done by PCR (Polymerase Chain Reaction). Also, serum levels of EGFR, AR, and TGF-α were measured by ELISA. The results of our study show that EGFR mutations were present in 37% of Iranian NSCLC patients. The most frequently identified mutations were deletions in exon 19 (72.2%) and substitutions in exon 21 (27.8%). The most frequently identified alteration, which is considered as a rare mutation, was the E872K mutation in exon 21, which was found in 90% (9 out of 10) cases. EGFR mutation detected in exon 21 was significantly (P<0.05) correlated with the levels of its ligands, EGFR and TGF-α in serum samples. Furthermore, it was found that increased serum AR (>3pg/ml) and TGF-α (>10.5 pg/ml) were associated with shorter overall survival (P<0.05). The results clearly showed a close relationship between EGFR mutations and serum EGFR and serum TGF-α. Increased serum EGFR was associated with TGF-α and AR and linked to poor prognosis of NSCLC. These findings are implicated in clinical decision-making related to EGFR-Tyrosine kinase inhibitors (TKIs).

Keywords: lung cancer, Iranian patients, epidermal growth factor, mutation, prognosis

Procedia PDF Downloads 61
99 The Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum Durum Desf)

Authors: L. Meksem Amara, M. Ferfar, N. Meksem, M. R. Djebar

Abstract:

The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants. In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalase, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.

Keywords: sulfonylurea, triticum durum, oxydative stress, toxicity

Procedia PDF Downloads 387
98 Study of Hypertension at Sohag City: Upper Egypt Experience

Authors: Aly Kassem, Eman Sapet, Eman Abdelbaset, Hosam Mahmoud

Abstract:

Objective: Hypertension is an important public health challenge being one of the most common worldwide disease-affecting human. Our aim is to study the clinical characteristics, therapeutic regimens, treatment compliance, and risk factors in a sector of of hypertensive patients at Sohag City. Subject and Methods: A cross sectional study; conducted in Sohag city; it involved 520 patients; males (45.7 %) and females (54.3 %). Their ages ranged between 35-85 years. BP measurements, BMI, blood glucose, Serum creatinine, urine analysis, serum Lipids, blood picture and ECG were done all the studied patients. Results: Hypertension presented more between non-smokers (72.55%), females (54.3%), educated patients (50.99%) and patients with low SES (54.9%). CAD presented in (51.63%) of patients, while laboratory investigations showed hyperglycaemia in (28.7%), anemia in (18.3%), high serum creatinine level in (8.49%) and proteinuria in (10.45%) of patient. Adequate BP control was achieved in (49.67%); older patients had lower adequacy of BP control in spite of the extensive use of multiple-drug therapy. Most hypertensive patients had more than one coexistent CV risk factor. Aging, being a female (54.3%), DM (32.3%), family history of hypertension (28.7%), family history of CAD (25.4%), and obesity (10%) were the common contributing risk factors. ACE-inhibitors were prescribed in (58.16%), Beta-blockers in (34.64%) of the patients. Monotherapy was prescribed for (41.17%) of the patients. (75.81%) of patients had regular use of their drug regimens. (49.67%) only of patients had their condition under control, the number of drugs was inversely related to BP control. Conclusion: Hypertensive patients in Sohag city had a profile of high CV risks, and poor blood pressure control particularly in the elderly. A multidisciplinary approach for routine clinical check-up, follow-up, physicians and patients training, prescribing simple once-daily regimens and encouraging life style modifications are recommended. Anti hypertensives, hypertension, elderly patients, risk factors, treatment compliance.

Keywords: anti hypertensives, hypertension, elderly patients, risk factors, treatment compliance

Procedia PDF Downloads 280
97 Systematic Review of Current Best Practice in the Diagnosis and Treatment of Obsessive Compulsive Disorder

Authors: Zahra R. Almansoor

Abstract:

Background: Selective serotonin reuptake inhibitors (SSRI’s) and cognitive behavioural therapy (CBT) are the main treatment methods used for patients with obsessive compulsive disorder (OCD) under the National Institute of Health and Care Excellence (NICE) guidelines. Yet many patients are left with residual symptoms or remit, so several other therapeutic approaches have been explored. Objective: The objective was to systematically review the available literature regarding the treatment efficacy of current and potential approaches and diagnostic strategies. Method: First, studies were examined concerning diagnosis, prognosis, and influencing factors. Then, one reviewer conducted a systematic search of six databases using stringent search terms. Results of studies exploring the efficacy of treatment interventions were analysed and compared separately for adults and children. This review was limited to randomised controlled trials (RCT’s) conducted from 2016 onwards, and an improved Y-BOCS (Yale- Brown obsessive compulsive scale) score was the primary outcome measure. Results: Technology-based interventions including internet-based cognitive behavioural therapy (iCBT) were deemed as potentially effective. Discrepancy remains about the benefits of SSRI use past one year, but potential medication adjuncts include amantadine. Treatments such as association splitting and family and mindfulness strategies also have future potential. Conclusion: A range of potential therapies exist, either as treatment adjuncts to current interventions or as sole therapies. To further improve efficacy, it may be necessary to remodel the current NICE stepped-care model, especially regarding the potential use of lower intensity, cheaper treatments, including iCBT. Although many interventions show promise, further research is warranted to confirm this.

Keywords: family and group treatment, mindfulness strategies, novel treatment approaches, standard treatment, technology-based interventions

Procedia PDF Downloads 102
96 Gene Expression Signature-Based Chemical Genomic to Identify Potential Therapeutic Compounds for Colorectal Cancer

Authors: Yen-Hao Su, Wan-Chun Tang, Ya-Wen Cheng, Peik Sia, Chi-Chen Huang, Yi-Chao Lee, Hsin-Yi Jiang, Ming-Heng Wu, I-Lu Lai, Jun-Wei Lee, Kuen-Haur Lee

Abstract:

There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II–IV. Therefore, new, more efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly down regulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVPAUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1–β-catenin–cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC.

Keywords: berberine, colorectal cancer, connectivity map, heat shock protein 90 inhibitor

Procedia PDF Downloads 290
95 Knowledge Sharing Practices in the Healthcare Sector: Evidences from Primary Health Care Organizations in Indonesia

Authors: Galih Imaduddin

Abstract:

Knowledge has been viewed as one of the most important resources in organizations, including those that operate in the healthcare sector. On that basis, Knowledge Management (KM) is crucial for healthcare organizations to improve their productivity and ensure effective utilization of their resources. Despite the growing interests to understand how KM might work for healthcare organizations, there is only a modest amount of empirical inquiries which have specifically focused on the tools and initiatives to share knowledge. Hence, the main purpose of this paper is to investigate the way healthcare organizations, particularly public sector ones, utilize knowledge sharing tools and initiatives for the benefit of patient-care. Employing a qualitative method, 13 (thirteen) Community Health Centers (CHCs) from a high-performing district health setting in Indonesia were observed. Data collection and analysis involved a repetition of document retrievals and interviews (n=41) with multidisciplinary health professionals who work in these CHCs. A single case study was cultivated reflecting on the means that were used to share knowledge, along with the factors that inhibited the exchange of knowledge among those health professionals. The study discovers that all of the thirteen CHCs exhibited and applied knowledge sharing means which included knowledge documents, virtual communication channels (i.e. emails and chatting applications), and social learning forums such as staff meetings, morning briefings, and communities of practices. However, the intensity of utilization was different among these CHCs, in which organizational culture, leadership, professional boundaries, and employees’ technological aptitude were presumed to be the factors that inhibit knowledge sharing processes. Making a distance with the KM literature of other sectors, this study denounces the primacy of technology-based tools, suggesting that socially-based initiatives could be more reliable for sharing knowledge. This suggestion is largely due to the nature of healthcare work which is still predominantly based on the tacit form of knowledge.

Keywords: knowledge management, knowledge sharing, knowledge sharing tools and initiatives, knowledge sharing inhibitors, primary health care organizations

Procedia PDF Downloads 226
94 Antiulcer Activity of Aloe vera Gel against Indomethacin and Ethanol Induced Gastric Ulcers in Rats

Authors: Jyoti Manandhar Shrestha, Saurab Raj Joshi, Maya Shrestha, Prashanna Shrestha, Kshitij Chaulagain

Abstract:

Background: The widespread use of non-steroidal anti-inflammatory drugs has increased the incidence of ulcer and serious complications, such as perforation and bleeding. Although, the H2 receptor blockers and proton pump inhibitors decrease the acid secretion and promote healing of ulcer, their value in preventing relapse, recurrence, “acid rebound” after cessation of therapy and associated long term adverse effects limit their utility. So to minimize this, the herbal plant Aloe vera having anti-oxidant, anti-inflammatory, mucus secreting, cyto-protective and healing property is believed to cure the peptic ulcer. Objectives: To observe whether oral treatment with Aloe vera gel can prevent peptic ulcer. Indomethacin and ethanol were used to induce gastric ulcers. Thirty six albino rats of either sex were randomly allotted to six groups of six animals each. The negative control was pretreated with normal saline, the positive controls received ranitidine (20 mg/kg) and the test group received Aloe vera gel (300 mg/kg) orally for eight days. Then, after a 24 hour fast Indomethacin (20 mg/kg) or 80% ethanol (2ml) was administered orally to induce ulceration. At the end of the study, the rats were sacrificed, their stomachs opened, the ulcer index studied and tissues sent for histopathological examination. Results: It was observed that, in indomethacin treated group, the ulcer index in control group was 8.167 ± 1.72.In the Aloe vera pretreated animals, the ulcer index was 2.83 ± 1.72 and the standard ranitidine pretreated group ulcer index was 1.67 ± 1.36. In ethanol treated group, the ulcer index in control group was 7.5 ± 2.73. In the Aloe vera pretreated animals, the ulcer index was 2.67 ± 1.75 and the standard ranitidine pretreated group ulcer index was 1.33±1.21. Both ranitidine and Aloe vera gel significantly prevented stomach from gastric ulceration induced by indomethacin and ethanol. Conclusion: The results indicated that Aloe vera gel is effective against indomethacin and ethanol mediated gastric ulcer.

Keywords: Aloe vera gel, ethanol, indomethacin, peptic ulcer, ranitidine

Procedia PDF Downloads 444
93 Targeting Mre11 Nuclease Overcomes Platinum Resistance and Induces Synthetic Lethality in Platinum Sensitive XRCC1 Deficient Epithelial Ovarian Cancers

Authors: Adel Alblihy, Reem Ali, Mashael Algethami, Ahmed Shoqafi, Michael S. Toss, Juliette Brownlie, Natalie J. Tatum, Ian Hickson, Paloma Ordonez Moran, Anna Grabowska, Jennie N. Jeyapalan, Nigel P. Mongan, Emad A. Rakha, Srinivasan Madhusudan

Abstract:

Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n=331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p=0.002). In the ovarian cancer genome atlas (TCGA) cohort (n=498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p<0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n=1259), Mre11 overexpression was associated with poor PFS (p=0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.

Keywords: MRE11; XRCC1, ovarian cancer, platinum sensitization, synthetic lethality

Procedia PDF Downloads 104
92 A Review of Pharmacological Prevention of Peri-and Post-Procedural Myocardial Injury After Percutaneous Coronary Intervention

Authors: Syed Dawood Md. Taimur, Md. Hasanur Rahman, Syeda Fahmida Afrin, Farzana Islam

Abstract:

The concept of myocardial injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur either spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. In recent years, percutaneous coronary intervention (PCI) has become a well-established technique for the treatment of coronary artery disease. PCI improves symptoms in patients with coronary artery disease and it has been increasing the safety of procedures. However, peri- and post-procedural myocardial injury, including angiographical slow coronary flow, microvascular embolization, and elevated levels of cardiac enzyme, such as creatine kinase and troponin-T and -I, has also been reported even in elective cases. Furthermore, myocardial reperfusion injury at the beginning of myocardial reperfusion, which causes tissue damage and cardiac dysfunction, may occur in cases of the acute coronary syndrome. Because patients with myocardial injury is related to larger myocardial infarction and have a worse long-term prognosis than those without myocardial injury, it is important to prevent myocardial injury during and/or after PCI in patients with coronary artery disease. To date, many studies have demonstrated that adjunctive pharmacological treatment suppresses myocardial injury and increases coronary blood flow during PCI procedures. In this review, we highlight the usefulness of pharmacological treatment in combination with PCI in attenuating myocardial injury in patients with coronary artery disease.

Keywords: coronary artery disease, percutaneous coronary intervention, myocardial injury, pharmacology

Procedia PDF Downloads 432
91 Production and Purification of Monosaccharides by Hydrolysis of Sugar Cane Bagasse in an Ionic Liquid Medium

Authors: T. R. Bandara, H. Jaelani, G. J. Griffin

Abstract:

The conversion of lignocellulosic waste materials, such as sugar cane bagasse, to biofuels such as ethanol has attracted significant interest as a potential element for transforming transport fuel supplies to totally renewable sources. However, the refractory nature of the cellulosic structure of lignocellulosic materials has impeded progress on developing an economic process, whereby the cellulose component may be effectively broken down to glucose monosaccharides and then purified to allow downstream fermentation. Ionic liquid (IL) treatment of lignocellulosic biomass has been shown to disrupt the crystalline structure of cellulose thus potentially enabling the cellulose to be more readily hydrolysed to monosaccharides. Furthermore, conventional hydrolysis of lignocellulosic materials yields byproducts that are inhibitors for efficient fermentation of the monosaccharides. However, selective extraction of monosaccharides from an aqueous/IL phase into an organic phase utilizing a combination of boronic acids and quaternary amines has shown promise as a purification process. Hydrolysis of sugar cane bagasse immersed in an aqueous solution with IL (1-ethyl-3-methylimidazolium acetate) was conducted at different pH and temperature below 100 ºC. It was found that the use of a high concentration of hydrochloric acid to acidify the solution inhibited the hydrolysis of bagasse. At high pH (i.e. basic conditions), using sodium hydroxide, catalyst yields were reduced for total reducing sugars (TRS) due to the rapid degradation of the sugars formed. For purification trials, a supported liquid membrane (SLM) apparatus was constructed, whereby a synthetic solution containing xylose and glucose in an aqueous IL phase was transported across a membrane impregnated with phenyl boronic acid/Aliquat 336 to an aqueous phase. The transport rate of xylose was generally higher than that of glucose indicating that a SLM scheme may not only be useful for purifying sugars from undesirable toxic compounds, but also for fractionating sugars to improve fermentation efficiency.

Keywords: biomass, bagasse, hydrolysis, monosaccharide, supported liquid membrane, purification

Procedia PDF Downloads 238
90 Mannosidase Alpha Class 1B Member 1 Targets F Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein and Ebola Virus Glycoprotein to Endoplasmic Reticulum-To-Lysosome-Associated Degradation by Micro-Endoplasmic Reticulum-Phagy

Authors: Yong-Hui Zheng

Abstract:

Viruses hijack host machineries to propagate and spread, which disrupts cellular homeostasis and activates various counteractive mechanisms. Infection of enveloped viruses is dependent on their fusion proteins, which bind to viral receptors to allow virus entry into cells. Fusion proteins are glycoproteins and expressed in the endoplasmic reticulum (ER) by hijacking the secretory pathway. Previously, we reported that Zaire ebolavirus (EBOV)-glycoprotein (GP) expression induces ER stress, and EBOV-GP is targeted by the calnexin cycle to macro-ER-phagy for degradation. We now report that expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/SARS2)-spike (S) protein also causes ER stress, and its expression is strongly downregulated by mannosidase alpha class 1B member 1 (MAN1B1), a class I α-mannosidase from the ER. MAN1B1 co-localizes with SARS2-S in the ER, and its downregulation of SARS2-S is blocked by inhibitors targeting lysosomes and autophagy, but not proteasomes, indicating SARS2-S degradation by autolysosomes. Notably, the SARS2-S degradation does not require the core autophagy machinery including ATG3, ATG5, ATG7, and phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3)/vacuolar protein sorting 34 (VPS34), and instead, it requires Beclin 1 (BECN1), a core component in the PI3KC3 complex. In addition, MAN1B1 does not trigger SARS2-S polyubiquitination, and consistently, the SARS2-S degradation does not require the autophagy receptor sequestosome 1 (SQSTM1)/p62. MAN1B1 also downregulates EBOV-GP similarly, but this degradation does not require BECN1. Collectively, we conclude that MAN1B1 downregulates viral fusions by micro-ER-phagy, and importantly, we have identified BECN1-dependent and BECN1-independent mechanisms for micro-ER-phagy.

Keywords: Micro-ER-phagy, reticulophagy, fusion proteins, ER stress

Procedia PDF Downloads 52
89 Inhibition of Echis ocellatus Venom Metalloprotease by Flavonoid-Rich Ethyl Acetate Sub-fraction of Moringa oleifera Leaves (Lam.): in vitro and in silico Approaches

Authors: Adeyi Akindele Oluwatosin, Mustapha Kaosarat Keji, Ajisebiola Babafemi Siji, Adeyi Olubisi Esther, Damilohun Samuel Metibemu, Raphael Emuebie Okonji

Abstract:

Envenoming by Echis ocellatus is potentially life-threatening due to severe hemorrhage, renal failure, and capillary leakage. These effects are attributed to snake venom metalloproteinases (SVMPs). Due to drawbacks in the use of antivenom, natural inhibitors from plants are of interest in studies of new antivenom treatment. Antagonizing effects of bioactive compounds of Moringa oleifera, a known antisnake plant, are yet to be tested against SVMPs of E. ocellatus (SVMP-EO). Ethanol crude extract of M. oleifera was partitioned using n-hexane and ethyl acetate. Each partition was fractionated using column chromatography and tested against SVMP-EO purified through ion-exchange chromatography with EchiTab-PLUS polyvalent anti-venom as control. Phytoconstituents of ethyl acetate fraction were screened against the catalytic site of crystal of BaP1-SVMP, while drug-likeness and ADMET toxicity of compound were equally determined. The molecular weight of isolated SVMP-EO was 43.28 kDa, with a specific activity of 245 U/ml, a percentage yield of 62.83 %, and a purification fold of 0.920. The Vmax and Km values are 2 mg/ml and 38.095 μmol/ml/min, respectively, while the optimal pH and temperature are 6.0 and 40°C, respectively. Polyvalent anti-venom, crude extract, and ethyl acetate fraction of M. oleifera exhibited a complete inhibitory effect against SVMP-EO activity. The inhibitions of the P-1 and P-II metalloprotease’s enzymes by the ethyl acetate fraction are largely due to methanol, 6, 8, 9-trimethyl-4-(2-phenylethyl)-3-oxabicyclo[3.3.1]non-6-en-1-yl)- and paroxypropione, respectively. Both compounds are potential drug candidates with little or no concern of toxicity, as revealed from the in-silico predictions. The inhibitory effects suggest that this compound might be a therapeutic candidate for further exploration for treatment of Ocellatus’ envenoming.

Keywords: Echis ocellatus, Moringa oleifera, anti-venom, metalloproteases, snakebite, molecular docking

Procedia PDF Downloads 126
88 In vitro α-Amylase and α-Glucosidase Inhibitory Activities of Bitter Melon (Momordica charantia) with Different Stage of Maturity

Authors: P. S. Percin, O. Inanli, S. Karakaya

Abstract:

Bitter melon (Momordica charantia) is a medicinal vegetable, which is used traditionally to remedy diabetes. Bitter melon contains several classes of primary and secondary metabolites. In traditional Turkish medicine bitter melon is used for wound healing and treatment of peptic ulcers. Nowadays, bitter melon is used for the treatment of diabetes and ulcerative colitis in many countries. The main constituents of bitter melon, which are responsible for the anti-diabetic effects, are triterpene, protein, steroid, alkaloid and phenolic compounds. In this study total phenolics, total carotenoids and β-carotene contents of mature and immature bitter melons were determined. In addition, in vitro α-amylase and α-glucosidase activities of mature and immature bitter melons were studied. Total phenolic contents of immature and mature bitter melon were 74 and 123 mg CE/g bitter melon respectively. Although total phenolics of mature bitter melon was higher than that of immature bitter melon, this difference was not found statistically significant (p > 0.05). Carotenoids, a diverse group of more than 600 naturally occurring red, orange and yellow pigments, play important roles in many physiological processes both in plants and humans. The total carotenoid content of mature bitter melon was 4.36 fold higher than the total carotenoid content of immature bitter melon. The compounds that have hypoglycaemic effect of bitter melon are steroidal saponins known as charantin, insulin-like peptides and alkaloids. α-Amylase is one of the main enzymes in human that is responsible for the breakdown of starch to more simple sugars. Therefore, the inhibitors of this enzyme can delay the carbohydrate digestion and reduce the rate of glucose absorption. The immature bitter melon extract showed α-amylase and α-glucosidase inhibitory activities in vitro. α-Amylase inhibitory activity was higher than that of α-glucosidase inhibitory activity when IC50 values were compared. In conclusion, the present results provide evidence that aqueous extract of bitter melon may have an inhibitory effect on carbohydrate breakdown enzymes.

Keywords: bitter melon, in vitro antidiabetic activity, total carotenoids, total phenols

Procedia PDF Downloads 226
87 The Evaluation of the Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum durum Desf)

Authors: Meksem Amara Leila, Ferfar Meriem, Meksem Nabila, Djebar Mohammed Reda

Abstract:

The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants.In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalse, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.

Keywords: sulfonylurea, Triticum durum, oxydative stress, Toxicity

Procedia PDF Downloads 402
86 3D Microscopy, Image Processing, and Analysis of Lymphangiogenesis in Biological Models

Authors: Thomas Louis, Irina Primac, Florent Morfoisse, Tania Durre, Silvia Blacher, Agnes Noel

Abstract:

In vitro and in vivo lymphangiogenesis assays are essential for the identification of potential lymphangiogenic agents and the screening of pharmacological inhibitors. In the present study, we analyse three biological models: in vitro lymphatic endothelial cell spheroids, in vivo ear sponge assay, and in vivo lymph node colonisation by tumour cells. These assays provide suitable 3D models to test pro- and anti-lymphangiogenic factors or drugs. 3D images were acquired by confocal laser scanning and light sheet fluorescence microscopy. Virtual scan microscopy followed by 3D reconstruction by image aligning methods was also used to obtain 3D images of whole large sponge and ganglion samples. 3D reconstruction, image segmentation, skeletonisation, and other image processing algorithms are described. Fixed and time-lapse imaging techniques are used to analyse lymphatic endothelial cell spheroids behaviour. The study of cell spatial distribution in spheroid models enables to detect interactions between cells and to identify invasion hierarchy and guidance patterns. Global measurements such as volume, length, and density of lymphatic vessels are measured in both in vivo models. Branching density and tortuosity evaluation are also proposed to determine structure complexity. Those properties combined with vessel spatial distribution are evaluated in order to determine lymphangiogenesis extent. Lymphatic endothelial cell invasion and lymphangiogenesis were evaluated under various experimental conditions. The comparison of these conditions enables to identify lymphangiogenic agents and to better comprehend their roles in the lymphangiogenesis process. The proposed methodology is validated by its application on the three presented models.

Keywords: 3D image segmentation, 3D image skeletonisation, cell invasion, confocal microscopy, ear sponges, light sheet microscopy, lymph nodes, lymphangiogenesis, spheroids

Procedia PDF Downloads 353