Search results for: shock tunnel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 719

Search results for: shock tunnel

419 The Effects of Extracorporeal Shock Wave Therapy on Plantar Pressure in Patients with Calcaneal Spur

Authors: Zehra Betül Karakoç

Abstract:

Aim: The aim of our study is to determine the changement pf plantar pressure after extracorporeal shock wave therapy (ESWT) in a patient with calcaneal spur (CS). Method: Thirty patients with CS who received ESWT treatment at Kartal Yavuz Selim State Hospital between May 2020 and November 2022 participated in this study. Demographic information of the cases was obtained. Pain levels and plantar pressure were measured with Visuel Analog Scale (VAS) and pedobarography, respectively. Pedobarography measured the maximal strength, peak pressure level, and contact area values of the hind, middle, forefoot, and toes. The cases were re-evaluated 4 weeks after the application of 15 Hz, 2-3 bar, 2,000 beats ESWT for 3 sessions. 22 cases participated in the second evaluation. The data of all patients were evaluated bilaterally. Results: Pain intensity levels after treatment were statistically significantly decreased compared to before treatment (p=0.012). Maximum force and contact area values of total foot and forefoot increased significantly (p < 0.05). Conclusion: We consider that the increased max force value of total foot and forefoot area after ESWT is due to the normal walking rate gained related to decreased pain. ESWT treatment may have positive effects on foot pressure distribution and body biomechanics. In order to interpret the results of our study more clearly, randomized controlled studies with a larger number of cases were planned in the future.

Keywords: calcaneal spur, ESWT, plantar pressure, pain

Procedia PDF Downloads 60
418 Optimal Sequential Scheduling of Imperfect Maintenance Last Policy for a System Subject to Shocks

Authors: Yen-Luan Chen

Abstract:

Maintenance has a great impact on the capacity of production and on the quality of the products, and therefore, it deserves continuous improvement. Maintenance procedure done before a failure is called preventive maintenance (PM). Sequential PM, which specifies that a system should be maintained at a sequence of intervals with unequal lengths, is one of the commonly used PM policies. This article proposes a generalized sequential PM policy for a system subject to shocks with imperfect maintenance and random working time. The shocks arrive according to a non-homogeneous Poisson process (NHPP) with varied intensity function in each maintenance interval. As a shock occurs, the system suffers two types of failures with number-dependent probabilities: type-I (minor) failure, which is rectified by a minimal repair, and type-II (catastrophic) failure, which is removed by a corrective maintenance (CM). The imperfect maintenance is carried out to improve the system failure characteristic due to the altered shock process. The sequential preventive maintenance-last (PML) policy is defined as that the system is maintained before any CM occurs at a planned time Ti or at the completion of a working time in the i-th maintenance interval, whichever occurs last. At the N-th maintenance, the system is replaced rather than maintained. This article first takes up the sequential PML policy with random working time and imperfect maintenance in reliability engineering. The optimal preventive maintenance schedule that minimizes the mean cost rate of a replacement cycle is derived analytically and determined in terms of its existence and uniqueness. The proposed models provide a general framework for analyzing the maintenance policies in reliability theory.

Keywords: optimization, preventive maintenance, random working time, minimal repair, replacement, reliability

Procedia PDF Downloads 253
417 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 59
416 Intramuscular Heat Shock Protein 72 and Heme Oxygenase-1 mRNA are Reduced in Patients with Type 2 Diabetes Evidence That Insulin Resistance is Associated with a Disturbed Antioxidant Defense Mechanism

Authors: Ghibeche Abderrahmane

Abstract:

To examine whether genes associated with cellular defense against oxidative stress are associated with insulin sensitivity, patients with type 2 diabetes (n=7) and age-matched (n=5) and young (n=9) control subjects underwent a euglycemic-hyperinsulinemic clamp for 120 min. Muscle samples were obtained before and after the clamp and analyzed for heat shock protein (HSP)72 and heme oxygenase (HO)-1 mRNA, intramuscular triglyceride content, and the maximal activities of β-hyroxyacyl-CoA dehydrogenase (β-HAD) and citrate synthase (CS). Basal expression of both HSP72 and HO-1 mRNA were lower (P < 0.05) by 33 and 55%, respectively, when comparing diabetic patients with age-matched and young control subjects, with no differences between the latter groups. Both basal HSP72 (r = 0.75, P < 0.001) and HO-1 (r = 0.50,P < 0.05) mRNA expression correlated with the glucose infusion rate during the clamp. Significant correlations were also observed between HSP72 mRNA and both β-HAD (r = 0.61, P < 0.01) and CS (r = 0.65, P < 0.01). HSP72 mRNA was induced (P < 0.05) by the clamp in all groups. Although HO-1 mRNA was unaffected by the clamp in both the young and age-matched control subjects, it was increased (P < 0.05) ∼70-fold in the diabetic patients after the clamp. These data demonstrate that genes involved in providing cellular protection against oxidative stress are defective in patients with type 2 diabetes and correlate with insulin-stimulated glucose disposal and markers of muscle oxidative capacity. The data provide new evidence that the pathogenesis of type 2 diabetes involves perturbations to the antioxidant defense mechanism within skeletal muscle.

Keywords: euglycemic-hyperinsulinemic, HSP72, mRNA, diabete

Procedia PDF Downloads 422
415 Aerodynamic Investigation of Baseline-IV Bird-Inspired BWB Aircraft Design: Improvements over Baseline-III BWB

Authors: C. M. Nur Syazwani, M. K. Ahmad Imran, Rizal E. M. Nasir

Abstract:

The study on BWB UV begins in UiTM since 2005 and three designs have been studied and published. The latest designs are Baseline-III and inspired by birds that have features and aerodynamics behaviour of cruising birds without flapping capability. The aircraft featuring planform and configuration are similar to the bird. Baseline-III has major flaws particularly in its low lift-to-drag ratio, stability and issues regarding limited controllability. New design known as Baseline-IV replaces straight, swept wing to delta wing and have a broader tail compares to the Baseline-III’s. The objective of the study is to investigate aerodynamics of Baseline-IV bird-inspired BWB aircraft. This will be achieved by theoretical calculation and wind tunnel experiments. The result shows that both theoretical and wind tunnel experiments of Baseline-IV graph of CL and CD versus alpha are quite similar to each other in term of pattern of graph slopes and values. Baseline-IV has higher lift coefficient values at wide range of angle of attack compares to Baseline-III. Baseline-IV also has higher maximum lift coefficient, higher maximum lift-to-drag and lower parasite drag. It has stable pitch moment versus lift slope but negative moment at zero lift for zero angle-of-attack tail setting. At high angle of attack, Baseline-IV does not have stability reversal as shown in Baseline-III. Baseline-IV is proven to have improvements over Baseline-III in terms of lift, lift-to-drag ratio and pitch moment stability at high angle-of-attack.

Keywords: blended wing-body, bird-inspired blended wing-body, aerodynamic, stability

Procedia PDF Downloads 490
414 Effects of GRF on CMJ in Different Wooden Surface Systems

Authors: Yi-cheng Chen, Ming-jum Guo, Yang-ru Chen

Abstract:

Background and Objective: For safety and fair during basketball competition, FIBA proposes the definite level of physical functions in wooden surface system (WSS). There are existing various between different systems in indoor-stadium, so the aim of this study want to know how many effects in different WSS, especially for effects of ground reaction force(GRF) when player jumped. Materials and Methods: 12 participants acted counter-movement jump (CMJ) on 7 different surfaces, include 6 WSSs by 3 types rubber shock absorber pad (SAP) on cross or parallel fixed, and 1 rigid ground. GRFs of takeoff and landing had been recorded from an AMTI force platform when all participants acted vertical CMJs by counter-balance design. All data were analyzed using the one-way ANOVA to evaluate whether the test variable differed significantly between surfaces. The significance level was set at α=0.05. Results: There were non-significance in GRF between surfaces when participants taken off. For GRF of landing, we found WSS with cross fixed SAP are harder than parallel fixed. Although there were also non-significance when participant was landing on cross or parallel fixed surfaces, but there have test variable differed significantly between WSS with parallel fixed to rigid ground. In the study, landing to WSS with the hardest SAP, the GRF also have test variable differed significantly to other WSS. Conclusion: Although official basketball competition is in the WSS certificated by FIBA, there are also exist the various in GRF under takeoff or landing, any player must to warm-up before game starting. Especially, there is unsafe situation when play basketball on uncertificated WSS.

Keywords: wooden surface system, counter-movement jump, ground reaction force, shock absorber pad

Procedia PDF Downloads 425
413 Human Development Outcomes and Macroeconomic Indicators Nexus in Nigeria: An Empirical Investigation

Authors: Risikat Oladoyin S. Dauda, Onyebuchi Iwegbu

Abstract:

This study investigates the response of human development outcomes to selected macroeconomic indicators in Nigeria. Human development outcomes is measured by human development index while the selected macroeconomic variables are inflation rate, real interest rate, government capital expenditure, real exchange rate, current account balance, and savings. Structural Vector Autoregression (SVAR) technique is employed in examining the response of human development index to the macroeconomic shocks. The result from the forecast error variance decomposition and Impulse-Response analysis reveals that fiscal policy (government capital expenditure) shock is the greatest determinant of human development outcomes. This result reiterates the role which the government plays in improving the welfare of the citizenry. The fiscal policy tool is pivotal in human development which comes in the form of investment in education, health, housing, and infrastructure. Further conclusion drawn from this study is that human development outcome positively and significantly responds to shocks from real interest rate, a monetary policy transmission variable and is felt greatly in the short run period. The policy implication of this study is that if capital budget implementation falls below expectations, human development will be engendered. Hence, efforts should be made to ensure that full implementation and appraisal of government capital expenditure is taken sacrosanct as any shock from such plan, engenders human development outcome.

Keywords: human development outcome, macroeconomic outcomes, structural vector autoregression, SVAR

Procedia PDF Downloads 138
412 Characteristics of Plasma Synthetic Jet Actuator in Repetitive Working Mode

Authors: Haohua Zong, Marios Kotsonis

Abstract:

Plasma synthetic jet actuator (PSJA) is a new concept of zero net mass flow actuator which utilizes pulsed arc/spark discharge to rapidly pressurize gas in a small cavity under constant-volume conditions. The unique combination of high exit jet velocity (>400 m/s) and high actuation frequency (>5 kHz) provides a promising solution for high-speed high-Reynolds-number flow control. This paper focuses on the performance of PSJA in repetitive working mode which is more relevant to future flow control applications. A two-electrodes PSJA (cavity volume: 424 mm3, orifice diameter: 2 mm) together with a capacitive discharge circuit (discharge energy: 50 mJ-110 mJ) is designed to enable repetitive operation. Time-Resolved Particle Imaging Velocimetry (TR-PIV) system working at 10 kHz is exploited to investigate the influence of discharge frequency on performance of PSJA. In total, seven cases are tested, covering a wide range of discharge frequencies (20 Hz-560 Hz). The pertinent flow features (shock wave, vortex ring and jet) remain the same for single shot mode and repetitive working mode. Shock wave is issued prior to jet eruption. Two distinct vortex rings are formed in one cycle. The first one is produced by the starting jet whereas the second one is related with the shock wave reflection in cavity. A sudden pressure rise is induced at the throat inlet by the reflection of primary shock wave, promoting the shedding of second vortex ring. In one cycle, jet exit velocity first increases sharply, then decreases almost linearly. Afterwards, an alternate occurrence of multiple jet stages and refresh stages is observed. By monitoring the dynamic evolution of exit velocity in one cycle, some integral performance parameters of PSJA can be deduced. As frequency increases, the jet intensity in steady phase decreases monotonically. In the investigated frequency range, jet duration time drops from 250 µs to 210 µs and peak jet velocity decreases from 53 m/s to approximately 39 m/s. The jet impulse and the expelled gas mass (0.69 µN∙s and 0.027 mg at 20 Hz) decline by 48% and 40%, respectively. However, the electro-mechanical efficiency of PSJA defined by the ratio of jet mechanical energy to capacitor energy doesn’t show significant difference (o(0.01%)). Fourier transformation of the temporal exit velocity signal indicates two dominant frequencies. One corresponds to the discharge frequency, while the other accounts for the alternation frequency of jet stage and refresh stage in one cycle. The alternation period (300 µs approximately) is independent of discharge frequency, and possibly determined intrinsically by the actuator geometry. A simple analytical model is established to interpret the alternation of jet stage and refresh stage. Results show that the dynamic response of exit velocity to a small-scale disturbance (jump in cavity pressure) can be treated as a second-order under-damping system. Oscillation frequency of the exit velocity, namely alternation frequency, is positively proportional to exit area, but inversely proportional to cavity volume and throat length. Theoretical value of alternation period (305 µs) agrees well with the experimental value.

Keywords: plasma, synthetic jet, actuator, frequency effect

Procedia PDF Downloads 234
411 Antiulcer Potential of Heme Oxygenase-1 Inducers

Authors: Gaweł Magdalena, Lipkowska Anna, Olbert Magdalena, Frąckiewicz Ewelina, Librowski Tadeusz, Nowak Gabriel, Pilc Andrzej

Abstract:

Heme oxygenase-1 (HO-1), also known as heat shock protein 32 (HSP32), has been shown to be implicated in cytoprotection in various organs. Its activation plays a significant role in acute and chronic inflammation, protecting cells from oxidative injury and apoptosis. This inducible isoform of HO catalyzes the first and rate-limiting step in heme degradation to produce equimolar quantities of biologically active products: carbon monoxide (CO), free iron and biliverdin. CO has been reported to possess anti-apoptotic properties. Moreover, it inhibits the production of proinflammatory cytokines and stimulates the synthesis of the anti-inflammatory interleukin-10 (IL-10), as well as promotes vasodilatation at sites of inflammation. The second product of catalytic HO-1 activity, free cytotoxic iron, is promptly sequestered into the iron storage protein ferritin, which lowers the pro-oxidant state of the cell. The third product, biliverdin, is subsequently converted by biliverdin reductase into the bile pigment bilirubin, the most potent endogenous antioxidant among the constituents of human serum, which modulates immune effector functions and suppresses inflammatory response. Furthermore, being one of the so-called stress proteins, HO-1 adaptively responds to different stressors, such as reactive oxygen species (ROS), inflammatory cytokines and heavy metals and thus protects cells against such conditions as ischemia, hemorrhagic shock, heat shock or hypoxia. It is suggested that pharmacologic modulation of HO-1 may represent an effective strategy for prevention of stress and drug-induced gastrointestinal toxicity. HO-1 is constitutively expressed in normal gastric, intestinal and colonic mucosa and up-regulated during inflammation. It has been proven that HO-1 up-regulated by hemin, heme and cobalt-protoporphyrin ameliorates experimental colitis. In addition, the up-regulation of HO-1 partially explains the mechanism of action of 5-aminosalicylic acid (5-ASA), which is used clinically as an anti-colitis agent. In 2009 Ueda et al. has reported for the first time that mucosal protection by Polaprezinc, a chelate compound of zinc and L-carnosine used as an anti-ulcer drug in Japan, is also attributed to induction of HO-1 in the stomach. Since then, inducers of HO-1 are desired subject of research, as they may constitute therapeutically effective anti-ulcer drugs.

Keywords: heme oxygenase-1, gastric lesions, gastroprotection, Polaprezinc

Procedia PDF Downloads 491
410 Immediate Life Support to a Wild Barn Owl (Tyto alba)

Authors: Bilge Kaan Tekelioglu, Mehmet Celik, Mahmut Ali Gokce, Ladine Celik, Yusuf Uzun

Abstract:

A male mature barn owl (Tyto alba) was brought to Cukurova University Ceyhan Veterinary Medicine Faculty at the beginning of January 2017. The bird was found at a local state elementary school’s garden where had been terribly damaged by metal wires. On the clinical examination, the animal was in shock and atonic position at arrival and seems to have feather problems and severe injuries. The ears, eyes, claws and wounded areas were checked and no signs of viral, microbial or ecto-parasitic infection were observed. The bird has been declared by U.S. wild life Office as endangered species. At first, the owl was kept in silent, warm and darkened cabinet against shock and warmed fluid replacement was started by % 5 dextrose solution per orally. On the second day, we started per oral forced feeding with chicken flesh meat dipped into the dextrose solution. On the third day, the bird was continued to be fed with fresh meat. At the fourth day, the owl was started to be fed with chicks during the next 3 days died by natural means which has been supplied by a local breeder. At the first 3 days 1 chick per day and the following days 2 chicks per day has been given per orally. The tenth day we started flying exercises in a small and non-windowed room safely. The saved owl was kept in this room for 10 more days. Finally, the owl was released at the habitation where it had been found injured. This study has one more time proved that, if you save one, you can save more. Wild life is in danger all over the world. Every living creature has right and deserves a chance to live.

Keywords: wild life, barn owl, Tyto alba, rescue, life support, feeding

Procedia PDF Downloads 344
409 Assessment of Kinetic Trajectory of the Median Nerve from Wrist Ultrasound Images Using Two Dimensional Baysian Speckle Tracking Technique

Authors: Li-Kai Kuo, Shyh-Hau Wang

Abstract:

The kinetic trajectory of the median nerve (MN) in the wrist has shown to be capable of being applied to assess the carpal tunnel syndrome (CTS), and was found able to be detected by high-frequency ultrasound image via motion tracking technique. Yet, previous study may not quickly perform the measurement due to the use of a single element transducer for ultrasound image scanning. Therefore, previous system is not appropriate for being applied to clinical application. In the present study, B-mode ultrasound images of the wrist corresponding to movements of fingers from flexion to extension were acquired by clinical applicable real-time scanner. The kinetic trajectories of MN were off-line estimated utilizing two dimensional Baysian speckle tracking (TDBST) technique. The experiments were carried out from ten volunteers by ultrasound scanner at 12 MHz frequency. Results verified from phantom experiments have demonstrated that TDBST technique is able to detect the movement of MN based on signals of the past and present information and then to reduce the computational complications associated with the effect of such image quality as the resolution and contrast variations. Moreover, TDBST technique tended to be more accurate than that of the normalized cross correlation tracking (NCCT) technique used in previous study to detect movements of the MN in the wrist. In response to fingers’ flexion movement, the kinetic trajectory of the MN moved toward the ulnar-palmar direction, and then toward the radial-dorsal direction corresponding to the extensional movement. TDBST technique and the employed ultrasound image scanner have verified to be feasible to sensitively detect the kinetic trajectory and displacement of the MN. It thus could be further applied to diagnose CTS clinically and to improve the measurements to assess 3D trajectory of the MN.

Keywords: baysian speckle tracking, carpal tunnel syndrome, median nerve, motion tracking

Procedia PDF Downloads 480
408 Socio-Economic Problems in Treatment of Non-Union Both Bones Fracture of the Leg: A Retrospective Study

Authors: Rajendra Kumar Kanojia

Abstract:

Treatment of fracture both bones of leg following trauma is done intially at nearby primary health care center.primary management for shock,pain,control of bleeding,plaster application. These are treated for primay fixation of fracture, debridment of wound. Then, they were refered to tertiary care where they were again and planned for further treatment. This leads to loss of lot of time, money, job, etc.

Keywords: fracture both bones leg, non-union, ilizarov, cost

Procedia PDF Downloads 556
407 Experimental Study of Near Wake of Wind Turbines

Authors: Ramin Rezaei, Terry Ng, Abdollah Afjeh

Abstract:

Near wake development of a wind turbine affects the aerodynamic loads on the tower and the wind turbine. Design considerations of both isolated wind turbines and wind farms must include unsteady wake flow conditions under which the turbines must operate. The consequent aerodynamic loads could lead to over design of wind turbines and adversely affect the cost of wind turbines and, in turn, the cost of energy produced by wind turbines. Reducing the weight of turbine rotors is particularly desirable since larger wind turbine rotors can be utilized without significantly increasing the cost of the supporting structure. Larger rotor diameters produce larger swept areas and consequently greater energy production from the wind thereby reducing the levelized cost of wind energy. To understand the development and structure of the near tower wake of a wind turbine, an experimental study was conducted to describe the flow field of the near wake for both upwind and downwind turbines. The study was conducted under controlled environment of a wind tunnel using a scaled model of a turbine. The NREL 5 MW reference wind turbine was used as a baseline design and was modified as necessary to design and build upwind and downwind scaled wind turbine models. This paper presents the results of the wind tunnel study using turbine models to quantify the near wake of upwind and downwind wind turbine configurations for various lengths of tower-to-turbine spacing. The variations of mean velocity and turbulence are measured using a computer-controlled, traversing hot wire probe. Additionally, smoke flow visualizations were conducted to qualitatively study the wake. The results show a more rapid dissipation of the near wake for an upwind configuration. The results can readily be incorporated into low fidelity system level turbine simulation tools to more accurately account for the wake on the aerodynamic loads of a upwind and downwind turbines.

Keywords: hot wire anemometry, near wake, upwind and downwind turbine. Hot wire anemometry, near wake, upwind and downwind turbine

Procedia PDF Downloads 653
406 An Experimental Investigation of the Surface Pressure on Flat Plates in Turbulent Boundary Layers

Authors: Azadeh Jafari, Farzin Ghanadi, Matthew J. Emes, Maziar Arjomandi, Benjamin S. Cazzolato

Abstract:

The turbulence within the atmospheric boundary layer induces highly unsteady aerodynamic loads on structures. These loads, if not accounted for in the design process, will lead to structural failure and are therefore important for the design of the structures. For an accurate prediction of wind loads, understanding the correlation between atmospheric turbulence and the aerodynamic loads is necessary. The aim of this study is to investigate the effect of turbulence within the atmospheric boundary layer on the surface pressure on a flat plate over a wide range of turbulence intensities and integral length scales. The flat plate is chosen as a fundamental geometry which represents structures such as solar panels and billboards. Experiments were conducted at the University of Adelaide large-scale wind tunnel. Two wind tunnel boundary layers with different intensities and length scales of turbulence were generated using two sets of spires with different dimensions and a fetch of roughness elements. Average longitudinal turbulence intensities of 13% and 26% were achieved in each boundary layer, and the longitudinal integral length scale within the three boundary layers was between 0.4 m and 1.22 m. The pressure distributions on a square flat plate at different elevation angles between 30° and 90° were measured within the two boundary layers with different turbulence intensities and integral length scales. It was found that the peak pressure coefficient on the flat plate increased with increasing turbulence intensity and integral length scale. For example, the peak pressure coefficient on a flat plate elevated at 90° increased from 1.2 to 3 with increasing turbulence intensity from 13% to 26%. Furthermore, both the mean and the peak pressure distribution on the flat plates varied with turbulence intensity and length scale. The results of this study can be used to provide a more accurate estimation of the unsteady wind loads on structures such as buildings and solar panels.

Keywords: atmospheric boundary layer, flat plate, pressure coefficient, turbulence

Procedia PDF Downloads 123
405 Hemodynamic Effects of Magnesium Sulphate Therapy in Critically Ill Infants and Children with Wheezy Chest

Authors: Yasmin Sayed, Hala Hamdy, Hafez Bazaraa, Hanaa Rady, Sherif Elanwary

Abstract:

Intravenous and inhaled magnesium sulfate (MgSO₄) had been recently used as an adjuvant therapy in cases suffering from the wheezy chest. Objective: We aimed to determine the possible change in the hemodynamic state in cases received intravenous or inhaled MgSO₄ in comparison to cases received standard treatment in critically ill infants and children with the wheezy chest. Methods: A randomized controlled trial comprised 81 patients suffering from wheezy chest divided into 3 groups. In addition to bronchodilators and systemic steroids, MgSO₄ was given by inhalation in group A, intravenously in group B, and group C didn't receive MgSO₄. The hemodynamic state was determined by assessment of blood pressure, heart rate, capillary refill time and the need for shock therapy or inotropic support just before and 24 hours after receiving treatment in 3 groups. Results: There was no significant difference in the hemodynamic state of the studied groups before and after treatment. Means of blood pressure were 102.2/63.2, 105.1/64.8 before and after inhaled MgSO₄; respectively. Means of blood pressure were 105.5/64.2, 104.1/64.9 before and after intravenous MgSO₄; respectively. Means of blood pressure were 107.4/62.8, 104.4/62.1 before and after standard treatment, respectively. There was a statistically insignificant reduction of the means of the heart rate in group A and group B after treatment rather than group C. There was no associated prolongation in capillary refill time and/or the need for inotropic support or shock therapy after treatment in the studied groups. Conclusion: MgSO₄ is a safe adjuvant therapy and not associated with significant alteration in the hemodynamic state in critically ill infants and children with the wheezy chest.

Keywords: critically ill infants and children, inhaled MgSO₄, intravenous MgSO₄, wheezy chest

Procedia PDF Downloads 128
404 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar

Abstract:

The study of the primary flow velocity and the self impinging secondary jet flow mixing is important from both the fundamental research and the application point of view. Real industrial configurations are more complex than simple shear layers present in idealized numerical thrust-vectoring models due to the presence of combustion, swirl and confinement. Predicting the flow features of self impinging secondary jets in a supersonic primary flow is complex owing to the fact that there are a large number of parameters involved. Earlier studies have been highlighted several key features of self impinging jets, but an extensive characterization in terms of jet interaction between supersonic flow and self impinging secondary sonic jets is still an active research topic. In this paper numerical studies have been carried out using a validated two-dimensional k-omega standard turbulence model for the design optimization of a thrust vector control system using shock induced self impinging secondary flow sonic jets using non-reacting flows. Efforts have been taken for examining the flow features of TVC system with various secondary jets at different divergent locations and jet impinging angles with the same inlet jet pressure and mass flow ratio. The results from the parametric studies reveal that in addition to the primary to the secondary mass flow ratio the characteristics of the self impinging secondary jets having bearing on an efficient thrust vectoring. We concluded that the self impinging secondary jet nozzles are better than single jet nozzle with the same secondary mass flow rate owing to the fact fixing of the self impinging secondary jet nozzles with proper jet angle could facilitate better thrust vectoring for any supersonic aerospace vehicle.

Keywords: fluidic thrust vectoring, rocket steering, supersonic to sonic jet interaction, TVC in aerospace vehicles

Procedia PDF Downloads 576
403 Surveying Apps in Dam Excavation

Authors: Ali Mohammadi

Abstract:

Whenever there is a need to dig the ground, the presence of a surveyor is required to control the map. In projects such as dams and tunnels, these controls are more important because any mistakes can increase the cost. Also, time is great importance in These projects have and one of the ways to reduce the drilling time is to use techniques that can reduce the mapping time in these projects. Nowadays, with the existence of mobile phones, we can design apps that perform calculations and drawing for us on the mobile phone. Also, if we have a device that requires a computer to access its information, by designing an app, we can transfer its information to the mobile phone and use it, so we will not need to go to the office.

Keywords: app, tunnel, excavation, dam

Procedia PDF Downloads 36
402 Computational Code for Solving the Navier-Stokes Equations on Unstructured Meshes Applied to the Leading Edge of the Brazilian Hypersonic Scramjet 14-X

Authors: Jayme R. T. Silva, Paulo G. P. Toro, Angelo Passaro, Giannino P. Camillo, Antonio C. Oliveira

Abstract:

An in-house C++ code has been developed, at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics from the Institute of Advanced Studies (Brazil), to estimate the aerothermodynamic properties around the Hypersonic Vehicle Integrated to the Scramjet. In the future, this code will be applied to the design of the Brazilian Scramjet Technological Demonstrator 14-X B. The first step towards accomplishing this objective, is to apply the in-house C++ code at the leading edge of a flat plate, simulating the leading edge of the 14-X Hypersonic Vehicle, making possible the wave phenomena of oblique shock and boundary layer to be analyzed. The development of modern hypersonic space vehicles requires knowledge regarding the characteristics of hypersonic flows in the vicinity of a leading edge of lifting surfaces. The strong interaction between a shock wave and a boundary layer, in a high supersonic Mach number 4 viscous flow, close to the leading edge of the plate, considering no slip condition, is numerically investigated. The small slip region is neglecting. The study consists of solving the fluid flow equations for unstructured meshes applying the SIMPLE algorithm for Finite Volume Method. Unstructured meshes are generated by the in-house software ‘Modeler’ that was developed at Virtual’s Engineering Laboratory from the Institute of Advanced Studies, initially developed for Finite Element problems and, in this work, adapted to the resolution of the Navier-Stokes equations based on the SIMPLE pressure-correction scheme for all-speed flows, Finite Volume Method based. The in-house C++ code is based on the two-dimensional Navier-Stokes equations considering non-steady flow, with nobody forces, no volumetric heating, and no mass diffusion. Air is considered as calorically perfect gas, with constant Prandtl number and Sutherland's law for the viscosity. Solutions of the flat plate problem for Mach number 4 include pressure, temperature, density and velocity profiles as well as 2-D contours. Also, the boundary layer thickness, boundary conditions, and mesh configurations are presented. The same problem has been solved by the academic license of the software Ansys Fluent and for another C++ in-house code, which solves the fluid flow equations in structured meshes, applying the MacCormack method for Finite Difference Method, and the results will be compared.

Keywords: boundary-layer, scramjet, simple algorithm, shock wave

Procedia PDF Downloads 465
401 An Evaluation of Discontinuities in Rock Mass Using Coupled Hydromechanical Finite Element and Discrete Element Analyses

Authors: Mohammad Moridzadeh, Aaron Gallant

Abstract:

The paper will present the design and construction of the underground excavations of a pump station forebay and its related components including connector tunnels, access shaft, riser shaft and well shafts. The underground openings include an 8 m-diameter riser shaft, an 8-m-diameter access shaft, 34 2.4-m-diameter well shafts, a 107-m-long forebay with a cross section having a height of 11 m and width of 10 m, and a 6 m by 6 m stub connector tunnel between the access shaft and a future forebay extension. The riser shaft extends down from the existing forebay connector tunnel at elevation 247 m to the crown of the forebay at elevation 770.0 feet. The access shaft will extend from the platform at the surface down to El. 223.5 m. The pump station will have the capacity to deliver 600 million gallons per day. The project is located on an uplifted horst consisting of a mass of Precambrian metamorphic rock trending in a north-south direction. The eastern slope of the area is very steep and pronounced and is likely the result of high-angle normal faulting. Toward the west, the area is bordered by a high angle normal fault and recent alluvial, lacustrine, and colluvial deposits. An evaluation of rock mass properties, fault and discontinuities, foliation and joints, and in situ stresses was performed. The response of the rock mass was evaluated in 3DEC using Discrete Element Method (DEM) by explicitly accounting for both major and minor discontinuities within the rock mass (i.e. joints, shear zones, faults). Moreover, the stability of the entire subsurface structure including the forebay, access and riser shafts, future forebay, well shafts, and connecting tunnels and their interactions with each other were evaluated using a 3D coupled hydromechanical Finite Element Analysis (FEA).

Keywords: coupled hydromechanical analysis, discontinuities, discrete element, finite element, pump station

Procedia PDF Downloads 251
400 Determining Cellular Biomarkers Sensitive to Low Damaging Exposure

Authors: Svetlana Guryeva, Inna Kornienko, Elena Petersen

Abstract:

At present, translational medicine is a rapidly developing branch of biomedicine. The main idea of translational medicine is a practical application of fundamental research. One of the possible applications for translational medicine is researching therapies that improve human age-related organism condition. To fill the gap between experiments and clinical practice, it is necessary to create the standardized system for the investigation of different effects on cellular aging models. In this study, primary human fibroblasts derived from patients of different ages were used as a cellular aging model. The senescence-associated β-galactosidase activity, lipofuscin, γ-H2AX, the reactive oxygen species level, and cell death markers (annexin V/propidium iodide) were used as biomarkers of the cell functional state. The effects of damaging exposures (oxidative stress and heat shock), potential positive factors (metformin and acetaminophen), and their combinations were investigated using the described biomarkers. Oxidative stress and heat shock caused the increase in the levels of all biomarkers, and only the cells from young patients partly coped with stress 3 days after the exposures. Metformin improved the state of pretreatment cells from young and old patients. The acetaminophen did not show significant changes in the biomarker levels compare to the action of metformin. This study proved the opportunity to develop a standardized screening system based on biomarkers of the cell functional state to identify potential positive or negative effects of some physical and chemical exposures. Moreover, such a system can be useful for the aims of regenerative medicine to determine the effect of cell pretreatment before transplantation.

Keywords: biomarkers, primary fibroblasts, regenerative medicine, senescence, test system, translational medicine

Procedia PDF Downloads 385
399 Designing an App to Solve Surveying Challenges

Authors: Ali Mohammadi

Abstract:

Forming and equipping the surveyors team for construction projects such as dams, roads, and tunnels is always one of the first challenges and hiring surveyors who are proficient in reading maps and controlling structures, purchasing appropriate surveying equipment that the employer can find Also, using methods that can save time, in the bigger the project, the more these challenges show themselves. Finding a surveyor engineer who can lead the teams and train surveyors of the collection and buy TOTAL STATION according to the company's budget and the surveyors' ability to use them and the time available to each team In the following, we will introduce a surveying app and examine how to use it, which shows how useful it can be for surveyors in projects.

Keywords: DTM CUTFILL, datatransfer, section, tunnel, traverse

Procedia PDF Downloads 63
398 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models

Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.

Keywords: numerical models, parametric study, segmental tunnels, structural response

Procedia PDF Downloads 215
397 Analysing the Degree of Climate Risk Perception and Response Strategies of Farm Household Typologies in Northern Ghana

Authors: David Ahiamadia, Ramilan Thiagarajah, Peter Tozer

Abstract:

In Sub Saharan Africa, farm typologies have been used as a practical way to address heterogeneity among farming systems which is mostly done by grouping farms into subsets with similar characteristics. Due to the complexity in farming systems among farm households, it is not possible to formulate policy recommendations for individual farmers. As a result, this study employs a multivariate statistical approach using Principal Component Analysis (PCA) coupled with cluster analysis to reduce heterogeneity in a 615-household data set from the Africa Rising Baseline Evaluation Survey for 25 farming communities in Northern Ghana. Variables selected for the study were mostly socio-economic, production potential, production intensity, production orientation, crop diversity, food security, resource endowments, and climate risk variables. To avoid making some individuals in the subpopulation worse off when aclimate risk intervention is broadly implemented, the findings of the study also account for diversity in climate risk perception among the different farm types identified and their response strategies towards climate risk. The climate risk variables used in this study involve the most severeclimate shock types perceived by the household, household response to climate shock type, and reason for crop failure (i.e., maize, rice, and groundnut). Eventually, four farm types, each with an adequate level of homogeneity in climate risk perception and response strategies, were identified. Farm type 1 and 3 were wealthy with a lower degree of climate risk perception compared to farm type 2 and 4. Also, relatively wealthy farmers used asset liquidation as a climate risk management strategy, whereas poor farmers resorted to engaging in spiritual activities such as prayers, sacrifices, and divine consultations.

Keywords: smallholder, households, climate risk, variables, typologies

Procedia PDF Downloads 70
396 Effects of Different Processing Methods of Typha Grass on Feed Intake Milk Yield/Composition and Blood Parameters of Diry Cows

Authors: Alhaji Musa Abdullahi, Usman Abdullahi, Adamu Lawan, Aminu Maidala

Abstract:

Abstract 16 healthy lactating cows will be randomly selected for the trial and will be randomly divided in to 4 groups with 4 cows in each. They will be kept under similar management condition (conventional management system). Animals of relatively same weight and age will be used. After 11days for adaptation, feed intake and performance of the experimental animals will be determine. Milk sample will be collected at each milking in the morning and afternoon to determine; Milk yield, Milk fat percentage, Solid not fat percentage, Total solid percentage of milk. Cows dung will be observe to determine; Score 1 very loose watery stool, Score 2 semi solid with undigested raw material, Score 3 semi solid with less undigested raw material, Score 4 solid with very less undigested raw material, Score 5 good dung no undigested raw material. At the end of the experiment, blood samples will be analyzed for full blood counts and differentials {White Blood Cells (WBC), Red Blood Cells (RBC), Hemoglobin (Hb), Packed Cell Volume (PCV), Mean Corpuscular Volume (MCV), Mean Corpuscular Hemoglobin (MCH), Mean Corpuscular Hemoglobin Concentration (MCHC), Platelets (PLT), Lymphocytes (LYM), Basophils, Eosinophils and Monocytes Proportion (MXD) and Neutrophils (NEUT)} using automated hematology analyzer. Serum samples will be analyzed for heat shock transcription factors, heat shock proteins and hormones (Serum glucocorticoid, prolactin and cortisol). Moreover, biochemical analysis will also be conducted to check for Total protein (TP), Albumen (ALB), Globulin (GBL), Total cholesterol (TCH), glucose (G), sodium (Na+), potassium (K+), chloride (Cl-) and pH. Keywords: Lactating cows, milk composition, dung score and blood parameters.

Keywords: Lactating cows , Milk yield , Dung score , Blood parameters

Procedia PDF Downloads 159
395 Nursery Treatments May Improve Restoration Outcomes by Reducing Seedling Transplant Shock

Authors: Douglas E. Mainhart, Alejandro Fierro-Cabo, Bradley Christoffersen, Charlotte Reemts

Abstract:

Semi-arid ecosystems across the globe have faced land conversion for agriculture and resource extraction activities, posing a threat to the important ecosystem services they provide. Revegetation-centered restoration efforts in these regions face low success rates due to limited soil water availability and high temperatures leading to elevated seedling mortality after planting. Typical methods to alleviate these stresses require costly post-planting interventions aimed at improving soil moisture status. We set out to evaluate the efficacy of applying in-nursery treatments to address transplant shock. Four native Tamaulipan thornscrub species were compared. Three treatments were applied: elevated CO2, drought hardening (four-week exposure each), and antitranspirant foliar spray (the day prior to planting). Our goal was to answer two primary questions: (1) Do treatments improve survival and growth of seedlings in the early period post-planting? (2) If so, what underlying physiological changes are associated with this improved performance? To this end, we measured leaf gas exchange (stomatal conductance, light saturated photosynthetic rate, water use efficiency), leaf morphology (specific leaf area), and osmolality before and upon the conclusion of treatments. A subset of seedlings from all treatments have been planted, which will be monitored in coming months for in-field survival and growth.First month field survival for all treatment groups were high due to ample rainfall following planting (>85%). Growth data was unreliable due to high herbivory (68% of all sampled plants). While elevated CO2 had infrequent or no detectable influence on all aspects of leaf gas exchange, drought hardening reduced stomatal conductance in three of the four species measured without negatively impacting photosynthesis. Both CO2 and drought hardening elevated leaf osmolality in two species. Antitranspirant application significantly reduced conductance in all species for up to four days and reduced photosynthesis in two species. Antitranspirants also increased the variability of water use efficiency compared to controls. Collectively, these results suggest that antitranspirants and drought hardening are viable treatments for reducing short-term water loss during the transplant shock period. Elevated CO2, while not effective at reducing water loss, may be useful for promoting more favorable water status via osmotic adjustment. These practices could improve restoration outcomes in Tamaulipan thornscrub and other semi-arid systems. Further research should focus on evaluating combinations of these treatments and their species-specific viability.

Keywords: conservation, drought conditioning, semi-arid restoration, plant physiology

Procedia PDF Downloads 69
394 Computational Fluid Dynamicsfd Simulations of Air Pollutant Dispersion: Validation of Fire Dynamic Simulator Against the Cute Experiments of the Cost ES1006 Action

Authors: Virginie Hergault, Siham Chebbah, Bertrand Frere

Abstract:

Following in-house objectives, Central laboratory of Paris police Prefecture conducted a general review on models and Computational Fluid Dynamics (CFD) codes used to simulate pollutant dispersion in the atmosphere. Starting from that review and considering main features of Large Eddy Simulation, Central Laboratory Of Paris Police Prefecture (LCPP) postulates that the Fire Dynamics Simulator (FDS) model, from National Institute of Standards and Technology (NIST), should be well suited for air pollutant dispersion modeling. This paper focuses on the implementation and the evaluation of FDS in the frame of the European COST ES1006 Action. This action aimed at quantifying the performance of modeling approaches. In this paper, the CUTE dataset carried out in the city of Hamburg, and its mock-up has been used. We have performed a comparison of FDS results with wind tunnel measurements from CUTE trials on the one hand, and, on the other, with the models results involved in the COST Action. The most time-consuming part of creating input data for simulations is the transfer of obstacle geometry information to the format required by SDS. Thus, we have developed Python codes to convert automatically building and topographic data to the FDS input file. In order to evaluate the predictions of FDS with observations, statistical performance measures have been used. These metrics include the fractional bias (FB), the normalized mean square error (NMSE) and the fraction of predictions within a factor of two of observations (FAC2). As well as the CFD models tested in the COST Action, FDS results demonstrate a good agreement with measured concentrations. Furthermore, the metrics assessment indicate that FB and NMSE meet the tolerance acceptable.

Keywords: numerical simulations, atmospheric dispersion, cost ES1006 action, CFD model, cute experiments, wind tunnel data, numerical results

Procedia PDF Downloads 120
393 B4A Is One of the Best Programming Software for Surveyor Engineers

Authors: Ali Mohammadi

Abstract:

Many engineers use the programs that are installed on the computer, but with the arrival of the mobile phone and the possibility of designing apps, many Android programs can be designed similar to the programs that are installed on the computer, and from the mobile phone, in addition to communication Telephone and photography show a more practical use. Engineers are one of the groups that can use specialized apps to have less need to go to the office and computer, and b4a can be considered one of the simplest software for designing apps. This article introduces a number of surveying apps designed using b4a and the impact that using these apps has on productivity in this field of engineering.

Keywords: app, tunnel, total station, map

Procedia PDF Downloads 33
392 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite

Authors: Maciej Szeląg, Stanisław Fic

Abstract:

The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters

Procedia PDF Downloads 378
391 Evaluation of the Spectrum of Cases of Perforation Peritonitis at Jawaharlal Nehru Medical College, Aligarh Muslim University

Authors: Mujahid Ali, Wasif Mohammed Ali, Meraj Ahmad

Abstract:

Background: Perforation peritonitis is the most common surgical emergency encountered by surgeons all over the world as well as in India. The etiology of perforation peritonitis in India continues to be different from its western counterparts. The aim of this study is to evaluate the spectrum of cases of perforation peritonitis at our hospital. Methods: A prospective study conducted includes three hundred thirtysix patients of perforation peritonitis at J. N. Medical College from October 2015 to July 2017. The patients were admitted, resuscitated and underwent emergency laparotomy. Data were collected in terms of demographic profile, clinical presentations, site of perforations, causes and surgical outcomes. Results: In this study, the most common cause of perforation peritonitis was peptic ulcer disease (43%), followed by enteric perforation (12.8%), tubercular perforation (12.5%), traumatic perforation (11.9%), appendicular perforation (9.8%), amoebic caecal perforation (3%), malignant perforation (1.5%), etc. The sites of perforations were stomach in majority (38.3%), ileum (31%), appendix (8%), duodenum (5.%), caecum (4.4%) ,colon (3%), jejunum (8.5%) and gall bladder (2%). The overall mortality was 21% in our study. Age >50 years (p= <0.0001, OR= 3.9260, CI= 2.2 to 6.9), organ failure (p= <0.0001, OR= 29.2, CI= 14.8 to 57.6), shock (p=<0.0001, OR=20.20, CI= 10.56 to 38.6), diffuse peritonitis (p<0.0015, OR= 6.8810, CI= 2.09 to 22.57) and faecal exudates (p<0.0001) were found to be significant factors affecting mortality. The most common complication associated was superficial wound infection (40%), followed by burst abdomen seen in 21% cases, intra-abdominal sepsis in 18% cases, electrolyte imbalances in 15% cases, anastomotic leak in 6% cases. Conclusion: In this study, stomach is the most common site of perforation with peptic ulcer disease being the most common etiology. Older age, presence of shock, organ failure and faecal peritonitis were the risk factors affecting the mortality of the patients. Early recognition, adequate resuscitation and referral of patients can influence outcome and reduces mortality as well as morbidity.

Keywords: etiology, mortality, perforation, spectrum

Procedia PDF Downloads 243
390 Finite Element-Based Stability Analysis of Roadside Settlements Slopes from Barpak to Yamagaun through Laprak Village of Gorkha, an Epicentral Location after the 7.8Mw 2015 Barpak, Gorkha, Nepal Earthquake

Authors: N. P. Bhandary, R. C. Tiwari, R. Yatabe

Abstract:

The research employs finite element method to evaluate the stability of roadside settlements slopes from Barpak to Yamagaon through Laprak village of Gorkha, Nepal after the 7.8Mw 2015 Barpak, Gorkha, Nepal earthquake. It includes three major villages of Gorkha, i.e., Barpak, Laprak and Yamagaun that were devastated by 2015 Gorkhas’ earthquake. The road head distance from the Barpak to Laprak and Laprak to Yamagaun are about 14 and 29km respectively. The epicentral distance of main shock of magnitude 7.8 and aftershock of magnitude 6.6 were respectively 7 and 11 kilometers (South-East) far from the Barpak village nearer to Laprak and Yamagaon. It is also believed that the epicenter of the main shock as said until now was not in the Barpak village, it was somewhere near to the Yamagaun village. The chaos that they had experienced during the earthquake in the Yamagaun was much more higher than the Barpak. In this context, we have carried out a detailed study to investigate the stability of Yamagaun settlements slope as a case study, where ground fissures, ground settlement, multiple cracks and toe failures are the most severe. In this regard, the stability issues of existing settlements and proposed road alignment, on the Yamagaon village slope are addressed, which is surrounded by many newly activated landslides. Looking at the importance of this issue, field survey is carried out to understand the behavior of ground fissures and multiple failure characteristics of the slopes. The results suggest that the Yamgaun slope in Profile 2-2, 3-3 and 4-4 are not safe enough for infrastructure development even in the normal soil slope conditions as per 2, 3 and 4 material models; however, the slope seems quite safe for at Profile 1-1 for all 4 material models. The result also indicates that the first three profiles are marginally safe for 2, 3 and 4 material models respectively. The Profile 4-4 is not safe enough for all 4 material models. Thus, Profile 4-4 needs a special care to make the slope stable.

Keywords: earthquake, finite element method, landslide, stability

Procedia PDF Downloads 329