Search results for: porous soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3555

Search results for: porous soil

3255 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection

Authors: Vikas Kumar

Abstract:

The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. Thus, the obtained results are presented numerically and graphically in the paper.

Keywords: axi-symmetric, ferrofluid, magnetic field, porous rotating disk

Procedia PDF Downloads 368
3254 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads

Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad

Abstract:

Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.

Keywords: reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments

Procedia PDF Downloads 265
3253 Soil Surface Insect Diversity of Tobacco Agricultural Ecosystem in Imogiri, Bantul District of Yogyakarta Special Region, Indonesia

Authors: Martina Faika Harianja, Zahtamal, Indah Nuraini, Septi Mutia Handayani, R. C. Hidayat Soesilohadi

Abstract:

Tobacco is a valuable commodity that supports economic growth in Indonesia. Soil surface insects are important components that influence productivity of tobacco. Thus, diversity of soil surface insects needs to be studied in order to acquire information about specific roles of each species in ecosystem. This research aimed to study the soil surface insect diversity of tobacco agricultural ecosystem in Imogiri, Bantul District of Yogyakarta Special Region, Indonesia. Samples were collected by pitfall-sugar bait trap in August 2015. Result showed 5 orders, 8 families, and 17 genera of soil surface insects were found. The diversity category of soil surface insects in tobacco agricultural ecosystem was poor. Dominant genus was Monomorium with dominance index score 0.07588. Percentages of insects’ roles were omnivores 43%, detritivores 24%, predators 19%, and herbivores 14%.

Keywords: diversity, Indonesia, soil surface insect, tobacco

Procedia PDF Downloads 309
3252 Wind Load Reduction Effect of Exterior Porous Skin on Facade Performance

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building envelope design is one of the most popular design fields of architectural profession in nowadays. The main design trend of such system is to highlight the designer's aesthetic intention from the outlook of building project. Due to the trend of current façade design, the building envelope contains more and more layers of components, such as double skin façade, photovoltaic panels, solar control system, or even ornamental components. These exterior components are designed for various functional purposes. Most researchers focus on how these exterior elements should be structurally sound secured. However, not many researchers consider these elements would help to improve the performance of façade system. When the exterior elements are deployed in large scale, it creates an additional layer outside of original façade system and acts like a porous interface which would interfere with the aerodynamic of façade surface in micro-scale. A standard façade performance consists with 'water penetration, air infiltration rate, operation force, and component deflection ratio', and these key performances are majorly driven by the 'Design Wind Load' coded in local regulation. A design wind load is usually determined by the maximum wind pressure which occurs on the surface due to the geometry or location of building in extreme conditions. This research was designed to identify the air damping phenomenon of micro turbulence caused by porous exterior layer leading to surface wind load reduction for improvement of façade system performance. A series of wind tunnel test on dynamic pressure sensor array covered by various scale of porous exterior skin was conducted to verify the effect of wind pressure reduction. The testing specimens were designed to simulate the typical building with two-meter extension offsetting from building surface. Multiple porous exterior skins were prepared to replicate various opening ratio of surface which may cause different level of damping effect. This research adopted 'Pitot static tube', 'Thermal anemometers', and 'Hot film probe' to collect the data of surface dynamic pressure behind porous skin. Turbulence and distributed resistance are the two main factors of aerodynamic which would reduce the actual wind pressure. From initiative observation, the reading of surface wind pressure was effectively reduced behind porous media. In such case, an actual building envelope system may be benefited by porous skin from the reduction of surface wind pressure, which may improve the performance of envelope system consequently.

Keywords: multi-layer facade, porous media, facade performance, turbulence and distributed resistance, wind tunnel test

Procedia PDF Downloads 196
3251 Soil Quality Response to Long-Term Intensive Resources Management and Soil Texture

Authors: Dalia Feiziene, Virginijus Feiza, Agne Putramentaite, Jonas Volungevicius, Kristina Amaleviciute, Sarunas Antanaitis

Abstract:

The investigations on soil conservation are one of the most important topics in modern agronomy. Soil management practices have great influence on soil physico-chemical quality and GHG emission. Research objective: To reveal the sensitivity and vitality of soils with different texture to long-term antropogenisation on Cambisol in Central Lithuania and to compare them with not antropogenised soil resources. Methods: Two long-term field experiments (loam on loam; sandy loam on loam) with different management intensity were estimated. Disturbed and undisturbed soil samples were collected from 5-10, 15-20 and 30-35 cm depths. Soil available P and K contents were determined by ammonium lactate extraction, total N by the dry combustion method, SOC content by Tyurin titrimetric (classical) method, texture by pipette method. In undisturbed core samples soil pore volume distribution, plant available water (PAW) content were determined. A closed chamber method was applied to quantify soil respiration (SR). Results: Long-term resources management changed soil quality. In soil with loam texture, within 0-10, 10-20 and 30-35 cm soil layers, significantly higher PAW, SOC and mesoporosity (MsP) were under no-tillage (NT) than under conventional tillage (CT). However, total porosity (TP) under NT was significantly higher only in 0-10 cm layer. MsP acted as dominant factor for N, P and K accumulation in adequate layers. P content in all soil layers was higher under NT than in CT. N and K contents were significantly higher than under CT only in 0-10 cm layer. In soil with sandy loam texture, significant increase in SOC, PAW, MsP, N, P and K under NT was only in 0-10 cm layer. TP under NT was significantly lower in all layers. PAW acted as strong dominant factor for N, P, K accumulation. The higher PAW the higher NPK contents were determined. NT did not secure chemical quality within deeper layers than CT. Long-term application of mineral fertilisers significantly increased SOC and soil NPK contents primarily in top-soil. Enlarged fertilization determined the significantly higher leaching of nutrients to deeper soil layers (CT) and increased hazards of top-soil pollution. Straw returning significantly increased SOC and NPK accumulation in top-soil. The SR on sandy loam was significantly higher than on loam. At dry weather conditions, on loam SR was higher in NT than in CT, on sandy loam SR was higher in CT than in NT. NPK fertilizers promoted significantly higher SR in both dry and wet year, but suppressed SR on sandy loam during usual year. Not antropogenised soil had similar SOC and NPK distribution within 0-35 cm layer and depended on genesis of soil profile horizons.

Keywords: fertilizers, long-term experiments, soil texture, soil tillage, straw

Procedia PDF Downloads 270
3250 Bearing Capacity of Sulphuric Acid Content Soil

Authors: R. N. Khare, J. P. Sahu, Rajesh Kumar Tamrakar

Abstract:

Tests were conducted to determine the property of soil with variation of H2SO4 content for soils under different stage. The soils had varying amounts of plasticity’s ranging from low to high plasticity. The unsaturated soil behavior was investigated for different conditions, covering a range of compactive efforts and water contents. The soil characteristic curves were more sensitive to changes in compaction effort than changes in compaction water content. In this research paper two types of water (Ground water Ph =7.9, Turbidity= 13 ppm; Cl =2.1mg/l and surface water Ph =8.65; Turbidity=18.5; Cl=1mg/l) were selected of Bhilai Nagar, State-Chhattisgarh, India which is mixed with a certain type of soil. Results shows that by the presence of ground water day by day the particles are becoming coarser in 7 days thereafter its size reduces; on the other hand by the presence of surface water the courser particles are disintegrating, finer particles are accumulating and also the dry density is reduces. Plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, soil characteristic for soils to be compacted in the laboratory and in the field are still under process for analyzing the bearing capacity. The bearing capacity was reduced 2 to 3 times in the presence of H2SO4.

Keywords: soil compaction, H2SO4, soil water, water conditions

Procedia PDF Downloads 507
3249 Use of Geoinformatics and Mathematical Equations to Assess Erosion and Soil Fertility in Cassava Growing Areas in Maha Sarakham Province, Thailand

Authors: Sasirin Srisomkiew, Sireewan Ratsadornasai, Tanomkwan Tipvong, Isariya Meesing

Abstract:

Cassava is an important food source in the tropics and has recently gained attention as a potential source of biofuel that can replace limited fossil fuel sources. As a result, the demand for cassava production to support industries both within the country and abroad has increased. In Thailand, most farmers prefer to grow cassava in sandy and sandy loam areas where the soil has low natural fertility. Cassava is a tuber plant that has large roots to store food, resulting in the absorption of large amounts of nutrients from the soil, such as nitrogen, phosphorus, and potassium. Therefore, planting cassava in the same area for a long period causes soil erosion and decreases soil fertility. The loss of soil fertility affects the economy, society, and food and energy security of the country. Therefore, it is necessary to know the level of soil fertility and the amount of nutrients in the soil. To address this problem, this study applies geo-informatics technology and mathematical equations to assess erosion and soil fertility and to analyze factors affecting the amount of cassava production in Maha Sarakham Province. The results show that the area for cassava cultivation has increased in every district of Maha Sarakham Province between 2015-2022, with the total area increasing to 180,922 rai or 5.47% of the province’s total area during this period. Furthermore, it was found that it is possible to assess areas with soil erosion problems that had a moderate level of erosion in areas with high erosion rates ranging from 5-15 T/rai/year. Soil fertility assessment and information obtained from the soil nutrient map for 2015–2023 reveal that farmers in the area have improved the soil by adding chemical fertilizers along with organic fertilizers, such as manure and green manure, to increase the amount of nutrients in the soil. This is because the soil resources of Maha Sarakham Province mostly have relatively low agricultural potential due to the soil texture being sand and sandy loam. In this scenario, the ability to absorb nutrients is low, and the soil holds little water, so it is naturally low in fertility. Moreover, agricultural soil problems were found, including the presence of saline soil, sandy soil, and acidic soil, which is a serious restriction on land use because it affects the release of nutrients into the soil. The results of this study may be used as a guideline for managing soil resources and improving soil quality to prevent soil degradation problems that may occur in the future.

Keywords: Cassava, geoinformatics, soil erosion, soil fertility, land use change

Procedia PDF Downloads 22
3248 Dynamic Study on the Evaluation of the Settlement of Soil under Sea Dam

Authors: Faroudja Meziani, Amar Kahil

Abstract:

In order to study the variation in settlement of soil under a dyke dam, the modelisation in our study consists of applying an imposed displacement at the base of the mass of soil (consisting of a saturated sand). The imposed displacement follows the evolution of acceleration of the earthquake of Boumerdes 2003 in Algeria. Moreover, the gravity load is taken into consideration by taking account the specific weight of the materials constituting the dyke. The results obtained show that the gravity loads have a direct influence on the evolution of settlement, especially at the center of the dyke where these loads are higher.

Keywords: settlement, dynamic analysis, rockfill dam, effect of earthquake, soil dynamics

Procedia PDF Downloads 112
3247 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement

Authors: Yunha Ryu, Kyoungsik Kim

Abstract:

Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.

Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy

Procedia PDF Downloads 597
3246 Investigating the Potential of Spectral Bands in the Detection of Heavy Metals in Soil

Authors: Golayeh Yousefi, Mehdi Homaee, Ali Akbar Norouzi

Abstract:

Ongoing monitoring of soil contamination by heavy metals is critical for ecosystem stability and environmental protection, and food security. The conventional methods of determining these soil contaminants are time-consuming and costly. Spectroscopy in the visible near-infrared (VNIR) - short wave infrared (SWIR) region is a rapid, non-destructive, noninvasive, and cost-effective method for assessment of soil heavy metals concentration by studying the spectral properties of soil constituents. The aim of this study is to derive spectral bands and important ranges that are sensitive to heavy metals and can be used to estimate the concentration of these soil contaminants. In other words, the change in the spectral properties of spectrally active constituents of soil can lead to the accurate identification and estimation of the concentration of these compounds in soil. For this purpose, 325 soil samples were collected, and their spectral reflectance curves were evaluated at a range of 350-2500 nm. After spectral preprocessing operations, the partial least-squares regression (PLSR) model was fitted on spectral data to predict the concentration of Cu and Ni. Based on the results, the spectral range of Cu- sensitive spectra were 480, 580-610, 1370, 1425, 1850, 1920, 2145, and 2200 nm, and Ni-sensitive ranges were 543, 655, 761, 1003, 1271, 1415, 1903, 2199 nm. Finally, the results of this study indicated that the spectral data contains a lot of information that can be applied to identify the soil properties, such as the concentration of heavy metals, with more detail.

Keywords: heavy metals, spectroscopy, spectral bands, PLS regression

Procedia PDF Downloads 53
3245 Effects of Adding Gypsum in Agricultural Land on Mitigating Splash Erosion on Sandy Loam and Loam Soil Textures, Afghanistan

Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani

Abstract:

Splash erosion in field has affected by factors; slope, rain intensity, soil properties, and plant cover. And also, soil erosion affects not only farmland productivity but also water quality downstream. There are a number of potential soil conservation practices, but many of these are complicated and relatively expensive, such as buffer strips, agro-forestry, counter banking, catchment canal, terracing, surface mulching, reduced tillage, etc. However, mitigation soil and water loss in agricultural land, particularly in arid and semi-arid climatic conditions, is indispensable for environmental protection and agricultural production. The objective of this study is to evaluate the effects of adding gypsum mineral on mitigating splash erosion caused by rain drop. The research was conducted in soil laboratory Badam Bagh Agricultural Researching Farm, Kabul, Afghanistan. The stainless steel cores were used, and constant water pressure was controlled by a Mariotte’s bottle with kinetic energy of raindrops 2.36 x 10⁻⁵J. Gypsum mineral was applied at a rate of 5 and 10 t ha⁻¹ and using a sandy loam and loam soil textures. The result was showed an average soil loss from sandy loam soil texture; control was 8.22%, 4.31% and 4.06% similar from loam soil texture, control was 7.26%, 2.89%, and 2.72% respectively. The application of gypsum mineral significantly (P < 0.05) reduced dispersion of soil particles caused by the impact of raindrops compared to control. Therefore, it was concluded that the addition of gypsum was effective as a measure for mitigating splash erosion.

Keywords: gypsum, soil loss, splash erosion, Afghanistan

Procedia PDF Downloads 107
3244 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia

Authors: Ali H. Mahfouz, Hossam E. M. Sallam, Abdulwali Wazir, Hamod H. Kharezi

Abstract:

The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.

Keywords: soft foundation soil, bearing capacity, bridge ramps, soil improvement, geogrid, PCC piles

Procedia PDF Downloads 370
3243 Electrical Effects during the Wetting-Drying Cycle of Porous Brickwork: Electrical Aspects of Rising Damp

Authors: Sandor Levai, Valentin Juhasz, Miklos Gasz

Abstract:

Rising damp is an extremely complex phenomenon that is of great practical interest to the field of building conservation due to the irreversible damages it can make to old and historic structures. The electrical effects occurring in damp masonry have been scarcely researched and are a largely unknown aspect of rising damp. Present paper describes the typical electrical patterns occurring in porous brickwork during a wetting and drying cycle. It has been found that in contrast with dry masonry, where electrical phenomena are virtually non-existent, damp masonry exhibits a wide array of electrical effects. Long-term real-time measurements performed in the lab on small-scale brick structures, using an array of embedded micro-sensors, revealed significant voltage, current, capacitance and resistance variations which can be linked to the movement of moisture inside porous materials. The same measurements performed on actual old buildings revealed a similar behaviour, the electrical effects being more significant in areas of the brickwork affected by rising damp. Understanding these electrical phenomena contributes to a better understanding of the driving mechanisms of rising damp, potentially opening new avenues of dealing with it in a less invasive manner.

Keywords: brick masonry, electrical phenomena in damp brickwork, porous building materials, rising damp, spontaneous electrical potential, wetting-drying cycle

Procedia PDF Downloads 105
3242 The Feasibility Evaluation Of The Compressed Air Energy Storage System In The Porous Media Reservoir

Authors: Ming-Hong Chen

Abstract:

In the study, the mechanical and financial feasibility for the compressed air energy storage (CAES) system in the porous media reservoir in Taiwan is evaluated. In 2035, Taiwan aims to install 16.7 GW of wind power and 40 GW of photovoltaic (PV) capacity. However, renewable energy sources often generate more electricity than needed, particularly during winter. Consequently, Taiwan requires long-term, large-scale energy storage systems to ensure the security and stability of its power grid. Currently, the primary large-scale energy storage options are Pumped Hydro Storage (PHS) and Compressed Air Energy Storage (CAES). Taiwan has not ventured into CAES-related technologies due to geological and cost constraints. However, with the imperative of achieving net-zero carbon emissions by 2050, there's a substantial need for the development of a considerable amount of renewable energy. PHS has matured, boasting an overall installed capacity of 4.68 GW. CAES, presenting a similar scale and power generation duration to PHS, is now under consideration. Taiwan's geological composition, being a porous medium unlike salt caves, introduces flow field resistance affecting gas injection and extraction. This study employs a program analysis model to establish the system performance analysis capabilities of CAES. The finite volume model is then used to assess the impact of porous media, and the findings are fed back into the system performance analysis for correction. Subsequently, the financial implications are calculated and compared with existing literature. For Taiwan, the strategic development of CAES technology is crucial, not only for meeting energy needs but also for decentralizing energy allocation, a feature of great significance in regions lacking alternative natural resources.

Keywords: compressed-air energy storage, efficiency, porous media, financial feasibility

Procedia PDF Downloads 44
3241 Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil, geotechnical engineering

Procedia PDF Downloads 316
3240 Physical and Chemical Properties during Home Composting of Municipal Organic Solid Waste in Jordan and Production of Organic Fertilizer

Authors: Munir Rusan

Abstract:

Municipal waste management (MWM) represents a cornerstone in the effort to preserve the environment, which guarantees a healthy living environment for communities. MWM is directly affected by population growth and population density, urbanization, and tourism. In Jordan, MWM is currently managed by transferring and dumping waste into landfills. Landfills are mostly saturated and cannot receive any more waste. Besides, the organic waste, which accounts for 50% of municipal waste, will be naturally fermented in the landfills creating an unpleasant odor and emits greenhouse gases as well as generate organic leachates that are harmful to the environment. Organic waste can be aerobically composted and generate organic fertilizer called compost. Compost is very beneficial to soil and plant growth and, in general, to the ecosystem. Home composting is very common in most developed countries, but unfortunately, in developing countries such as Jordan, such an approach is not practiced and is not even socially well acceptable. The objective of this study was to evaluate the physical and chemical properties of home composting materials and to produce compost for further use as a soil amendment. The effect of compost soil application on the soil-plant system was evaluated. The soil application of the compost resulted in enhancing soil organic matter and soil N, P, and K content. The plant growth was also improved quantitatively and qualitatively. It was concluded that composting of municipal organic solid waste and soil application of the compost has a significant positive impact on the environment and soil-plant productivity.

Keywords: composting, organic solid waste, soil, plant

Procedia PDF Downloads 55
3239 Consolidation Behavior of Lebanese Soil and Its Correlation with the Soil Parameters

Authors: Robert G. Nini

Abstract:

Soil consolidation is one of the biggest problem facing engineers. The consolidation process has an important role in settlement analysis for the embankments and footings resting on clayey soils. The settlement amount is related to the compression and the swelling indexes of the soil. Because the predominant upper soil layer in Lebanon is consisting mainly of clay, this layer is a real challenge for structural and highway engineering. To determine the effect of load and drainage on the engineering consolidation characteristics of Lebanese soil, a full experimental and synthesis study was conducted on different soil samples collected from many locations. This study consists of two parts. During the first part which is an experimental one, the Proctor test and the consolidation test were performed on the collected soil samples. After it, the identifications soil tests as hydrometer, specific gravity and Atterberg limits are done. The consolidation test which is the main test in this research is done by loading the soil for some days then an unloading cycle was applied. It takes two weeks to complete a typical consolidation test. Because of these reasons, during the second part of our research which is based on the analysis of the experiments results, some correlations were found between the main consolidation parameters as compression and swelling indexes with the other soil parameters easy to calculate. The results show that the compression and swelling indexes of Lebanese clays may be roughly estimated using a model involving one or two variables in the form of the natural void ratio and the Atterberg limits. These correlations have increasing importance for site engineers, and the proposed model also seems to be applicable to a wide range of clays worldwide.

Keywords: atterberg limits, clay, compression and swelling indexes, settlement, soil consolidation

Procedia PDF Downloads 110
3238 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method

Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy

Abstract:

With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.

Keywords: heat transfer, pde, taguchi optimization, SI/Ge

Procedia PDF Downloads 315
3237 Nickel and Chromium Distributions in Soil and Plant Influenced by Geogenic Sources

Authors: Mohamad Sakizadeh, Fatemeh Mehrabi Sharafabadi, Hadi Ghorbani

Abstract:

Concentrations of Cr and Ni in 97 plant samples (belonged to eight different plant species) and the associated soil groups were considered in this study. The amounts of Ni in soil groups fluctuated between 26.8 and 36.8 mgkg⁻¹ whereas the related levels of chromium ranged from 67.7 to 94.3mgkg⁻¹. The index of geoaccumulation indicated that 87 percents of the studied soils for chromium and 98.8 percents for nickel are located in uncontaminated zone. The results of Mann-Whitney U-test proved that agricultural practices have not significantly influenced the values of Ni and Cr. In addition, tillage had also little impact on the Ni and Cr transfer in the surface soil. Ni showed higher accumulation and soil-to-plant transfer factor compared with that of chromium in the studied plants. There was a high similarity between the accumulation pattern of Cr and Fe in most of the plant species.

Keywords: bioconcentration factor, chromium, geoaccumulation index, nickel

Procedia PDF Downloads 329
3236 Improvement of Deficient Soils in Nigeria Using Bagasse Ash - A Review

Authors: Musa Alhassan, Alhaji Mohammed Mustapha

Abstract:

Review of studies carried out on the use of bagasse ash in the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizer (cement and lime), the studies generally showed improvement of geotechnical properties of the soils either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils. Thus suggesting that using this material at large scale level, in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in Nigeria

Keywords: bagasse ash, black cotton soil, deficient soil, laterite, soil improvement

Procedia PDF Downloads 386
3235 Development and Efficacy Assessment of an Enteric Coated Porous Tablet Loaded with F4 Fimbriae for Oral Vaccination against Enterotoxigenic Escherichia coli Infections

Authors: Atul Srivastava, D. V. Gowda

Abstract:

Enterotoxigenic Escherichia coli (ETEC) infection is one of the major causes contributing to the development of diarrhoea in adults and children in developing countries. To date, no preventive/treatment strategy showed promising results, which could be due to the lack of potent vaccines, and/or due to the development of resistance of ETEC to antibiotics. Therefore, in the present investigation, a novel porous Sodium Alginate (SA) tablet formulation loaded with F4 fimbriae antigen was developed and tested for efficacy against ETEC infections in piglet models. Pre-compression parameters of the powder mixes and post compression parameters of tablets have been evaluated and results were found to be satisfactory. Loading of F4 fimbrial antigens in to the tablets was achieved by inducing pores in the tablets via the sublimation of camphor followed by incubation with purified F4 fimbriae. The loaded tablets have been coated with Eudragit L100 to protect the F4 fimbriae from (a) highly acidic gastric environment; (b) proteolytic cleavage by pepsin; and (c) to promote subsequent release in the intestine. Evaluation of developed F4 fimbrial tablets in a Pig model demonstrated induction of mucosal immunity, and a significant reduction of F4+ E. coli in faeces. Therefore, F4 fimbriae loaded porous tablets could be a novel oral vaccination candidate to induce mucosal and systemic immunity against ETEC infections.

Keywords: porous tablets, sublimation, f4 fimbriae, eudragit l100, vaccination

Procedia PDF Downloads 316
3234 Sustainable Underground Structures Through Soil-Driven Bio-Protection of Concrete

Authors: Abdurahim Abogdera, Omar Hamza, David Elliott

Abstract:

The soil bacteria can be affected by some factors such as pH, calcium ions and Electrical conductivity. Fresh concrete has high pH value, which is between 11 and 13 and these values will be prevented the bacteria to produce CO₂ to participate with Calcium ions that released from the concrete to get calcite. In this study we replaced 15% and 25% of cement with Fly ash as the fly ash reduce the value of the pH at the concrete. The main goal of this study was investigated whether bacteria can be used on the soil rather than in the concrete to avoid the challenges and limitations of containing bacteria inside the concrete. This was achieved by incubating cracked cement mortar specimens into fully saturated sterilized and non-sterilized soil. The crack sealing developed in the specimens during the incubation period in both soil conditions were evaluated and compared. Visual inspection, water absorption test, scanning electron microscopy (SEM), and Energy Dispersive X-ray (EDX) were conducted to evaluate the healing process.

Keywords: pH, calcium ions, MICP, salinity

Procedia PDF Downloads 89
3233 Impact of Fly Ash on Soil Quality in Semi-Arid Region

Authors: Anjuri Srivastava, Akhouri Nishant Bhanu

Abstract:

Soil is a natural material with a distinctive form. It is regarded to be a natural source of nutrients and minerals for plants. It meets many of our needs through the crops, trees, and inhabited places that have grown on or underneath it. Productive and rich soil plays a crucial role in both its wealth and well-being. If any external substance changes the soil's composition, it directly impacts the plant that was grown in that soil. If the soil is deficient in one or more essential components, fly ash can be utilized as fertilizer by incorporating it into the soil. This can also increase the porosity of the soil. Fly ash has a sufficient concentration of essential components to promote the growth of plants. The high concentration of elements in fly ash, including C, Na, K, Fe, and Zn, increases crop yields. Hazardous compounds harm plant life as soon as they get into the soil. The US Environmental Protection Agency and other regulatory agencies have found it as non-hazardous. By employing fly ash as a potential fertilizer supplement for degraded soils, the problem of disposing of solid waste can be partially handled. Fly ash's rapid growth can slow down mineralization because it contains a higher proportion of harmful heavy metals. The chemical characteristics, inclusion ratio, and composting process of fly ash have a significant impact on the fly ash compost’s potential to improve soil nutrition. Research institutions and regulatory agencies have been thoroughly investigating fly ash for a long time. Guard cells on plant leaves that accumulate fly ash trigger the regulatory system. Fly ash increases both chemical and physical damage at certain humidity levels. The lengthy sowing period is caused by the high levels of fly ash in the soil, which also slows down seedling germination and growth. For the sake of human health, it is crucial to consider the bioaccumulation of dangerous heavy metals and their necessary concentrations in plant tissues and soil.

Keywords: soil, fly ash, plant, fertilizer, composts

Procedia PDF Downloads 67
3232 Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips

Authors: R. Ziaie Moayed, M. Hamidzadeh

Abstract:

The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m3. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips.

Keywords: improvement, shear strength, internal friction angle, sandy soil, rubber chip

Procedia PDF Downloads 124
3231 Numerical Analysis of a Strainer Using Porous Media Technique

Authors: Ji-Hoon Byeon, Kwon-Hee Lee

Abstract:

Strainer filter serves to block the inflow of impurities while mixed fluid is entering or exiting the piping. The filter of the strainer has a perforated structure, so that the pressure drop and the velocity change necessarily occur when the mixed fluid passes through the filter. It is possible to predict the pressure drop and velocity change of the strainer by numerical analysis by implementing all the perforated plates. However, if the size of the perforated plate exceeds a certain size, it is difficult to perform the numerical analysis, and sometimes we cannot guarantee its accuracy. In this study, we tried to predict the pressure drop and velocity change by using the porous media technique to obtain the equivalent resistance without actual implementation of the perforation shape of the strainer. Ansys-CFX, a commercial software, is used to perform the numerical analysis. The analysis procedure is as follows. Firstly, the unit pattern of the perforated plate is modeled, and the pressure drop is analyzed by varying the velocity by symmetry of the wall surface. Secondly, since the equation for obtaining resistance is a quadratic equation of pressure having unknown velocity, the viscous resistance and the inertia resistance of the perforated plate are obtained from the relationship between pressure and speed. Thirdly, by using the calculated resistance values, the values are substituted into the flat plate implemented as a two-dimensional porous media, and the accuracy is verified by comparing the pressure drop and the velocity change. Fourthly, the pressure drop and velocity change in the whole strainer are analyzed by using the resistance values obtained on the perforated plate in the actual whole strainer model. Using the porous media technique, it is found that pressure drop and velocity change can be predicted in relatively short time without modeling the overall shape of the filter. Acknowledgements: This work was supported by the Valve Center from the Regional Innovation Center(RIC) Program of Ministry of Trade, Industry & Energy (MOTIE).

Keywords: strainer, porous media, CFD, numerical analysis

Procedia PDF Downloads 341
3230 Sustainable Improvement in Soil Properties and Maize Performance by Organic Fertilizers at Different Levels

Authors: Shahid Iqbal, Haroon Z. Khan, Muhammad Arif

Abstract:

A sustainable agricultural system involving the improvement in soil properties and crop performance cannot be developed without organic fertilizer use. The effects of poultry manure compost (PMC) and pressmud compost (PrMC) at different levels on improving the soil properties and maize performance has not been yet described by any study comprehensively. Thus, field experiments (2011 and 2012) were conducted at Agronomy Research Area, University of Agriculture Faisalabad (31°26'5" N and 73°4'6" E) in sandy loam soil to determine the improvement in soil properties and maize performance due to application of PMC and PrMC each at five different levels (2, 4, 6, 8 and 10 t ha-1). A control (unamended) treatment was also included for comparison. The results indicated that performance of PMC levels was superior to PrMC levels. Increasing both composts levels improved soil properties, maize growth, and stover yield. Results showed that during both years’ highest rates of PMC i.e. 10 and 8 t ha-1 improved the soil properties: ECe, pH, inorganic N, OM, and WHC higher than other treatments. While, 10 and 8 t PMC ha-1 also significantly increased leaf area index (LAI), crop growth rate (CGR) and net assimilation rate (NAR), and stover yield. Similarly, 10 and 8 t PMC ha-1 also improved the grain protein content, but contrarily, grain oil was lowest for 10 and 8 t ha-1 PMC during both years. Moreover, in both years highest gross and net income, and benefit cost ratio was also achieved by 10 and 8 t ha-1 PMC. It is concluded that PMC at rate of 10 and 8 t ha-1 sustainably improved soil properties and maize performance.

Keywords: compost, soil, maize, growth, yield

Procedia PDF Downloads 335
3229 Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion

Authors: Gavin Hutama Farandiarta, Hegi Adi Prabowo, Istiara Rizqillah Hanifah, Millati Hanifah Saprudin, Raden Iqrafia Ashna

Abstract:

The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again.

Keywords: petroleum sewage sludge, remediation soil, thermal desorption, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 214
3228 Velocity Distribution in Open Channels with Sand: An Experimental Study

Authors: E. Keramaris

Abstract:

In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed.

Keywords: particle image velocimetry, sand bed, velocity distribution, Reynolds number

Procedia PDF Downloads 347
3227 Assessment of Cadmium Levels in Soil and Vegetables Grown Along Kubanni Stream Channels, Zaria, Kaduna State

Authors: M. D. Saeed, S. O. Oladeji

Abstract:

Quantitative determination of cadmium levels in soil and vegetables grown along Kubanni stream channels were seasonally analyzed for a period of two years using Atomic Absorption Spectrophotometer (AAS). Results revealed cadmium concentrations ranging from 1.00 – 3.50 mg/Kg for the year 2013 and 1.31 – 7.15 mg/Kg in 2014 for the soil samples while the vegetables (carrot, lettuce, onion, spinach, cabbage, tomato and okro) had concentrations in the range of 0.20 – 6.10 mg/Kg in 2013 and 0.60 – 5.60 mg/Kg in 2014 respectively. Statistical analysis showed no significant difference in cadmium levels across the locations and seasons for soil and vegetable analyzed. Pearson correlation results for cadmium concentrations between the year 2013 and 2014 revealed negligible (r = 0.002) relationship for soils while low (r = 0.395) relationship was obtained for vegetable and these were attributed to heavy application of fertilizers and nature of wastewater use for irrigation. Cadmium levels for both soil and vegetable exceeded the maximum allowable limit set by Standard Organization such as FAO and WHO.

Keywords: cadmium, level, soil, vegetables

Procedia PDF Downloads 496
3226 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic

Authors: Miroslav Dumbrovsky

Abstract:

The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.

Keywords: soil degradation, land consolidation, soil erosion, soil conservation

Procedia PDF Downloads 321