Search results for: production frontier model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23077

Search results for: production frontier model

22777 Oil Producing Wells Using a Technique of Gas Lift on Prosper Software

Authors: Nikhil Yadav, Shubham Verma

Abstract:

Gas lift is a common technique used to optimize oil production in wells. Prosper software is a powerful tool for modeling and optimizing gas lift systems in oil wells. This review paper examines the effectiveness of Prosper software in optimizing gas lift systems in oil-producing wells. The literature review identified several studies that demonstrated the use of Prosper software to adjust injection rate, depth, and valve characteristics to optimize gas lift system performance. The results showed that Prosper software can significantly improve production rates and reduce operating costs in oil-producing wells. However, the accuracy of the model depends on the accuracy of the input data, and the cost of Prosper software can be high. Therefore, further research is needed to improve the accuracy of the model and evaluate the cost-effectiveness of using Prosper software in gas lift system optimization

Keywords: gas lift, prosper software, injection rate, operating costs, oil-producing wells

Procedia PDF Downloads 90
22776 Sustainable Resource Use as a Means of Preserving the Integrity of the Eco-System and Environment

Authors: N. Hedayat, E. Karamifar

Abstract:

Sustainable food and fiber production is emerging as an irresistible option in agrarian planning. Although one should not underestimate the successes of the Green Revolution in enhancing crop production, its adverse environmental and ecosystem consequences have also been remarkable. The aim of this paper is to identify ways of improving crop production to ensure agricultural sustainability and environmental integrity. Systematic observations are used for data collection on intensive farming, deforestation and the environmental implications of industrial pollutants on agricultural sustainability at national and international levels. These were achieved within a comparative analytical model of data interpretation. Results show that while multiple factors enhance yield, they have a simultaneous effect in undermining the ecosystem and environmental integrity. Results show that application of excessive agrichemical have been one of the major cause of polluting the surface and underground water bodies as well as soil layers in affected croplands. Results consider rapid deforestation in the tropical regions has been the underlying cause of impairing the integrity of biodiversity and oxygen-generation regime. These, coupled with production of greenhouse gasses, have contributed to global warming and hydrological irregularities. Continuous production of pollutants and effluents has affected marine and land biodiversity arising from acid rains generated by modern farming and deforestation. Continuous production of greenhouse gases has also been instrumental in affecting climatic behavior manifested in recurring draughts and contraction of lakes and ponds as well as emergence of potential flooding of waterways and floodplains in the future.

Keywords: agricultural sustainability, environmental integrity, pollution, eco-system

Procedia PDF Downloads 402
22775 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 323
22774 Prediction, Production, and Comprehension: Exploring the Influence of Salience in Language Processing

Authors: Andy H. Clark

Abstract:

This research looks into the relationship between language comprehension and production with a specific focus on the role of salience in shaping these processes. Salience, our most immediate perception of what is most probable out of all possible situations and outcomes strongly affects our perception and action in language production and comprehension. This study investigates the impact of geographic and emotional attachments to the target language on the differences in the learners’ comprehension and production abilities. Using quantitative research methods (Qualtrics, SPSS), this study examines preferential choices of two groups of Japanese English language learners: those residing in the United States and those in Japan. By comparing and contrasting these two groups, we hope to gain a better understanding of how salience of linguistics cues influences language processing.

Keywords: intercultural pragmatics, salience, production, comprehension, pragmatics, action, perception, cognition

Procedia PDF Downloads 75
22773 The Use of Polar Substituent Groups for Promoting Azo Disperse Dye Solubility and Reactivity for More Economic and Environmental Benign Applications: A Computational Study

Authors: Olaide O. Wahab, Lukman O. Olasunkanmi, Krishna K. Govender, Penny P. Govender

Abstract:

The economic and environmental challenges associated with azo disperse dyes applications are due to poor aqueous solubility and low degradation tendency which stems from low chemical reactivity. Poor aqueous solubility property of this group of dyes necessitates the use of dispersing agents which increase operational costs and also release toxic chemical components into the environment, while their low degradation tendency is due to the high stability of the azo functional group (-N=N-) in their chemical structures. To address these problems, this study investigated theoretically the effects of some polar substituents on the aqueous solubility and reactivity properties of disperse yellow (DY) 119 dye with a view to theoretically develop new azo disperse dyes with improved solubility in water and higher degradation tendency in the environment using DMol³ computational code. All calculations were carried out using the Becke and Perdew version of Volsko-Wilk-Nusair (VWN-BP) level of density functional theory in conjunction with double numerical basis set containing polarization function (DNP). The aqueous solubility determination was achieved with conductor-like screening model for realistic solvation (COSMO-RS) in conjunction with known empirical solubility model, while the reactivity was predicted using frontier molecular orbital calculations. Most of the new derivatives studied showed evidence of higher aqueous solubility and degradation tendency compared to the parent dye. We conclude that these derivatives are promising alternative dyes for more economic and environmental benign dyeing practice and therefore recommend them for synthesis.

Keywords: aqueous solubility, azo disperse dye, degradation, disperse yellow 119, DMol³, reactivity

Procedia PDF Downloads 205
22772 Climate Changes in Albania and Their Effect on Cereal Yield

Authors: Lule Basha, Eralda Gjika

Abstract:

This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.

Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest

Procedia PDF Downloads 93
22771 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Microbiological and Physicochemical Characterization

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the highest crude oil & condensate producer in Nigeria has its operational base and an oil terminal, the Qua Iboe terminal (QIT) located at Ibeno, Nigeria. Other oil companies like Network Exploration and Production Nigeria Ltd, Frontier Oil Ltd; Shell Petroleum Development Company Ltd; Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of the Italian ENI E&P operate onshore, on the continental shelf and in deep offshore of the Atlantic Ocean, respectively with the coastal waters of Ibeno, Nigeria as the nearest shoreline. This study was designed to delineate the oil-polluted sites in Ibeno, Nigeria using microbiological and physico-chemical characterization of soils, sediments and ground and surface water samples from the study area. Results obtained revealed that there have been significant recent hydrocarbon inputs into this environment as observed from the high counts of hydrocarbonoclastic microorganisms in excess of 1% at all the stations sampled. Moreover, high concentrations of THC, BTEX and heavy metals contents in all the samples analyzed corroborate the high recent crude oil input into the study area. The results also showed that the pollution of the different environmental media sampled were of varying degrees, following the trend: Ground water > surface water > sediments > soils.

Keywords: microbiological characterization, oil-polluted sites, physico-chemical analyses, total hydrocarbon content

Procedia PDF Downloads 417
22770 Techno-Economic Analysis of the Production of Aniline

Authors: Dharshini M., Hema N. S.

Abstract:

The project for the production of aniline is done by providing 295.46 tons per day of nitrobenzene as feed. The material and energy balance calculations for the different equipment like distillation column, heat exchangers, reactor and mixer are carried out with simulation via DWSIM. The conversion of nitrobenzene to aniline by hydrogenation process is considered to be 96% and the total production of the plant was found to be 215 TPD. The cost estimation of the process is carried out to estimate the feasibility of the plant. The net profit and percentage return of investment is estimated to be ₹27 crores and 24.6%. The payback period was estimated to be 4.05 years and the unit production cost is ₹113/kg. A techno-economic analysis was performed for the production of aniline; the result includes economic analysis and sensitivity analysis of critical factors. From economic analysis, larger the plant scale increases the total capital investment and annual operating cost, even though the unit production cost decreases. Uncertainty analysis was performed to predict the influence of economic factors on profitability and the scenario analysis is one way to quantify uncertainty. In scenario analysis the best-case scenario and the worst-case scenario are compared with the base case scenario. The best-case scenario was found at a feed rate of 120 kmol/hr with a unit production cost of ₹112.05/kg and the worst-case scenario was found at a feed rate of 60 kmol/hr with a unit production cost of ₹115.9/kg. The base case is closely related to the best case by 99.2% in terms of unit production cost. since the unit production cost is less and the profitability is more with less payback time, it is feasible to construct a plant at this capacity.

Keywords: aniline, nitrobenzene, economic analysis, unit production cost

Procedia PDF Downloads 109
22769 Sorting Maize Haploids from Hybrids Using Single-Kernel Near-Infrared Spectroscopy

Authors: Paul R Armstrong

Abstract:

Doubled haploids (DHs) have become an important breeding tool for creating maize inbred lines, although several bottlenecks in the DH production process limit wider development, application, and adoption of the technique. DH kernels are typically sorted manually and represent about 10% of the seeds in a much larger pool where the remaining 90% are hybrid siblings. This introduces time constraints on DH production and manual sorting is often not accurate. Automated sorting based on the chemical composition of the kernel can be effective, but devices, namely NMR, have not achieved the sorting speed to be a cost-effective replacement to manual sorting. This study evaluated a single kernel near-infrared reflectance spectroscopy (skNIR) platform to accurately identify DH kernels based on oil content. The skNIR platform is a higher-throughput device, approximately 3 seeds/s, that uses spectra to predict oil content of each kernel from maize crosses intentionally developed to create larger than normal oil differences, 1.5%-2%, between DH and hybrid kernels. Spectra from the skNIR were used to construct a partial least squares regression (PLS) model for oil and for a categorical reference model of 1 (DH kernel) or 2 (hybrid kernel) and then used to sort several crosses to evaluate performance. Two approaches were used for sorting. The first used a general PLS model developed from all crosses to predict oil content and then used for sorting each induction cross, the second was the development of a specific model from a single induction cross where approximately fifty DH and one hundred hybrid kernels used. This second approach used a categorical reference value of 1 and 2, instead of oil content, for the PLS model and kernels selected for the calibration set were manually referenced based on traditional commercial methods using coloration of the tip cap and germ areas. The generalized PLS oil model statistics were R2 = 0.94 and RMSE = .93% for kernels spanning an oil content of 2.7% to 19.3%. Sorting by this model resulted in extracting 55% to 85% of haploid kernels from the four induction crosses. Using the second method of generating a model for each cross yielded model statistics ranging from R2s = 0.96 to 0.98 and RMSEs from 0.08 to 0.10. Sorting in this case resulted in 100% correct classification but required models that were cross. In summary, the first generalized model oil method could be used to sort a significant number of kernels from a kernel pool but was not close to the accuracy of developing a sorting model from a single cross. The penalty for the second method is that a PLS model would need to be developed for each individual cross. In conclusion both methods could find useful application in the sorting of DH from hybrid kernels.

Keywords: NIR, haploids, maize, sorting

Procedia PDF Downloads 302
22768 An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production

Authors: Gabriel Sanjo Aruwajoye, E. B. Gueguim Kana

Abstract:

Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses.

Keywords: feedstock pretreatment, cassava peels, fermentable sugar, response surface methodology

Procedia PDF Downloads 368
22767 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling

Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky

Abstract:

Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.

Keywords: nano-particles, formation damage, permeability, fines migration

Procedia PDF Downloads 623
22766 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses

Authors: Nuri Caglayan, H. Kursat Celik

Abstract:

There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.

Keywords: air quality, fuzzy logic model, livestock housing, fan speed

Procedia PDF Downloads 374
22765 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 158
22764 Generating Product Description with Generative Pre-Trained Transformer 2

Authors: Minh-Thuan Nguyen, Phuong-Thai Nguyen, Van-Vinh Nguyen, Quang-Minh Nguyen

Abstract:

Research on automatically generating descriptions for e-commerce products is gaining increasing attention in recent years. However, the generated descriptions of their systems are often less informative and attractive because of lacking training datasets or the limitation of these approaches, which often use templates or statistical methods. In this paper, we explore a method to generate production descriptions by using the GPT-2 model. In addition, we apply text paraphrasing and task-adaptive pretraining techniques to improve the qualify of descriptions generated from the GPT-2 model. Experiment results show that our models outperform the baseline model through automatic evaluation and human evaluation. Especially, our methods achieve a promising result not only on the seen test set but also in the unseen test set.

Keywords: GPT-2, product description, transformer, task-adaptive, language model, pretraining

Procedia PDF Downloads 198
22763 Prospection of Technology Production in Physiotherapy in Brazil

Authors: C. M. Priesnitz, G. Zanandrea, J. P. Fabris, S. L. Russo, M. E. Camargo

Abstract:

This study aimed to the prospection the physiotherapy area technological production registered with the National Intellectual Property Institute (INPI) in Brazil, for understand the evolution of the technological production in the country over time and visualize the distribution this production request in Brazil. There was an evolution in the technology landscape, where the average annual deposits had an increase of 102%, from 3.14 before the year 2004 to 6,33 after this date. It was found differences in the distribution of the number the deposits requested to each Brazilian region, being that of the 132 request, 68,9% were from the southeast region. The international patent classification evaluated the request deposits, and the more found numbers were A61H and A63B. So even with an improved panorama of technology production, this should still have incentives since it is an important tool for the development of the country.

Keywords: distribution, evolution, patent, physiotherapy, technological prospecting

Procedia PDF Downloads 329
22762 Evaluation of the Effect of IMS on the Social Responsibility in the Oil and Gas Production Companies of National Iranian South Oil Fields Company (NISOC)

Authors: Kamran Taghizadeh

Abstract:

This study was aimed at evaluating the effect of IMS including occupational health system, environmental management system, and safety and health system on the social responsibility (case study of NISOC`s oil and gas production companies). This study`s objectives include evaluating the IMS situation and its effect on social responsibility in addition of providing appropriate solutions based on the study`s hypotheses as a basis for future. Data collection was carried out by library and field studies as well as a questionnaire. The stratified random method was the sampling method and a sample of 285 employees in addition to the collected data (from the questionnaire) were analyzed by inferential statistics methods using SPSS software. Finally, results of regression and fitted model at a significance level of 5% confirmed all hypotheses meaning that IMS and its items have a significant effect on social responsibility.

Keywords: social responsibility, integrated management, oil and gas production companies, regression

Procedia PDF Downloads 256
22761 A Feasibility Study of Waste (d) Potential: Synergistic Effect Evaluation by Co-digesting Organic Wastes and Kinetics of Biogas Production

Authors: Kunwar Paritosh, Sanjay Mathur, Monika Yadav, Paras Gandhi, Subodh Kumar, Nidhi Pareek, Vivekanand Vivekanand

Abstract:

A significant fraction of energy is wasted every year managing the biodegradable organic waste inadequately as development and sustainability are the inherent enemies. The management of these waste is indispensable to boost its optimum utilization by converting it to renewable energy resource (here biogas) through anaerobic digestion and to mitigate greenhouse gas emission. Food and yard wastes may prove to be appropriate and potential feedstocks for anaerobic co-digestion for biogas production. The present study has been performed to explore the synergistic effect of co-digesting food waste and yard trimmings from MNIT campus for enhanced biogas production in different ratios in batch tests (37±10C, 90 rpm, 45 days). The results were overwhelming and showed that blending two different organic waste in proper ratio improved the biogas generation considerably, with the highest biogas yield (2044±24 mLg-1VS) that was achieved at 75:25 of food waste to yard waste ratio on volatile solids (VS) basis. The yield was 1.7 and 2.2 folds higher than the mono-digestion of food or yard waste (1172±34, 1016±36mLg-1VS) respectively. The increase in biogas production may be credited to optimum C/N ratio resulting in higher yield. Also Adding TiO2 nanoparticles showed virtually no effect on biogas production as sometimes nanoparticles enhance biogas production. ICP-MS, FTIR analysis was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for the kinetic study of biogas production where modified Gompertz model showed goodness-of-fit (R2=0.9978) with the experimental results.

Keywords: anaerobic co-digestion, biogas, kinetics, nanoparticle, organic waste

Procedia PDF Downloads 389
22760 Laser Powder Bed Fusion Awareness for Engineering Students in France and Qatar

Authors: Hiba Naccache, Rima Hleiss

Abstract:

Additive manufacturing AM or 3D printing is one of the pillars of Industry 4.0. Compared to traditional manufacturing, AM provides a prototype before production in order to optimize the design and avoid the stock market and uses strictly necessary material which can be recyclable, for the benefit of leaning towards local production, saving money, time and resources. Different types of AM exist and it has a broad range of applications across several industries like aerospace, automotive, medicine, education and else. The Laser Powder Bed Fusion (LPBF) is a metal AM technique that uses a laser to liquefy metal powder, layer by layer, to build a three-dimensional (3D) object. In industry 4.0 and aligned with the numbers 9 (Industry, Innovation and Infrastructure) and 12 (Responsible Production and Consumption) of the Sustainable Development Goals of the UNESCO 2030 Agenda, the AM’s manufacturers committed to minimizing the environmental impact by being sustainable in every production. The LPBF has several environmental advantages, like reduced waste production, lower energy consumption, and greater flexibility in creating components with lightweight and complex geometries. However, LPBF also have environmental drawbacks, like energy consumption, gas consumption and emissions. It is critical to recognize the environmental impacts of LPBF in order to mitigate them. To increase awareness and promote sustainable practices regarding LPBF, the researchers use the Elaboration Likelihood Model (ELM) theory where people from multiple universities in France and Qatar process information in two ways: peripherally and centrally. The peripheral campaigns use superficial cues to get attention, and the central campaigns provide clear and concise information. The authors created a seminar including a video showing LPBF production and a website with educational resources. The data is collected using questionnaire to test attitude about the public awareness before and after the seminar. The results reflected a great shift on the awareness toward LPBF and its impact on the environment. With no presence of similar research, to our best knowledge, this study will add to the literature on the sustainability of the LPBF production technique.

Keywords: additive manufacturing, laser powder bed fusion, elaboration likelihood model theory, sustainable development goals, education-awareness, France, Qatar, specific energy consumption, environmental impact, lightweight components

Procedia PDF Downloads 90
22759 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: building's energy, control system, energy management, energy storage, genetic optimization algorithm, greenhouse gases, modelling, renewable energy

Procedia PDF Downloads 257
22758 Logistic Regression Model versus Additive Model for Recurrent Event Data

Authors: Entisar A. Elgmati

Abstract:

Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model.

Keywords: additive model, cumulative probabilities, infant diarrhoea, recurrent event

Procedia PDF Downloads 636
22757 Impact Analysis of Transportation Modal Shift on Regional Energy Consumption and Environmental Level: Focused on Electric Automobiles

Authors: Hong Bae Kim, Chang Ho Hur

Abstract:

Many governments have tried to reduce CO2 emissions which are believed to be the main cause for global warming. The deployment of electric automobiles is regarded as an effective way to reduce CO2 emissions. The Korean government has planned to deploy about 200,000 electric automobiles. The policy for the deployment of electric automobiles aims at not only decreasing gasoline consumption but also increasing electricity production. However, if an electricity consuming regions is not consistent with an electricity producing region, the policy generates environmental problems between regions. Hence, this paper has established the energy multi-region input-output model to specifically analyze the impacts of the deployment of electric automobiles on regional energy consumption and CO2 emissions. Finally, the paper suggests policy directions regarding the deployment of electric automobiles.

Keywords: electric automobiles, CO2 emissions, regional imbalances in electricity production and consumption, energy multi-region input-output model

Procedia PDF Downloads 306
22756 Ethics in the Production of Chinese Reality TV

Authors: Tianyu Zhang

Abstract:

China has become one of the markets with the biggest potential for UK exporters, but it remains difficult for outsiders to explore Chinese media’s inner workings due to a lack of access. Having worked in Chinese media, the author conducted six month’s participant-observation in China Central Television (CCTV) and three independent production companies. This paper mainly explores how TV production ethics were implemented in the casting process of three Chinese reality shows that are well-known within the country. The three production teams had issues in common: unorganised management, subjective casting standards and lack of production ethics. Casting directors, who were multitasking, could only rely on their professional experience and ad-hoc demands from the management. More concerning phenomena such as borderline corruption, passive-aggressiveness, and blame cultures were prevalent during the entire production, especially during casting. The casting process also often involved the celebrity status of the many ‘ordinary’ participants who were not that ‘ordinary’ as they claimed. Many of these participants were professional talents who were not famous enough but worked as many other well-known celebrities who had their own employees. On the other hand, as comprehensive production and ethics guidelines were missing, junior television practitioners struggled between their ideal professional standards and real-life events that fell into grey areas – telling white lies, bribery, shifting blame, and lack of employee training. Although facing challenges, many practitioners came up with self-management solutions and worked with positivity.

Keywords: production studies, ethics, television production, ethnography, reality TV, Chinese TV

Procedia PDF Downloads 81
22755 Economic Analysis of Endogenous Growth Model with ICT Capital

Authors: Shoji Katagiri, Hugang Han

Abstract:

This paper clarifies the role of ICT capital in Economic Growth. Albeit ICT remarkably contributes to economic growth, there are few studies on ICT capital in ICT sector from theoretical point of view. In this paper, production function of ICT which is used as input of intermediate good in final good and ICT sectors is incorporated into our model. In this setting, we analyze the role of ICT on balance growth path and show the possibility of general equilibrium solutions for this model. Through the simulation of the equilibrium solutions, we find that when ICT impacts on economy and economic growth increases, it is necessary that increases of efficiency at ICT sector and of accumulation of non-ICT and ICT capitals occur simultaneously.

Keywords: endogenous economic growth, ICT, intensity, capital accumulation

Procedia PDF Downloads 456
22754 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 517
22753 Optimizing CNC Production Line Efficiency Using NSGA-II: Adaptive Layout and Operational Sequence for Enhanced Manufacturing Flexibility

Authors: Yi-Ling Chen, Dung-Ying Lin

Abstract:

In the manufacturing process, computer numerical control (CNC) machining plays a crucial role. CNC enables precise machinery control through computer programs, achieving automation in the production process and significantly enhancing production efficiency. However, traditional CNC production lines often require manual intervention for loading and unloading operations, which limits the production line's operational efficiency and production capacity. Additionally, existing CNC automation systems frequently lack sufficient intelligence and fail to achieve optimal configuration efficiency, resulting in the need for substantial time to reconfigure production lines when producing different products, thereby impacting overall production efficiency. Using the NSGA-II algorithm, we generate production line layout configurations that consider field constraints and select robotic arm specifications from an arm list. This allows us to calculate loading and unloading times for each job order, perform demand allocation, and assign processing sequences. The NSGA-II algorithm is further employed to determine the optimal processing sequence, with the aim of minimizing demand completion time and maximizing average machine utilization. These objectives are used to evaluate the performance of each layout, ultimately determining the optimal layout configuration. By employing this method, it enhance the configuration efficiency of CNC production lines and establish an adaptive capability that allows the production line to respond promptly to changes in demand. This will minimize production losses caused by the need to reconfigure the layout, ensuring that the CNC production line can maintain optimal efficiency even when adjustments are required due to fluctuating demands.

Keywords: evolutionary algorithms, multi-objective optimization, pareto optimality, layout optimization, operations sequence

Procedia PDF Downloads 24
22752 Complex Analysis of Annual Plats Utilization for Particleboard Production

Authors: Petra Gajdačová

Abstract:

The presented research deals with a complex evaluation of after-harvest remnants utilization for particleboard production. Agricultural crops that are in the Czech Republic widely grown are in the scope of interest. Researches dealing with composites from agricultural rests solved mostly physical and mechanical properties of produced materials. For the commercialization of these results, however, one another step is essential. It is needed to evaluate the composites production from agricultural rests more comprehensive, take into account all aspects that affect their production, not only material characteristics of produced composites. In this study, descriptive, comparative and synthesis methods were used. Results of this research include a supply stability forecast, technical and technological differences of production of particleboards from agricultural rests and quantification of an economical potential of the agricultural rests.

Keywords: agricultural crops, annual plant, composite material, particleboard

Procedia PDF Downloads 196
22751 Assessing the Impact of Climate Change on Pulses Production in Khyber Pakhtunkhwa, Pakistan

Authors: Khuram Nawaz Sadozai, Rizwan Ahmad, Munawar Raza Kazmi, Awais Habib

Abstract:

Climate change and crop production are intrinsically associated with each other. Therefore, this research study is designed to assess the impact of climate change on pulses production in Southern districts of Khyber Pakhtunkhwa (KP) Province of Pakistan. Two pulses (i.e. chickpea and mung bean) were selected for this research study with respect to climate change. Climatic variables such as temperature, humidity and precipitation along with pulses production and area under cultivation of pulses were encompassed as the major variables of this study. Secondary data of climatic variables and crop variables for the period of thirty four years (1986-2020) were obtained from Pakistan Metrological Department and Agriculture Statistics of KP respectively. Panel data set of chickpea and mung bean crops was estimated separately. The analysis validate that both data sets were a balanced panel data. The Hausman specification test was run separately for both the panel data sets whose findings had suggested the fixed effect model can be deemed as an appropriate model for chickpea panel data, however random effect model was appropriate for estimation of the panel data of mung bean. Major findings confirm that maximum temperature is statistically significant for the chickpea yield. This implies if maximum temperature increases by 1 0C, it can enhance the chickpea yield by 0.0463 units. However, the impact of precipitation was reported insignificant. Furthermore, the humidity was statistically significant and has a positive association with chickpea yield. In case of mung bean the minimum temperature was significantly contributing in the yield of mung bean. This study concludes that temperature and humidity can significantly contribute to enhance the pulses yield. It is recommended that capacity building of pulses growers may be made to adapt the climate change strategies. Moreover, government may ensure the availability of climate change resistant varieties of pulses to encourage the pulses cultivation.

Keywords: climate change, pulses productivity, agriculture, Pakistan

Procedia PDF Downloads 44
22750 Fruit of the General Status of Usak Provicce District of Sivasli

Authors: Ayşen Melda Çolak, Volkan Okatan, Ercan Yıldız

Abstract:

In our country, fruit production was determined as 17.2 million tons in 2011 according to official data. Turkey fig, apricot, cherry and quince production ranks first in the world. Almost all the regions of our country, despite the growing of fruit 54% of the total fruit production occur in the Mediterranean and the Aegean Region. However, fruit production in the country is consumed in the domestic market and export rates are often very low. In this study, a questionnaire to 100 farmers face-to-face interview. According to the survey, 40% of those in fruit and 7 da of 7 hectares land are small. 30% of soil testing for manufacturers, testing for 20% of the water. Manufacturers who deliberately fertilization rate of only 10%.

Keywords: fruit, generation, potential, Sivasli survey

Procedia PDF Downloads 261
22749 [Keynote Talk]: Production Flow Coordination on Supply Chains: Brazilian Case Studies

Authors: Maico R. Severino, Laura G. Caixeta, Nadine M. Costa, Raísa L. T. Napoleão, Éverton F. V. Valle, Diego D. Calixto, Danielle Oliveira

Abstract:

One of the biggest barriers that companies find nowadays is the coordination of production flow in their Supply Chains (SC). In this study, coordination is understood as a mechanism for incorporating the entire production channel, with everyone involved focused on achieving the same goals. Sometimes, this coordination is attempted by the use of logistics practices or production plan and control methods. No papers were found in the literature that presented the combined use of logistics practices and production plan and control methods. The main objective of this paper is to propose solutions for six case studies combining logistics practices and Ordering Systems (OS). The methodology used in this study was a conceptual model of decision making. This model contains six phases: a) the analysis the types and characteristics of relationships in the SC; b) the choice of the OS; c) the choice of the logistics practices; d) the development of alternative proposals of combined use; e) the analysis of the consistency of the chosen alternative; f) the qualitative and quantitative assessment of the impact on the coordination of the production flow and the verification of applicability of the proposal in the real case. This study was conducted on six Brazilian SC of different sectors: footwear, food and beverages, garment, sugarcane, mineral and metal mechanical. The results from this study showed that there was improvement in the coordination of the production flow through the following proposals: a) for the footwear industry the use of Period Bath Control (PBC), Quick Response (QR) and Enterprise Resource Planning (ERP); b) for the food and beverage sector firstly the use of Electronic Data Interchange (EDI), ERP, Continuous Replenishment (CR) and Drum-Buffer-Rope Order (DBR) (for situations in which the plants of both companies are distant), and secondly EDI, ERP, Milk-Run and Review System Continues (for situations in which the plants of both companies are close); c) for the garment industry the use of Collaborative Planning, Forecasting, and Replenishment (CPFR) and Constant Work-In-Process (CONWIP) System; d) for the sugarcane sector the use of EDI, ERP and CONWIP System; e) for the mineral processes industry the use of Vendor Managed Inventory (VMI), EDI and MaxMin Control System; f) for the metal mechanical sector the use of CONWIP System and Continuous Replenishment (CR). It should be emphasized that the proposals are exclusively recommended for the relationship between client and supplier studied. Therefore, it cannot be generalized to other cases. However, what can be generalized is the methodology used to choose the best practices for each case. Based on the study, it can be concluded that the combined use of OS and logistics practices enable a better coordination of flow production on SC.

Keywords: supply chain management, production flow coordination, logistics practices, ordering systems

Procedia PDF Downloads 209
22748 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification

Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih

Abstract:

Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.

Keywords: methanol, palm oil, simulation, transesterification, triolein

Procedia PDF Downloads 322