Search results for: logistic regression with random effects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15114

Search results for: logistic regression with random effects

14814 Sero-Prevalence of Hepatitis B Surface Antigen and Associated Factors among Pregnant Mothers Attending Antenatal Care Service, Mekelle, Ethiopia: Evidence from Institutional Based Quantitative Cross-Sectional Study

Authors: Semaw A., Awet H., Yohannes M.

Abstract:

Background: Hepatitis B Virus (HBV) is a major global public health problem. Individuals living in Sub-Sahara Africa have 60% lifetime risk of acquiring HBV infection. Evidences showed that 80-90% of those born from infected mothers developed chronic HBV. Perinatal HBV transmission is a major determinant of HBV carrier status, its chronic squeal and maintains HBV transmission across generations. Method: Institution based cross-sectional study was conducted among 406 pregnant mothers attending Antenatal clinics at Mekelle and Ayder referral hospital from January 30 to April 1/2014. Epidata version 3.1 was used for data entry and SPSS version 21 statistical software was used for data cleaning, management and finally determine associated factors of hepatitis B surface antigen adjusting important confounders using multivariable logistic regression analysis at 5% level of significance. Result: The overall prevalence of hepatitis B surface antigen among pregnant women was 33 (8.1%). The socio-demographic characteristic of the study population showed that there is high positivity among secondary school 189 (46.6%). In the multivariable logistic regression analysis, history of a contact with individuals who had history of hepatitis B infection or jaundice and lifetime number of multiple sexual partners were found to be significantly associated with HBsAg positivity at AOR = 3.73 95%C.I (1.373-10.182) and AOR = 2.57 95%C.I (1.173-5.654), respectively. Moreover, Human Immunodeficiency Virus (HIV) and HBV confection rate was found 3.6%. Conclusion: This study has shown that HBV prevalence in pregnant women is highly prevalent (8.1%) in the study area. Contact with individuals who had a history of hepatitis or have jaundice and report of multiple lifetime sexual partnership were associated with hepatitis B infection. Education about HBV transmission and prevention as well as screening all pregnant mothers shall be sought to reduce the serious public health crisis of HBV.

Keywords: HBsAg, hepatitis B, pregnant women, prevalence

Procedia PDF Downloads 340
14813 Effect of Pregnancy Intention, Postnatal Depressive Symptoms and Social Support on Early Childhood Stunting: Findings from India

Authors: Swati Srivastava, Ashish Kumar Upadhyay

Abstract:

Background: According to United Nation Children’s Fund, it has been estimated that worldwide about 165 million children were stunted in 2012 and India alone accounts for 38% of global burden of stunting. In terms of incidence, India is home of more than 60 million stunted children worldwide. Our study aims to examine the effect of pregnancy intention and maternal postnatal depressive symptoms on early childhood stunting in India. We hypothesized that effect of pregnancy intention and postnatal maternal depressive symptoms were mediated by social support. Methods: We used data from first wave of Young Lives Study India. Out of 2011 children recruited in original cohort, 1833 children had complete information on pregnancy intention, maternal depression and other variables. A series of multivariate logistic regression model were used to examine the effect of pregnancy intention and postnatal depressive symptoms on early childhood stunting. Results: Bivariate result indicates that a higher percent of children born after unintended pregnancy (40%) were stunted than children of intended pregnancy (26%). Likewise, proportion of stunted children was also higher among women of high postnatal depressive symptoms (35%) than low level of depression (24%). Results of multivariate logistic regression model indicate that children born after unintended pregnancy were significantly more likely to be stunted than children born after intended pregnancy (Coefficient: 1.70, CI: 1.17, 2.48). Likewise, early childhood stunting was also associated with maternal postnatal depressive symptoms among women (Coefficient: 1.48, CI: 1.16, 1.88). The effect of pregnancy intention and postnatal depressive symptoms on early childhood stunting remains unchanged after controlling for social support and other variables. Conclusions: The findings of this study provide conclusive evidence regarding consequences of pregnancy intention and postnatal depressive symptoms on early childhood stunting in India. Therefore, there is need to identify the women with unintended pregnancy and incorporate the promotion of mental health into their national reproductive and child health programme.

Keywords: pregnancy intention, postnatal depressive symptoms, social support, childhood stunting, young lives study, India

Procedia PDF Downloads 302
14812 Prevalence and Associated Factors of Chronic Energy Malnutrition among Human Immune Deficiency Virus Infected Pregnant Women in Health Centers of Addis Ababa, Ethiopia

Authors: Getachew Adugna

Abstract:

Background: Chronic energy malnutrition and human immune deficiency virus among pregnant women are highly prevalent in Sub-Saharan Africa, and they are interrelated in a vicious cycle. However, the prevalence of chronic energy malnutrition and its determinant factors among human immune deficiency virus-positive pregnant women is not well studied in Ethiopia and Addis Ababa in particular. Objective: To determine the prevalence & associated factors of chronic energy malnutrition among human immune deficiency virus-positive pregnant women in health centres of Addis Ababa Ethiopia. Methods: An institution-based cross-sectional study was conducted and a systematic random sampling technique was used to select study subjects. A total of 253 study subjects were enrolled in the study—a structured and pre-tested questionnaire collected sociodemographic, maternal health-related, and nutritional-related variables. MUAC measurements were taken and medical charts were reviewed. Bi-variable and multi-variable logistic regression analyses were used to assess the effect of different factors on chronic energy malnutrition. Result: The overall prevalence of chronic energy malnutrition was 32.0%. It was significantly associated with dietary counselling (AOR: 0.062; 95%CI: 0.007, 0.549), CD4 level (AOR: 0.219; 95%CI: 0.025, 1.908), and clinical stage (AOR: 0.127; 95%CI: 0.053, 0.305). Conclusions: The prevalence of chronic energy malnutrition among Human Immune deficiency virus-infected pregnant women in Addis Ababa was high and Nutritional Intervention should be an integral part of the HIV care program.

Keywords: chronic energy malnutrition, HIV, MUAC, Addis Ababa

Procedia PDF Downloads 77
14811 Predicting Expectations of Non-Monogamy in Long-Term Romantic Relationships

Authors: Michelle R. Sullivan

Abstract:

Positive romantic relationships and marriages offer a buffer against a host of physical and emotional difficulties. Conversely, poor relationship quality and marital discord can have deleterious consequences for individuals and families. Research has described non-monogamy, infidelity, and consensual non-monogamy, as both consequential and causal of relationship difficulty, or as a unique way a couple strives to make a relationship work. Much research on consensual non-monogamy has built on feminist theory and critique. To the author’s best knowledge, to date, no studies have examined the predictive relationship between individual and relationship characteristics and expectations of non-monogamy. The current longitudinal study: 1) estimated the prevalence of expectations of partner non-monogamy and 2) evaluated whether gender, sexual identity, age, education, how a couple met, and relationship quality were predictive expectations of partner non-monogamy. This study utilized the publically available longitudinal dataset, How Couples Meet and Stay Together. Adults aged 18- to 98-years old (n=4002) were surveyed by phone over 5 waves from 2009-2014. Demographics and how a couple met were gathered through self-report in Wave 1, and relationship quality and expectations of partner non-monogamy were gathered through self-report in Waves 4 and 5 (n=1047). The prevalence of expectations of partner non-monogamy (encompassing both infidelity and consensual non-monogamy) was 4.8%. Logistic regression models indicated that sexual identity, gender, education, and relationship quality were significantly predictive of expectations of partner non-monogamy. Specifically, male gender, lower education, identifying as lesbian, gay, or bisexual, and a lower relationship quality scores were predictive of expectations of partner non-monogamy. Male gender was not predictive of expectations of partner non-monogamy in the follow up logistic regression model. Age and whether a couple met online were not associated with expectations of partner non-monogamy. Clinical implications include awareness of the increased likelihood of lesbian, gay, and bisexual individuals to have an expectation of non-monogamy and the sequelae of relationship dissatisfaction that may be related. Future research directions could differentiate between non-monogamy subtypes and the person and relationship variables that lead to the likelihood of consensual non-monogamy and infidelity as separate constructs, as well as explore the relationship between predicting partner behavior and actual partner behavioral outcomes.

Keywords: open relationship, polyamory, infidelity, relationship satisfaction

Procedia PDF Downloads 159
14810 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Taiki Baba, Tomoaki Hashimoto

Abstract:

The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.

Keywords: model predictive control, stochastic systems, probabilistic constraints, random dither quantization

Procedia PDF Downloads 282
14809 Developing Logistics Indices for Turkey as an an Indicator of Economic Activity

Authors: Gizem İntepe, Eti Mizrahi

Abstract:

Investment and financing decisions are influenced by various economic features. Detailed analysis should be conducted in order to make decisions not only by companies but also by governments. Such analysis can be conducted either at the company level or on a sectoral basis to reduce risks and to maximize profits. Sectoral disaggregation caused by seasonality effects, subventions, data advantages or disadvantages may appear in sectors behaving parallel to BIST (Borsa Istanbul stock exchange) Index. Proposed logistic indices could serve market needs as a decision parameter in sectoral basis and also helps forecasting activities in import export volume changes. Also it is an indicator of logistic activity, which is also a sign of economic mobility at the national level. Publicly available data from “Ministry of Transport, Maritime Affairs and Communications” and “Turkish Statistical Institute” is utilized to obtain five logistics indices namely as; exLogistic, imLogistic, fLogistic, dLogistic and cLogistic index. Then, efficiency and reliability of these indices are tested.

Keywords: economic activity, export trade data, import trade data, logistics indices

Procedia PDF Downloads 337
14808 Classification for Obstructive Sleep Apnea Syndrome Based on Random Forest

Authors: Cheng-Yu Tsai, Wen-Te Liu, Shin-Mei Hsu, Yin-Tzu Lin, Chi Wu

Abstract:

Background: Obstructive Sleep apnea syndrome (OSAS) is a common respiratory disorder during sleep. In addition, Body parameters were identified high predictive importance for OSAS severity. However, the effects of body parameters on OSAS severity remain unclear. Objective: In this study, the objective is to establish a prediction model for OSAS by using body parameters and investigate the effects of body parameters in OSAS. Methodologies: Severity was quantified as the polysomnography and the mean hourly number of greater than 3% dips in oxygen saturation during examination in a hospital in New Taipei City (Taiwan). Four levels of OSAS severity were classified by the apnea and hypopnea index (AHI) with American Academy of Sleep Medicine (AASM) guideline. Body parameters, including neck circumference, waist size, and body mass index (BMI) were obtained from questionnaire. Next, dividing the collecting subjects into two groups: training and testing groups. The training group was used to establish the random forest (RF) to predicting, and test group was used to evaluated the accuracy of classification. Results: There were 3330 subjects recruited in this study, whom had been done polysomnography for evaluating severity for OSAS. A RF of 1000 trees achieved correctly classified 79.94 % of test cases. When further evaluated on the test cohort, RF showed the waist and BMI as the high import factors in OSAS. Conclusion It is possible to provide patient with prescreening by body parameters which can pre-evaluate the health risks.

Keywords: apnea and hypopnea index, Body parameters, obstructive sleep apnea syndrome, Random Forest

Procedia PDF Downloads 153
14807 Illustrative Effects of Social Capital on Perceived Health Status and Quality of Life among Older Adult in India: Evidence from WHO-Study on Global AGEing and Adults Health India

Authors: Himansu, Bedanga Talukdar

Abstract:

The aim of present study is to investigate the prevalence of various health outcomes and quality of life and analyzes the moderating role of social capital on health outcomes (i.e., self-rated good health (SRH), depression, functional health and quality of life) among elderly in India. Using WHO Study on Global AGEing and adults health (SAGE) data, with sample of 6559 elderly between 50 and above (Mage=61.81, SD=9.00) age were selected for analysis. Multivariate analysis accessed the prevalence of SRH, depression, functional limitation and quality of life among older adults. Logistic regression evaluates the effect of social capital along with other co-founders on SRH, depression, and functional limitation, whereas linear regression evaluates the effect of social capital with other co-founders on quality of life (QoL) among elderly. Empirical results reveal that (74%) of respondents were married, (70%) having low social action, (46%) medium sociability, (45%) low trust-solidarity, (58%) high safety, (65%) medium civic engagement and 37% reported medium psychological resources. The multivariate analysis, explains (SRH) is associated with age, female, having education, higher social action great trust, safety and greater psychological resources. Depression among elderly is greatly related to age, sex, education and higher wealth, higher sociability, having psychological resources. QoL is negatively associated with age, sex, being Muslim, whereas positive associated with higher education, currently married, civic engagement, having wealth, social action, trust and solidarity, safeness, and strong psychological resources.

Keywords: depressive symptom, functional limitation, older adults, quality of life, self rated health, social capital

Procedia PDF Downloads 225
14806 Psychological Impact of the COVID-19 Pandemic on Health Care Workers in Tunisia: Risk and Protective Factor

Authors: Ahmed Sami Hammami, Mohamed Jellazi

Abstract:

Background: The aim of the study is to evaluate the magnitude of different psychological outcomes among Tunisian health care professionals (HCP) during the COVID-19 pandemic and to identify the associated factors. Methods: HCP completed a cross-sectional questionnaire from April 4th to April, 28th 2020. The survey collected demographic information, factors that may interfere with the psychological outcomes, behavior changes and mental health measurements. The latter was assessed through 3 scales; the 7-item questions Insomnia Severity Index, the 2-item Patient Health Questionnaire and the 2-item Generalized Anxiety Disorder. Multivariable logistic regression was conducted to identify factors associated with psychological outcomes. Results: A total of 503 HCP successfully completed the survey; among those, n=493 consented to enroll in the study, 411 [83.4%] were physicians, 323 [64.2%] were women and 271 [55%] had a second-line working position. A significant proportion of HCP had anxiety 35.7%, depression 35.1% and insomnia 23.7%. Females, those with psychiatric history and those using public transport exhibited the highest proportions for overall symptoms compared to other groups e.g., depression among females vs. males: 44,9% vs. 18,2%, P=0.00. Those with a previous medical history and nurses, had more anxiety and insomnia compared to other groups e.g. anxiety among nurses vs. interns/residents vs. attending 45,1% vs 36,1% vs 27,5%; p=0.04. Multivariable logistic regression showed that female gender was a risk factor for all psychological outcomes e.g. female sex increased the odds of anxiety by 2.86; 95% confidence interval [CI], 1, 78-4, 60; P=0.00, whereas having a psychiatric history was a risk factor for both anxiety and insomnia. (e.g. for insomnia OR=2,86; 95% [CI], 1,78-4,60; P=0.00), Having protective equipment was associated with lower risk for depression (OR=0,41; 95% CI, 0,27-0,62; P=0.00) and anxiety. Physical activity was also protective against depression and anxiety (OR=0,41, 95% CI, 0,25-0,67, P=0.00). Conclusion: Psychological symptoms are usually undervalued among HCP, though the COVID-19 pandemic played a major role in exacerbating this burden. Prompt psychological support should be endorsed and simple measures such as physical activity and ensuring the necessary protection are paramount to improve mental health outcomes and the quality of care provided to patients.

Keywords: COVID-19 pandemic, health care professionals, mental health, protective factors, psychological symptoms, risk factors

Procedia PDF Downloads 196
14805 On Increase and Development Prospects of Competitiveness of Georgia’s Transport-Logistical System on the Contemporary Stage

Authors: Ketevan Goletiani

Abstract:

MMultimodal transport is Europe-Asia’s rational decision of the XXI century. Success prerequisite of this form of cargo carriage is not technologic decision, but the comprehensive attitude towards it. Integration of the transport industry must refer to both technical and organizational-economic fields. Support of the multimodal’s must be the priority of the transport policy in different organizations of Europe and Asia. The method of approach to the transport as a unified system has been changed to a certain extent in the market conditions. Nowadays the competition between the different kinds of transport is not to be considered as a competition of one kind of transport towards another one, but is to be considered as a stimulator of the transport development. Basically, transport logistic, as the recent methodology and organization of the rationally flow of cargos at the specialized logistic centres during their procession provides effective rise of such flow of cargos, decreases non-operating expenses and gives the opportunity to the transport companies to come along with the time, to meet market clients’ requirements. It is apparent that the advanced transport-forwarding and logistic firms are being analized.

Keywords: transport systems, multimodal transport, competition, transport logistics

Procedia PDF Downloads 437
14804 Internet Purchases in European Union Countries: Multiple Linear Regression Approach

Authors: Ksenija Dumičić, Anita Čeh Časni, Irena Palić

Abstract:

This paper examines economic and Information and Communication Technology (ICT) development influence on recently increasing Internet purchases by individuals for European Union member states. After a growing trend for Internet purchases in EU27 was noticed, all possible regression analysis was applied using nine independent variables in 2011. Finally, two linear regression models were studied in detail. Conducted simple linear regression analysis confirmed the research hypothesis that the Internet purchases in analysed EU countries is positively correlated with statistically significant variable Gross Domestic Product per capita (GDPpc). Also, analysed multiple linear regression model with four regressors, showing ICT development level, indicates that ICT development is crucial for explaining the Internet purchases by individuals, confirming the research hypothesis.

Keywords: European union, Internet purchases, multiple linear regression model, outlier

Procedia PDF Downloads 303
14803 Antibiotic Prescribing Pattern and Associated Risk Factors Promoting Antibiotic Resistance, a Cross Sectional Study in a Regional Hospital in Ghana

Authors: Nicholas Agyepong, Paul Gyan

Abstract:

Inappropriate prescribing of antibiotic is a common healthcare concern globally resulted in an increased risk of adverse reactions and the emergence of antimicrobial resistance. The wrong antibiotic prescribing habits may lead to ineffective and unsafe treatment, worsening of disease condition, and thus increase in health care costs. The study was to examine the antibiotic prescribing pattern and associated risk factors at Regional Hospital in the Bono region of Ghana. A retrospective cross-sectional study was conducted to describe the current prescribing practices at the Hospital from January 2014 to December, 2021. A systematic random sampling method was used to select the participants for the study. STATA version 16 software was used for data management and analysis. Descriptive statistics and logistic regression analysis were used to analyze the data. Statistical significance set at p<0.05. Antibiotic consumption was equivalent to 11 per 1000 inhabitants consuming 1 DDD per day. Most common prescribed antibiotic was amoxicillin/clavulanic acid (14.39%) followed by erythromycin (11.44%), and ciprofloxacin (11.36%). Antibiotics prescription have been steadily increased over the past eight years (2014: n=59,280 to 2021: n=190,320). Prescribers above the age of 35 were more likely to prescribe antibiotics than those between the ages of 20 and 25 (COR=21.00; 95% CI: 1.78 – 48.10; p=0.016). Prescribers with at least 6 years of experience were also significantly more likely to prescribe antibiotics than those with at most 5 years of experience (COR=14.17; 95% CI: 2.39 – 84.07; p=0.004). Thus, the establishment of an antibiotic stewardship program in the hospitals is imperative, and further studies need to be conducted in other facilities to establish the national antibiotic prescription guideline.

Keywords: antibiotic, antimicrobial resistance, prescription, prescribers

Procedia PDF Downloads 46
14802 A Meta-Analysis of School-Based Suicide Prevention for Adolescents and Meta-Regressions of Contextual and Intervention Factors

Authors: E. H. Walsh, J. McMahon, M. P. Herring

Abstract:

Post-primary school-based suicide prevention (PSSP) is a valuable avenue to reduce suicidal behaviours in adolescents. The aims of this meta-analysis and meta-regression were 1) to quantify the effect of PSSP interventions on adolescent suicide ideation (SI) and suicide attempts (SA), and 2) to explore how intervention effects may vary based on important contextual and intervention factors. This study provides further support to the benefits of PSSP by demonstrating lower suicide outcomes in over 30,000 adolescents following PSSP and mental health interventions and tentatively suggests that intervention effectiveness may potentially vary based on intervention factors. The protocol for this study is registered on PROSPERO (ID=CRD42020168883). Population, intervention, comparison, outcomes, and study design (PICOs) defined eligible studies as cluster randomised studies (n=12) containing PSSP and measuring suicide outcomes. Aggregate electronic database EBSCO host, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched. Cochrane bias tools for cluster randomised studies demonstrated that half of the studies were rated as low risk of bias. The Egger’s Regression Test adapted for multi-level modelling indicated that publication bias was not an issue (all ps > .05). Crude and corresponding adjusted pooled log odds ratios (OR) were computed using the Metafor package in R, yielding 12 SA and 19 SI effects. Multi-level random-effects models accounting for dependencies of effects from the same study revealed that in crude models, compared to controls, interventions were significantly associated with 13% (OR=0.87, 95% confidence interval (CI), [0.78,0.96], Q18 =15.41, p=0.63) and 34% (OR=0.66, 95%CI [0.47,0.91], Q10=16.31, p=0.13) lower odds of SI and SA, respectively. Adjusted models showed similar odds reductions of 15% (OR=0.85, 95%CI[0.75,0.95], Q18=10.04, p=0.93) and 28% (OR=0.72, 95%CI[0.59,0.87], Q10=10.46, p=0.49) for SI and SA, respectively. Within-cluster heterogeneity ranged from no heterogeneity to low heterogeneity for SA across crude and adjusted models (0-9%). No heterogeneity was identified for SI across crude and adjusted models (0%). Pre-specified univariate moderator analyses were not significant for SA (all ps < 0.05). Variations in average pooled SA odds reductions across categories of various intervention characteristics were observed (all ps < 0.05), which preliminarily suggests that the effectiveness of interventions may potentially vary across intervention factors. These findings have practical implications for researchers, clinicians, educators, and decision-makers. Further investigation of important logical, theoretical, and empirical moderators on PSSP intervention effectiveness is recommended to establish how and when PSSP interventions best reduce adolescent suicidal behaviour.

Keywords: adolescents, contextual factors, post-primary school-based suicide prevention, suicide ideation, suicide attempts

Procedia PDF Downloads 104
14801 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling

Authors: M. Khalid, G. N. Singh

Abstract:

In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.

Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error

Procedia PDF Downloads 349
14800 Parametric Approach for Reserve Liability Estimate in Mortgage Insurance

Authors: Rajinder Singh, Ram Valluru

Abstract:

Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.

Keywords: actuarial loss reserving techniques, logistic regression, parametric function, volatility

Procedia PDF Downloads 131
14799 The Factors Predicting Credibility of News in Social Media in Thailand

Authors: Ekapon Thienthaworn

Abstract:

This research aims to study the reliability of the forecasting factor in social media by using survey research methods with questionnaires. The sampling is the group of undergraduate students in Bangkok. A multiple-step random number of 400 persons, data analysis are descriptive statistics with multivariate regression analysis. The research found the average of the overall trust at the intermediate level for reading the news in social media and the results of the multivariate regression analysis to find out the factors that forecast credibility of the media found the only content that has the power to forecast reliability of undergraduate students in Bangkok to reading the news on social media at the significance level.at 0.05.These can be factors with forecasts reliability of news in social media by a variable that has the highest influence factor of the media content and the speed is also important for reliability of the news.

Keywords: credibility of news, behaviors and attitudes, social media, web board

Procedia PDF Downloads 468
14798 Evaluation of the Effect of IMS on the Social Responsibility in the Oil and Gas Production Companies of National Iranian South Oil Fields Company (NISOC)

Authors: Kamran Taghizadeh

Abstract:

This study was aimed at evaluating the effect of IMS including occupational health system, environmental management system, and safety and health system on the social responsibility (case study of NISOC`s oil and gas production companies). This study`s objectives include evaluating the IMS situation and its effect on social responsibility in addition of providing appropriate solutions based on the study`s hypotheses as a basis for future. Data collection was carried out by library and field studies as well as a questionnaire. The stratified random method was the sampling method and a sample of 285 employees in addition to the collected data (from the questionnaire) were analyzed by inferential statistics methods using SPSS software. Finally, results of regression and fitted model at a significance level of 5% confirmed all hypotheses meaning that IMS and its items have a significant effect on social responsibility.

Keywords: social responsibility, integrated management, oil and gas production companies, regression

Procedia PDF Downloads 256
14797 Response Surface Methodology for the Optimization of Paddy Husker by Medium Brown Rice Peeling Machine 6 Rubber Type

Authors: S. Bangphan, P. Bangphan, C. Ketsombun, T. Sammana

Abstract:

Optimization of response surface methodology (RSM) was employed to study the effects of three factor (rubber of clearance, spindle of speed, and rice of moisture) in brown rice peeling machine of the optimal good rice yield (99.67, average of three repeats). The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α=0.05, the values of Regression coefficient, R2 adjust were 96.55% and standard deviation were 1.05056. The independent variables are initial rubber of clearance, spindle of speed and rice of moisture parameters namely. The investigating responses are final rubber clearance, spindle of speed and moisture of rice.

Keywords: brown rice, response surface methodology (RSM), peeling machine, optimization, paddy husker

Procedia PDF Downloads 574
14796 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data

Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates

Abstract:

Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.

Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.

Procedia PDF Downloads 97
14795 Random Subspace Ensemble of CMAC Classifiers

Authors: Somaiyeh Dehghan, Mohammad Reza Kheirkhahan Haghighi

Abstract:

The rapid growth of domains that have data with a large number of features, while the number of samples is limited has caused difficulty in constructing strong classifiers. To reduce the dimensionality of the feature space becomes an essential step in classification task. Random subspace method (or attribute bagging) is an ensemble classifier that consists of several classifiers that each base learner in ensemble has subset of features. In the present paper, we introduce Random Subspace Ensemble of CMAC neural network (RSE-CMAC), each of which has training with subset of features. Then we use this model for classification task. For evaluation performance of our model, we compare it with bagging algorithm on 36 UCI datasets. The results reveal that the new model has better performance.

Keywords: classification, random subspace, ensemble, CMAC neural network

Procedia PDF Downloads 329
14794 Management of Femoral Neck Stress Fractures at a Specialist Centre and Predictive Factors to Return to Activity Time: An Audit

Authors: Charlotte K. Lee, Henrique R. N. Aguiar, Ralph Smith, James Baldock, Sam Botchey

Abstract:

Background: Femoral neck stress fractures (FNSF) are uncommon, making up 1 to 7.2% of stress fractures in healthy subjects. FNSFs are prevalent in young women, military recruits, endurance athletes, and individuals with energy deficiency syndrome or female athlete triad. Presentation is often non-specific and is often misdiagnosed following the initial examination. There is limited research addressing the return–to–activity time after FNSF. Previous studies have demonstrated prognostic time predictions based on various imaging techniques. Here, (1) OxSport clinic FNSF practice standards are retrospectively reviewed, (2) FNSF cohort demographics are examined, (3) Regression models were used to predict return–to–activity prognosis and consequently determine bone stress risk factors. Methods: Patients with a diagnosis of FNSF attending Oxsport clinic between 01/06/2020 and 01/01/2020 were selected from the Rheumatology Assessment Database Innovation in Oxford (RhADiOn) and OxSport Stress Fracture Database (n = 14). (1) Clinical practice was audited against five criteria based on local and National Institute for Health Care Excellence guidance, with a 100% standard. (2) Demographics of the FNSF cohort were examined with Student’s T-Test. (3) Lastly, linear regression and Random Forest regression models were used on this patient cohort to predict return–to–activity time. Consequently, an analysis of feature importance was conducted after fitting each model. Results: OxSport clinical practice met standard (100%) in 3/5 criteria. The criteria not met were patient waiting times and documentation of all bone stress risk factors. Importantly, analysis of patient demographics showed that of the population with complete bone stress risk factor assessments, 53% were positive for modifiable bone stress risk factors. Lastly, linear regression analysis was utilized to identify demographic factors that predicted return–to–activity time [R2 = 79.172%; average error 0.226]. This analysis identified four key variables that predicted return-to-activity time: vitamin D level, total hip DEXA T value, femoral neck DEXA T value, and history of an eating disorder/disordered eating. Furthermore, random forest regression models were employed for this task [R2 = 97.805%; average error 0.024]. Analysis of the importance of each feature again identified a set of 4 variables, 3 of which matched with the linear regression analysis (vitamin D level, total hip DEXA T value, and femoral neck DEXA T value) and the fourth: age. Conclusion: OxSport clinical practice could be improved by more comprehensively evaluating bone stress risk factors. The importance of this evaluation is demonstrated by the population found positive for these risk factors. Using this cohort, potential bone stress risk factors that significantly impacted return-to-activity prognosis were predicted using regression models.

Keywords: eating disorder, bone stress risk factor, femoral neck stress fracture, vitamin D

Procedia PDF Downloads 183
14793 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 73
14792 A Two-Pronged Truncated Deferred Sampling Plan for Log-Logistic Distribution

Authors: Braimah Joseph Odunayo, Jiju Gillariose

Abstract:

This paper is aimed at developing a sampling plan that uses information from precedent and successive lots for lot disposition with a pretention that the life-time of a particular product assumes a Log-logistic distribution. A Two-pronged Truncated Deferred Sampling Plan (TTDSP) for Log-logistic distribution is proposed when the testing is truncated at a precise time. The best possible sample sizes are obtained under a given Maximum Allowable Percent Defective (MAPD), Test Suspension Ratios (TSR), and acceptance numbers (c). A formula for calculating the operating characteristics of the proposed plan is also developed. The operating characteristics and mean-ratio values were used to measure the performance of the plan. The findings of the study show that: Log-logistic distribution has a decreasing failure rate; furthermore, as mean-life ratio increase, the failure rate reduces; the sample size increase as the acceptance number, test suspension ratios and maximum allowable percent defective increases. The study concludes that the minimum sample sizes were smaller, which makes the plan a more economical plan to adopt when cost and time of production are costly and the experiment being destructive.

Keywords: consumers risk, mean life, minimum sample size, operating characteristics, producers risk

Procedia PDF Downloads 140
14791 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes

Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft

Abstract:

Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.

Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization

Procedia PDF Downloads 162
14790 Predictors of Non-Adherence to Pharmacological Therapy in Patients with Type 2 Diabetes

Authors: Anan Jarab, Riham Almrayat, Salam Alqudah, Maher Khdour, Tareq Mukattash, Sharell Pinto

Abstract:

Background: The prevalence of diabetes in Jordan is among the highest in the world, making it a particularly alarming health problem there. It has been indicated that poor adherence to the prescribed therapy lead to poor glycemic control and enhance the development of diabetes complications and unnecessary hospitalization. Purpose: To explore factors associated with medication non-adherence in patients with type 2 diabetes in Jordan. Materials and Methods: Variables including socio-demographics, disease and therapy factors, diabetes knowledge, and health-related quality of life in addition to adherence assessment were collected for 171 patients with type 2 diabetes using custom-designed and validated questionnaires. Logistic regression was performed to develop a model with variables that best predicted medication non-adherence in patients with type 2 diabetes in Jordan. Results: The majority of the patients (72.5%) were non-adherent. Patients were found four times less likely to adhere to their medications with each unit increase in the number of prescribed medications (OR = 0.244, CI = 0.08-0.63) and nine times less likely to adhere to their medications with each unit increase in the frequency of administration of diabetic medication (OR = 0.111, CI = 0.04-2.01). Patients in the present study were also approximately three times less likely (OR = 0.362, CI = 0.24-0.87) to adhere to their medications if they reported having concerns about side effects and twice more likely to adhere to medications (OR = 0.493, CI = 0.08-1.16) if they had one or more micro-vascular complication. Conclusion: The current study revealed low adherence rate to the prescribed therapy among Jordanians with type 2 diabetes. Simplifying dosage regimen, selecting treatments with lower side effects along with an emphasis on diabetes complications should be taken into account when developing care plans for patients with type 2 diabetes.

Keywords: type 2 diabetes, adherence, glycemic control, clinical pharmacist, Jordan

Procedia PDF Downloads 438
14789 Prenatal Can Reduce the Burden of Preterm Birth and Low Birthweight from Maternal Sexually Transmitted Infections: US National Data

Authors: Anthony J. Kondracki, Bonzo I. Reddick, Jennifer L. Barkin

Abstract:

We sought to examine the association of maternal Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), and treponema pallidum (TP) (syphilis) infections with preterm birth (PTB) (<37 weeks gestation), low birth weight (LBW) (<2500 grams) and prenatal care (PNC) attendance. This cross-sectional study was based on data drawn from the 2020 United States National Center for Health Statistics (NCHS) Natality File. We estimated the prevalence of all births, early/late PTBs, moderately/very LBW, and the distribution of sexually transmitted infections (STIs) according to maternal characteristics in the sample. In multivariable logistic regression models, we examined adjusted odds ratios (aORs) and their corresponding 95% confidence intervals (CIs) of PTB and LBW subcategories in the association with maternal/infant characteristics, PNC status, and maternal CT, NG, and TP infections. In separate logistic regression models, we assessed the risk of these newborn outcomes stratified by PNC status. Adjustments were made for race/ethnicity, age, education, marital status, health insurance, liveborn parity, previous preterm birth, gestational hypertension, gestational diabetes, PNC status, smoking, and infant sex. Additionally, in a sensitivity analysis, we assessed the association with early, full, and late term births and the potential impact of unmeasured confounding using the E-value. CT (1.8%) was most prevalent STI in pregnancy, followed by NG (0.3%), and TP (0.1%). Non-Hispanic Black women, 20-24 years old, with a high school education, and on Medicaid had the highest rate of STIs. Around 96.6% of women reported receiving PNC and about 60.0% initiated PNC early in pregnancy. PTB and LBW were strongly associated with NG infection (12.2% and 12.1%, respectively) and late initiation/no PNC (8.5% and 7.6%, respectively), and ≤10 prenatal visits received (13.1% and 10.3%, respectively). The odds of PTB and LBW were 2.5- to 3-foldhigher for each STI among women who received ≤10 prenatal visits than >10 visits. Adequate prenatal care utilization and timely screening and treatment of maternal STIs can substantially reduce the burden of adverse newborn outcomes.

Keywords: low birthweight, prenatal care, preterm birth, sexually transmitted infections

Procedia PDF Downloads 173
14788 Dietary Quality among U.S. Adults with Diabetes, Osteoarthritis, and Rheumatoid Arthritis: Age-Specific Associations from NHANES 2011-2022

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Limited research has examined the variations in dietary quality among U.S. adults diagnosed with chronic conditions like diabetes mellitus (DM), osteoarthritis (OA), and rheumatoid arthritis (RA), particularly across different age groups. Understanding how diet differs in relation to these conditions is crucial to developing targeted nutritional interventions. This cross-sectional study analyzed data from adult participants in the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2021. Dietary quality was measured using the Healthy Eating Index (HEI)-2015 scores, encompassing both total and component scores for different dietary factors. Self-reported disease statuses for DM, OA, and RA were obtained, with age groups stratified into younger adults (20–59 years, n = 10,050) and older adults (60 years and older, n = 5,200). Logistic regression models, adjusted for demographic factors like sex, race/ethnicity, education, income, weight status, physical activity, and smoking, were used to examine the relationship between disease status and dietary quality, accounting for NHANES' complex survey design. Among younger adults, 8% had DM, 10% had OA, and 4% had RA. Among older adults, 22% had DM, 35% had OA, and 7% had RA. The results showed a consistent association between excess added sugar intake and DM in both age groups. In younger adults, excess sodium intake was also linked to DM, while low seafood and plant protein intake was associated with a higher prevalence of RA. Among older adults, a poor overall dietary pattern was strongly associated with RA, while OA showed varying associations depending on the intake of specific nutrients like fiber and saturated fats. The dietary quality of U.S. adults with DM, OA, and RA varies significantly by age group and disease type. Younger adults with these conditions demonstrated more specific dietary inadequacies, such as high sodium and low protein intake, while older adults exhibited a broader pattern of poor dietary quality, particularly in relation to RA. These findings suggest that personalized nutritional strategies are needed to address the unique dietary challenges faced by individuals with chronic conditions in different age groups.

Keywords: dietary, diabetes, osteoarthritis, rheumatoid arthritis, logistic regression

Procedia PDF Downloads 9
14787 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Tomoaki Hashimoto

Abstract:

Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.

Keywords: optimal control, stochastic systems, random dither, quantization

Procedia PDF Downloads 445
14786 Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution

Authors: P. Zarfam, M. Mansouri Baghbaderani

Abstract:

In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too.

Keywords: modal pushover analysis, concrete structure, seismic damage, log-normal distribution, logistic distribution

Procedia PDF Downloads 246
14785 The Association between Self-Efficacy and Hypertension Self-Care Behavior among Patients with Hypertension

Authors: Fazel Zinat Motlagh, Reza Chaman, Rashid Ghafari, Zahra Behzad, Ahmad Ali Eslami

Abstract:

Background: Chronic disease management requires the individual to perform several self-care behaviors. Self-efficacy, a widely used psychosocial concept, is associated with the ability to manage chronic disease. In this study, we examine the association between self-efficacy and self-care behaviors related to hypertension. Methods: In this cross-sectional study, conducted in Kohgiluye Boyer Ahmad province, the south of Iran, a total of 1836 hypertension patients, were randomly selected and participated in the study. Self-care behavior was measured with using H-SCALE (Hypertension Self-Care Activity Level Effects). Logistic regression conducted to detect correlation between self-efficacy and adherence to hypertension self-care behaviors. Results: Less than half (40.8%) of the participants reported that they have good self-efficacy to manage hypertension. Good self-efficacy was significantly associated with improve in adherence to medication (95% CI: 1.68, 1.83), eating a low-salt diet (95% CI: 1.44–1.73), physical activity (95% CI: 1.39–1.55), quit smoking (95% CI: 0.38–0.47), and weight management techniques (95% CI: 0.66–0.82). Conclusion: Hypertension self-efficacy was associated with adherence to self-care behaviors among adult with hypertension. According to our finding hypertension is a manageable condition. Self-efficacy is important factor in adherence with self-care behaviors related with hypertension.

Keywords: self-efficacy, hypertension, self-care, Iran

Procedia PDF Downloads 545