Search results for: transition regression model
19849 MapReduce Logistic Regression Algorithms with RHadoop
Authors: Byung Ho Jung, Dong Hoon Lim
Abstract:
Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.Keywords: big data, logistic regression, MapReduce, RHadoop
Procedia PDF Downloads 28419848 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model
Authors: Xiang Zhang, David Rey, S. Travis Waller
Abstract:
Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning
Procedia PDF Downloads 29919847 Theoretical Analysis of Photoassisted Field Emission near the Metal Surface Using Transfer Hamiltonian Method
Authors: Rosangliana Chawngthu, Ramkumar K. Thapa
Abstract:
A model calculation of photoassisted field emission current (PFEC) by using transfer Hamiltonian method will be present here. When the photon energy is incident on the surface of the metals, such that the energy of a photon is usually less than the work function of the metal under investigation. The incident radiation photo excites the electrons to a final state which lies below the vacuum level; the electrons are confined within the metal surface. A strong static electric field is then applied to the surface of the metal which causes the photoexcited electrons to tunnel through the surface potential barrier into the vacuum region and constitutes the considerable current called photoassisted field emission current. The incident radiation is usually a laser beam, causes the transition of electrons from the initial state to the final state and the matrix element for this transition will be written. For the calculation of PFEC, transfer Hamiltonian method is used. The initial state wavefunction is calculated by using Kronig-Penney potential model. The effect of the matrix element will also be studied. An appropriate dielectric model for the surface region of the metal will be used for the evaluation of vector potential. FORTRAN programme is used for the calculation of PFEC. The results will be checked with experimental data and the theoretical results.Keywords: photoassisted field emission, transfer Hamiltonian, vector potential, wavefunction
Procedia PDF Downloads 22519846 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 29719845 Interference among Lambsquarters and Oil Rapeseed Cultivars
Authors: Reza Siyami, Bahram Mirshekari
Abstract:
Seed and oil yield of rapeseed is considerably affected by weeds interference including mustard (Sinapis arvensis L.), lambsquarters (Chenopodium album L.) and redroot pigweed (Amaranthus retroflexus L.) throughout the East Azerbaijan province in Iran. To formulate the relationship between four independent growth variables measured in our experiment with a dependent variable, multiple regression analysis was carried out for the weed leaves number per plant (X1), green cover percentage (X2), LAI (X3) and leaf area per plant (X4) as independent variables and rapeseed oil yield as a dependent variable. The multiple regression equation is shown as follows: Seed essential oil yield (kg/ha) = 0.156 + 0.0325 (X1) + 0.0489 (X2) + 0.0415 (X3) + 0.133 (X4). Furthermore, the stepwise regression analysis was also carried out for the data obtained to test the significance of the independent variables affecting the oil yield as a dependent variable. The resulted stepwise regression equation is shown as follows: Oil yield = 4.42 + 0.0841 (X2) + 0.0801 (X3); R2 = 81.5. The stepwise regression analysis verified that the green cover percentage and LAI of weed had a marked increasing effect on the oil yield of rapeseed.Keywords: green cover percentage, independent variable, interference, regression
Procedia PDF Downloads 42019844 Observation of Laminar to Turbulent Transition in Micro-Propellers
Authors: Dake Wang, Ellis Edinkrah, Brian Wang
Abstract:
Micro-propellers can operate in regimes of small Reynolds numbers where the effect of viscous friction becomes important. In this work, the transition from laminar to turbulent regime in micro-propellers driven by electric motors was observed. The analysis revealed that the lift force was linearly proportional to propeller output power when systems operate in the laminar/viscous regime, while a sublinear relation between the force and the output power was observed in the turbulent/inertial regime. These behaviors appeared to be independent of motor-propeller specifications. The Reynolds number that marks the regime transition was found to be at around 10000.Keywords: UAV, micro-propeller, laminar-turbulent, Reynolds number
Procedia PDF Downloads 9919843 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models
Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti
Abstract:
In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics
Procedia PDF Downloads 5319842 When and How Do Individuals Transition from Regular Drug Use to Injection Drug Use in Uganda? Findings from a Rapid Assessment
Authors: Stanely Nsubuga
Abstract:
Background In Uganda, injection drug use is a growing but less studied problem. Preventing the transition to injection drug use may help prevent blood-borne viral transmission, but little is known about when and how people transition to injection drug use. A greater understanding of this transition process may aid in the country’s efforts to prevent the continued growth of injection drug use, HIV, and hepatitis C Virus (HCV) infection among people who inject drugs (PWID). Methods Using a rapid situation assessment framework, we conducted semi-structured interviews among 125 PWID (102 males and 23 females)—recruited through outreach and snow-ball sampling. Participants were interviewed about their experiences on when and how they transitioned into injection drug use and these issues were also discussed in 12 focus groups held with the participants. Results All the study participants started their drug use career with non-injecting forms including chewing, smoking, and sniffing before transitioning to injecting. Transitioning was generally described as a peer-driven and socially learnt behavior. The participants’ social networks and accessibility to injectable drugs on the market and among close friends influenced the time lag between first regular drug use and first injecting—which took an average of 4.5 years. By the age of 24, at least 81.6% (95.7% for females and 78.4% for males) had transitioned into injecting. Over 84.8% shared injecting equipment during their first injection, 47.2% started injecting because a close friend was already injecting, 26.4% desired to achieve a greater “high” (26.4%) which could reflect drug-tolerance, and 12% out of curiosity.Keywords: People who Use Drugs, transition, injection drug use, Uganda
Procedia PDF Downloads 13019841 Assessing the Impacts of Urbanization on Urban Precincts: A Case of Golconda Precinct, Hyderabad
Authors: Sai AKhila Budaraju
Abstract:
Heritage sites are an integral part of cities and carry a sense of identity to the cities/ towns, but the process of urbanization is a carrying potential threat for the loss of these heritage sites/monuments. Both Central and State Governments listed the historic Golconda fort as National Important Monument and the Heritage precinct with eight heritage-listed buildings and two historical sites respectively, for conservation and preservation, due to the presence of IT Corridor 6kms away accommodating more people in the precinct is under constant pressure. The heritage precinct possesses high property values, being a prime location connecting the IT corridor and CBD (central business district )areas. The primary objective of the study was to assess and identify the factors that are affecting the heritage precinct through Mapping and documentation, Identifying and assessing the factors through empirical analysis, Ordinal regression analysis and Hedonic Pricing Model. Ordinal regression analysis was used to identify the factors that contribute to the changes in the precinct due to urbanization. Hedonic Pricing Model was used to understand and establish a relation whether the presence of historical monuments is also a contributing factor to the property value and to what extent this influence can contribute. The above methods and field visit indicates the Physical, socio-economic factors and the neighborhood characteristics of the precinct contributing to the property values. The outturns and the potential elements derived from the analysis of the Development Control Rules were derived as recommendations to Integrate both Old and newly built environments.Keywords: heritage planning, heritage conservation, hedonic pricing model, ordinal regression analysis
Procedia PDF Downloads 19319840 Kiira EV Project Transition from Student to Professional Team through Project-Based Skills Development
Authors: Doreen Orishaba, Paul Isaac Musasizi, Richard Madanda, Sandy Stevens Tickodri-Togboa
Abstract:
The world of academia tends to be a very insular place. Consequently, scholars who successfully completed their undergraduate and graduate studies are unpleasantly surprised at how challenging the transition to corporate life can get. This is a global trend even as the students who juggle work with attending some of the most demanding and best graduate programs may not easily adjust to and confirm to the professionalism required for corporate management of the industry. This paper explores the trends in the transition of Kiira EV Project from a predominantly student team to a professional team of a national pride program through mentorship and apprenticeship. The core disciplines within the Kiira EV Project include Electrical and Electronics Engineering, Mechanical Engineering, and Industrial Design.Keywords: mentorship, apprenticeship, professional, development
Procedia PDF Downloads 41619839 Non-Linear Regression Modeling for Composite Distributions
Authors: Mostafa Aminzadeh, Min Deng
Abstract:
Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions
Procedia PDF Downloads 3319838 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity
Procedia PDF Downloads 15119837 Analysis of Energy Flows as An Approach for The Formation of Monitoring System in the Sustainable Regional Development
Authors: Inese Trusina, Elita Jermolajeva
Abstract:
Global challenges require a transition from the existing linear economic model to a model that will consider nature as a life support system for the developmenton the way to social well-being in the frame of the ecological economics paradigm. The article presentsbasic definitions for the development of formalized description of sustainabledevelopment monitoring. It provides examples of calculating the parameters of monitoring for the Baltic Sea region countries and their primary interpretation.Keywords: sustainability, development, power, ecological economics, regional economic, monitoring
Procedia PDF Downloads 12019836 The On-Board Critical Message Transmission Design for Navigation Satellite Delay/Disruption Tolerant Network
Authors: Ji-yang Yu, Dan Huang, Guo-ping Feng, Xin Li, Lu-yuan Wang
Abstract:
The navigation satellite network, especially the Beidou MEO Constellation, can relay data effectively with wide coverage and is applied in navigation, detection, and position widely. But the constellation has not been completed, and the amount of satellites on-board is not enough to cover the earth, which makes the data-relay disrupted or delayed in the transition process. The data-relay function needs to tolerant the delay or disruption in some extension, which make the Beidou MEO Constellation a delay/disruption-tolerant network (DTN). The traditional DTN designs mainly employ the relay table as the basic of data path schedule computing. But in practical application, especially in critical condition, such as the war-time or the infliction heavy losses on the constellation, parts of the nodes may become invalid, then the traditional DTN design could be useless. Furthermore, when transmitting the critical message in the navigation system, the maximum priority strategy is used, but the nodes still inquiry the relay table to design the path, which makes the delay more than minutes. Under this circumstances, it needs a function which could compute the optimum data path on-board in real-time according to the constellation states. The on-board critical message transmission design for navigation satellite delay/disruption-tolerant network (DTN) is proposed, according to the characteristics of navigation satellite network. With the real-time computation of parameters in the network link, the least-delay transition path is deduced to retransmit the critical message in urgent conditions. First, the DTN model for constellation is established based on the time-varying matrix (TVM) instead of the time-varying graph (TVG); then, the least transition delay data path is deduced with the parameters of the current node; at last, the critical message transits to the next best node. For the on-board real-time computing, the time delay and misjudges of constellation states in ground stations are eliminated, and the residual information channel for each node can be used flexibly. Compare with the minute’s delay of traditional DTN; the proposed transmits the critical message in seconds, which improves the re-transition efficiency. The hardware is implemented in FPGA based on the proposed model, and the tests prove the validity.Keywords: critical message, DTN, navigation satellite, on-board, real-time
Procedia PDF Downloads 34319835 Estimation of Missing Values in Aggregate Level Spatial Data
Authors: Amitha Puranik, V. S. Binu, Seena Biju
Abstract:
Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis
Procedia PDF Downloads 38219834 Nowcasting Indonesian Economy
Authors: Ferry Kurniawan
Abstract:
In this paper, we nowcast quarterly output growth in Indonesia by exploiting higher frequency data (monthly indicators) using a mixed-frequency factor model and exploiting both quarterly and monthly data. Nowcasting quarterly GDP in Indonesia is particularly relevant for the central bank of Indonesia which set the policy rate in the monthly Board of Governors Meeting; whereby one of the important step is the assessment of the current state of the economy. Thus, having an accurate and up-to-date quarterly GDP nowcast every time new monthly information becomes available would clearly be of interest for central bank of Indonesia, for example, as the initial assessment of the current state of the economy -including nowcast- will be used as input for longer term forecast. We consider a small scale mixed-frequency factor model to produce nowcasts. In particular, we specify variables as year-on-year growth rates thus the relation between quarterly and monthly data is expressed in year-on-year growth rates. To assess the performance of the model, we compare the nowcasts with two other approaches: autoregressive model –which is often difficult when forecasting output growth- and Mixed Data Sampling (MIDAS) regression. In particular, both mixed frequency factor model and MIDAS nowcasts are produced by exploiting the same set of monthly indicators. Hence, we compare the nowcasts performance of the two approaches directly. To preview the results, we find that by exploiting monthly indicators using mixed-frequency factor model and MIDAS regression we improve the nowcast accuracy over a benchmark simple autoregressive model that uses only quarterly frequency data. However, it is not clear whether the MIDAS or mixed-frequency factor model is better. Neither set of nowcasts encompasses the other; suggesting that both nowcasts are valuable in nowcasting GDP but neither is sufficient. By combining the two individual nowcasts, we find that the nowcast combination not only increases the accuracy - relative to individual nowcasts- but also lowers the risk of the worst performance of the individual nowcasts.Keywords: nowcasting, mixed-frequency data, factor model, nowcasts combination
Procedia PDF Downloads 33119833 Efficient Estimation for the Cox Proportional Hazards Cure Model
Authors: Khandoker Akib Mohammad
Abstract:
While analyzing time-to-event data, it is possible that a certain fraction of subjects will never experience the event of interest, and they are said to be cured. When this feature of survival models is taken into account, the models are commonly referred to as cure models. In the presence of covariates, the conditional survival function of the population can be modelled by using the cure model, which depends on the probability of being uncured (incidence) and the conditional survival function of the uncured subjects (latency), and a combination of logistic regression and Cox proportional hazards (PH) regression is used to model the incidence and latency respectively. In this paper, we have shown the asymptotic normality of the profile likelihood estimator via asymptotic expansion of the profile likelihood and obtain the explicit form of the variance estimator with an implicit function in the profile likelihood. We have also shown the efficient score function based on projection theory and the profile likelihood score function are equal. Our contribution in this paper is that we have expressed the efficient information matrix as the variance of the profile likelihood score function. A simulation study suggests that the estimated standard errors from bootstrap samples (SMCURE package) and the profile likelihood score function (our approach) are providing similar and comparable results. The numerical result of our proposed method is also shown by using the melanoma data from SMCURE R-package, and we compare the results with the output obtained from the SMCURE package.Keywords: Cox PH model, cure model, efficient score function, EM algorithm, implicit function, profile likelihood
Procedia PDF Downloads 14319832 Social Aspect in Energy Transition in Frankfurt (Main)
Authors: M. Mokrzecka, A. Aly, A. K. Obwona, Piotrowska M., Richardson S.
Abstract:
Frankfurt am Main, the fifth largest city in Germany, ranked 15th by the Global Financial Centers Index in 2014, and a finalist of European Green Capital 2014, is a crucial player in German Environmental Policy. In 2012 the city authorities agreed a target to reduce the city’s energy consumption by 50%, and fully switch to renewable energy by the year 2050. To achieve this goal, the Municipality of Frankfurt has begun preparing the Master plan, which will be introduced to public by the end of 2015. Transitions theory tells, that to address challenges as complex as Climate Change and the Energiewende, the development of new technologies and systems is not sufficient. Transition by definition is a process, and in such a large scale (city and region transition) can be fulfilled only, when operates within a broad socio – technical system. Thus, the Authors believe that only by close cooperation with citizens, as well as different stakeholders, can the Transition in Frankfurt be successful. The city therefore needs a strategy which will ensure the engagement, sense of ownership and broad support within Frankfurt society for the aims of the Master plan. This paper presents a proposal for how the city can achieve this based therefore, on fostering the citizens’ engagement through a comprehensive, innovative communication strategy. The proposal was originally developed by the authors as a winning submission for the Climate-KIC Transitions PhD Summer School 2014..Keywords: city development, communication strategies, social transition, sustainability
Procedia PDF Downloads 31319831 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles
Authors: Yihua Wang, Yunru Lai
Abstract:
Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring
Procedia PDF Downloads 46019830 Breast Cancer Detection Using Machine Learning Algorithms
Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra
Abstract:
In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer
Procedia PDF Downloads 5219829 The Influence of Structural Disorder and Phonon on Metal-To-Insulator Transition of VO₂
Authors: Sang-Wook Han, In-Hui Hwang, Zhenlan Jin, Chang-In Park
Abstract:
We used temperature-dependent X-Ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO₂ films. A direct comparison of simultaneously-measured resistance and XAFS from the VO₂ films showed that the thermally-driven structural phase transition (SPT) occurred prior to the metal-insulator transition (MIT) during heating, whereas these changed simultaneously during cooling. XAFS revealed a significant increase in the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO₂ due to the phonons of the V-V arrays along the direction in a metallic phase. A substantial amount of structural disorder existing on the V-V pairs along the c-axis in both M₁ and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder observed on all atomic sites at the SPT prevents the migration of the V 3d¹ electrons, resulting in a Mott insulator in the M₂-phase VO₂. The anomalous structural disorder, particularly, at vanadium sites, effectively affects the migration of metallic electrons, resulting in the Mott insulating properties in M₂ phase and a non-congruence of the SPT, MIT, and local density of state. The thermally-induced phonons in the {111} direction assist the delocalization of the V 3d¹ electrons in the R phase VO₂ and the electrons likely migrate via the V-V array in the {111} direction as well as the V-V dimerization along the c-axis. This study clarifies that the tetragonal symmetry is essentially important for the metallic phase in VO₂.Keywords: metal-insulator transition, XAFS, VO₂, structural-phase transition
Procedia PDF Downloads 27119828 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model
Authors: Nureni O. Adeboye, Dawud A. Agunbiade
Abstract:
This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.Keywords: audit fee lagrange multiplier test, heteroscedasticity, lagrange multiplier test, Monte-Carlo scheme, periodicity
Procedia PDF Downloads 14119827 The Impact of Public Open Space System on Housing Price in Chicago
Authors: Si Chen, Le Zhang, Xian He
Abstract:
The research explored the influences of public open space system on housing price through hedonic models, in order to support better open space plans and economic policies. We have three initial hypotheses: 1) public open space system has an overall positive influence on surrounding housing prices. 2) Different public open space types have different levels of influence on motivating surrounding housing prices. 3) Walking and driving accessibilities from property to public open spaces have different statistical relation with housing prices. Cook County, Illinois, was chosen to be a study area since data availability, sufficient open space types, and long-term open space preservation strategies. We considered the housing attributes, driving and walking accessibility scores from houses to nearby public open spaces, and driving accessibility scores to hospitals as influential features and used real housing sales price in 2010 as a dependent variable in the built hedonic model. Through ordinary least squares (OLS) regression analysis, General Moran’s I analysis and geographically weighted regression analysis, we observed the statistical relations between public open spaces and housing sale prices in the three built hedonic models and confirmed all three hypotheses.Keywords: hedonic model, public open space, housing sale price, regression analysis, accessibility score
Procedia PDF Downloads 13319826 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads
Authors: Salah R. Al Zaidee, Ali S. Mahdi
Abstract:
Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.Keywords: meta-modal, objective function, steel frames, seismic analysis, design
Procedia PDF Downloads 24319825 A Case Comparative Study of Infant Mortality Rate in North-West Nigeria
Authors: G. I. Onwuka, A. Danbaba, S. U. Gulumbe
Abstract:
This study investigated of Infant Mortality Rate as observed at a general hospital in Kaduna-South, Kaduna State, North West Nigeria. The causes of infant Mortality were examined. The data used for this analysis were collected at the statistics unit of the Hospital. The analysis was carried out on the data using Multiple Linear regression Technique and this showed that there is linear relationship between the dependent variable (death) and the independent variables (malaria, measles, anaemia, and coronary heart disease). The resultant model also revealed that a unit increment in each of these diseases would result to a unit increment in death recorded, 98.7% of the total variation in mortality is explained by the given model. The highest number of mortality was recorded in July, 2005 and the lowest mortality recorded in October, 2009.Recommendations were however made based on the results of the study.Keywords: infant mortality rate, multiple linear regression, diseases, serial correlation
Procedia PDF Downloads 32919824 Image Compression Based on Regression SVM and Biorthogonal Wavelets
Authors: Zikiou Nadia, Lahdir Mourad, Ameur Soltane
Abstract:
In this paper, we propose an effective method for image compression based on SVM Regression (SVR), with three different kernels, and biorthogonal 2D Discrete Wavelet Transform. SVM regression could learn dependency from training data and compressed using fewer training points (support vectors) to represent the original data and eliminate the redundancy. Biorthogonal wavelet has been used to transform the image and the coefficients acquired are then trained with different kernels SVM (Gaussian, Polynomial, and Linear). Run-length and Arithmetic coders are used to encode the support vectors and its corresponding weights, obtained from the SVM regression. The peak signal noise ratio (PSNR) and their compression ratios of several test images, compressed with our algorithm, with different kernels are presented. Compared with other kernels, Gaussian kernel achieves better image quality. Experimental results show that the compression performance of our method gains much improvement.Keywords: image compression, 2D discrete wavelet transform (DWT-2D), support vector regression (SVR), SVM Kernels, run-length, arithmetic coding
Procedia PDF Downloads 38219823 Magnetic Fluctuations in the Terrestrial Magnetosheath
Authors: Alexandre Gurchumelia, Luca Sorriso-Valvo, David Burgess, Khatuna Elbakidze, Oleg Kharshiladze, Diana Kvaratskhelia
Abstract:
The terrestrial magnetosheath is a highly turbulent medium, with a high level of magnetic1field fluctuations throughout a broad range of scales. These often include an inertial range where a2magnetohydrodynamic turbulent cascade is observed. The multifractal properties of the turbulent3cascade, strictly related to intermittency, are observed here during the transition from quasi-parallel to4quasi-perpendicular magnetic field with respect to the bow-shock normal. The different multifractal5behavior in the two regions is analyzed. A standard coarse-graining technique has been used6to evaluate the generalized dimensions and the corresponding multifractal spectrumf(α). A7p-model fit provided a quantitative measure of multifractality and intermittency, to be compared with8standard indicators: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling9exponent. Results show a clear transition and sharp differences in the intermittency properties for the two regions.Keywords: magnetos heath, turbulence, multifractal, instabilities
Procedia PDF Downloads 18119822 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 6719821 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 24619820 Frailty and Quality of Life among Older Adults: A Study of Six LMICs Using SAGE Data
Authors: Mamta Jat
Abstract:
Background: The increased longevity has resulted in the increase in the percentage of the global population aged 60 years or over. With this “demographic transition” towards ageing, “epidemiologic transition” is also taking place characterised by growing share of non-communicable diseases in the overall disease burden. So, many of the older adults are ageing with chronic disease and high levels of frailty which often results in lower levels of quality of life. Although frailty may be increasingly common in older adults, prevention or, at least, delay the onset of late-life adverse health outcomes and disability is necessary to maintain the health and functional status of the ageing population. This is an effort using SAGE data to assess levels of frailty and its socio-demographic correlates and its relation with quality of life in LMICs of India, China, Ghana, Mexico, Russia and South Africa in a comparative perspective. Methods: The data comes from multi-country Study on Global AGEing and Adult Health (SAGE), consists of nationally representative samples of older adults in six low and middle-income countries (LMICs): China, Ghana, India, Mexico, the Russian Federation and South Africa. For our study purpose, we will consider only 50+ year’s respondents. The logistic regression model has been used to assess the correlates of frailty. Multinomial logistic regression has been used to study the effect of frailty on QOL (quality of life), controlling for the effect of socio-economic and demographic correlates. Results: Among all the countries India is having highest mean frailty in males (0.22) and females (0.26) and China with the lowest mean frailty in males (0.12) and females (0.14). The odds of being frail are more likely with the increase in age across all the countries. In India, China and Russia the chances of frailty are more among rural older adults; whereas, in Ghana, South Africa and Mexico rural residence is protecting against frailty. Among all countries china has high percentage (71.46) of frail people in low QOL; whereas Mexico has lowest percentage (36.13) of frail people in low QOL.s The risk of having low and middle QOL is significantly (p<0.001) higher among frail elderly as compared to non–frail elderly across all countries with controlling socio-demographic correlates. Conclusion: Women and older age groups are having higher frailty levels than men and younger aged adults in LMICs. The mean frailty scores demonstrated a strong inverse relationship with education and income gradients, while lower levels of education and wealth are showing higher levels of frailty. These patterns are consistent across all LMICs. These data support a significant role of frailty with all other influences controlled, in having low QOL as measured by WHOQOL index. Future research needs to be built on this evolving concept of frailty in an effort to improve quality of life for frail elderly population, in LMICs setting.Keywords: Keywords: Ageing, elderly, frailty, quality of life
Procedia PDF Downloads 288