Search results for: logistic model tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17999

Search results for: logistic model tree

17699 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 79
17698 Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia

Authors: Zouhaier Nasr, Mohamed Nouri

Abstract:

The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%.

Keywords: forest, soil, carbon, climate change, Tunisia

Procedia PDF Downloads 131
17697 Association of Maternal Age, Ethnicity and BMI with Gestational Diabetes Prevalence in Multi-Racial Singapore

Authors: Nur Atiqah Adam, Mor Jack Ng, Bernard Chern, Kok Hian Tan

Abstract:

Introduction: Gestational diabetes (GDM) is a common pregnancy complication with short and long-term health consequences for both mother and fetus. Factors such as family history of diabetes mellitus, maternal obesity, maternal age, ethnicity and parity have been reported to influence the risk of GDM. In a multi-racial country like Singapore, it is worthwhile to study the GDM prevalences of different ethnicities. We aim to investigate the influence of ethnicity on the racial prevalences of GDM in Singapore. This is important as it may help us to improve guidelines on GDM healthcare services according to significant risk factors unique to Singapore. Materials and Methods: Obstetric cohort data of 926 singleton deliveries in KK Women’s and Children’s Hospital (KKH) from 2011 to 2013 was obtained. Only patients aged 18 and above and without complicated pregnancies or chronic illnesses were targeted. Factors such as ethnicity, maternal age, parity and maternal body mass index (BMI) at booking visit were studied. A multivariable logistic regression model, adjusted for confounders, was used to determine which of these factors are significantly associated with an increased risk of GDM. Results: The overall GDM prevalence rate based on WHO 1999 criteria & at risk screening (race alone not a risk factor) was 8.86%. GDM rates were higher among women above 35 years old (15.96%), obese (15.15%) and multiparous women (10.12%). Indians had a higher GDM rate (13.0 %) compared to the Chinese (9.57%) and Malays (5.20%). However, using multiple logistic regression model, variables that are significantly related to GDM rates were maternal age (p < 0.001) and maternal BMI at booking visit (p = 0.006). Conclusion: Maternal age (p < 0.001) and maternal booking BMI (p = 0.006) are the strongest risk factors for GDM. Ethnicity per se does not seem to have a significant influence on the prevalence of GDM in Singapore (p = 0.064). Hence we should tailor guidelines on GDM healthcare services according to maternal age and booking BMI rather than ethnicity.

Keywords: ethnicity, gestational diabetes, healthcare, pregnancy

Procedia PDF Downloads 226
17696 Decision-Tree-Based Foot Disorders Classification Using Demographic Variable

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi

Abstract:

Background:-Due to the essential role of the foot in movement, foot disorders (FDs) have significant impacts on activity and quality of life. Many studies confirmed the association between FDs and demographic characteristics. On the other hand, recent advances in data collection and statistical analysis led to an increase in the volume of databases. Analysis of patient’s data through the decision tree can be used to explore the relationship between demographic characteristics and FDs. Significance of the study: This study aimed to investigate the relationship between demographic characteristics with common FDs. The second purpose is to better inform foot intervention, we classify FDs based on demographic variables. Methodologies: We analyzed 2323 subjects with pes-planus (PP), pes-cavus (PC), hallux-valgus (HV) and plantar-fasciitis (PF) who were referred to a foot therapy clinic between 2015 and 2021. Subjects had to fulfill the following inclusion criteria: (1) weight between 14 to 150 kilogram, (2) height between 30 to 220, (3) age between 3 to 100 years old, and (4) BMI between 12 to 35. Medical archives of 2323 subjects were recorded retrospectively and all the subjects examined by an experienced physician. Age and BMI were classified into five and four groups, respectively. 80% of the data were randomly selected as training data and 20% tested. We build a decision tree model to classify FDs using demographic characteristics. Findings: Results demonstrated 981 subjects from 2323 (41.9%) of people who were referred to the clinic with FDs were diagnosed as PP, 657 (28.2%) PC, 628 (27%) HV and 213 (9%) identified with PF. The results revealed that the prevalence of PP decreased in people over 18 years of age and in children over 7 years. In adults, the prevalence depends first on BMI and then on gender. About 10% of adults and 81% of children with low BMI have PP. There is no relationship between gender and PP. PC is more dependent on age and gender. In children under 7 years, the prevalence was twice in girls (10%) than boys (5%) and in adults over 18 years slightly higher in men (62% vs 57%). HV increased with age in women and decreased in men. Aging and obesity have increased the prevalence of PF. We conclude that the accuracy of our approach is sufficient for most research applications in FDs. Conclusion:-The increased prevalence of PP in children is probably due to the formation of the arch of the foot at this age. Increasing BMI by applying high pressure on the foot can increase the prevalence of this disorder in the foot. In PC, the Increasing prevalence of PC from women to men with age may be due to genetics and innate susceptibility of men to this disorder. HV is more common in adult women, which may be due to environmental reasons such as shoes, and the prevalence of PF in obese adult women may also be due to higher foot pressure and housekeeping activities.

Keywords: decision tree, demographic characteristics, foot disorders, machine learning

Procedia PDF Downloads 262
17695 Building and Tree Detection Using Multiscale Matched Filtering

Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan

Abstract:

In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.

Keywords: building detection, local maximum filtering, matched filtering, multiscale

Procedia PDF Downloads 320
17694 Fault Study and Reliability Analysis of Rotative Machine

Authors: Guang Yang, Zhiwei Bai, Bo Sun

Abstract:

This paper analyzes the influence of failure mode and harmfulness of rotative machine according to FMECA (Failure Mode, Effects, and Criticality Analysis) method, and finds out the weak links that affect the reliability of this equipment. Also in this paper, fault tree analysis software is used for quantitative and qualitative analysis, pointing out the main factors of failure of this equipment. Based on the experimental results, this paper puts forward corresponding measures for prevention and improvement, and fundamentally improves the inherent reliability of this rotative machine, providing the basis for the formulation of technical conditions for the safe operation of industrial applications.

Keywords: rotative machine, reliability test, fault tree analysis, FMECA

Procedia PDF Downloads 154
17693 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology

Authors: Sanjeev Kumar Appicharla

Abstract:

This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety-critical incident to raise awareness of biases in the systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors, and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the methodology used to model and analyze the safety-critical incident. The SIRI methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the management oversight and risk tree technique. The benefits of the systems for investigation of railway interfaces methodology (SIRI) are threefold: first is that it incorporates the “Heuristics and Biases” approach advanced by 2002 Nobel laureate in Economic Sciences, Prof Daniel Kahneman, in the management oversight and risk tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of the role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling techniques. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organizational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signaling firms and transport planners, and front-line staff such that lessons are learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner's and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision-making and risk management processes and practices in the IEC 15288 systems engineering standard and in the industrial context such as the GB railways and artificial intelligence (AI) contexts as well.

Keywords: accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach

Procedia PDF Downloads 188
17692 Identifying Psychosocial, Autonomic, and Pain Sensitivity Risk Factors of Chronic Temporomandibular Disorder by Using Ridge Logistic Regression and Bootstrapping

Authors: Haolin Li, Eric Bair, Jane Monaco, Quefeng Li

Abstract:

The temporomandibular disorder (TMD) is a series of musculoskeletal disorders ranging from jaw pain to chronic debilitating pain, and the risk factors for the onset and maintenance of TMD are still unclear. Prior researches have shown that the potential risk factors for chronic TMD are related to psychosocial factors, autonomic functions, and pain sensitivity. Using data from the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study’s baseline case-control study, we examine whether the risk factors identified by prior researches are still statistically significant after taking all of the risk measures into account in one single model, and we also compare the relative influences of the risk factors in three different perspectives (psychosocial factors, autonomic functions, and pain sensitivity) on the chronic TMD. The statistical analysis is conducted by using ridge logistic regression and bootstrapping, in which the performance of the algorithms has been assessed using extensive simulation studies. The results support most of the findings of prior researches that there are many psychosocial and pain sensitivity measures that have significant associations with chronic TMD. However, it is surprising that most of the risk factors of autonomic functions have not presented significant associations with chronic TMD, as described by a prior research.

Keywords: autonomic function, OPPERA study, pain sensitivity, psychosocial measures, temporomandibular disorder

Procedia PDF Downloads 188
17691 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 44
17690 Trees for Air Pollution Tolerance to Develop Green Belts as an Ecological Mitigation

Authors: Rahma Al Maawali, Hameed Sulaiman

Abstract:

Air pollution both from point and non-point sources is difficult to control once released in to the atmosphere. There is no engineering method known available to ameliorate the dispersed pollutants. The only suitable approach is the ecological method of constructing green belts in and around the pollution sources. Air pollution in Muscat, Oman is a serious concern due to ever increasing vehicles on roads. Identifying the air pollution tolerance levels of species is important for implementing pollution control strategies in the urban areas of Muscat. Hence, in the present study, Air Pollution Tolerance Index (APTI) for ten avenue tree species was evaluated by analyzing four bio-chemical parameters, plus their Anticipated Performance Index (API) in field conditions. Based on the two indices, Ficus benghalensis was the most suitable one with the highest performance score. Conocarpus erectuse, Phoenix dactylifera, and Pithcellobium dulce were found to be good performers and are recommended for extensive planting. Azadirachta indica which is preferred for its dense canopy is qualified in the moderate category. The rest of the tree species expressed lower API score of less than 51, hence cannot be considered as suitable species for pollution mitigation plantation projects.

Keywords: air pollution tolerance index (APTI), avenue tree species, bio-chemical parameters, muscat

Procedia PDF Downloads 284
17689 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods

Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer

Abstract:

The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.

Keywords: MMOG, decision tree, genetics, gaming-learning interaction

Procedia PDF Downloads 357
17688 Experimental Investigation and Numerical Simulations of the Cylindrical Machining of a Ti-6Al-4V Tree

Authors: Mohamed Sahli, David Bassir, Thierry Barriere, Xavier Roizard

Abstract:

Predicting the behaviour of the Ti-6Al-4V alloy during the turning operation was very important in the choice of suitable cutting tools and also in the machining strategies. In this study, a 3D model with thermo-mechanical coupling has been proposed to study the influence of cutting parameters and also lubrication on the performance of cutting tools. The constants of the constitutive Johnson-Cook model of Ti-6Al-4V alloy were identified using inverse analysis based on the parameters of the orthogonal cutting process. Then, numerical simulations of the finishing machining operation were developed and experimentally validated for the cylindrical stock removal stage with the finishing cutting tool.

Keywords: titanium turning, cutting tools, FE simulation, chip

Procedia PDF Downloads 173
17687 A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks

Authors: Sungchul Ha, Hyunwoo Kim

Abstract:

In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms.

Keywords: MANETs, IDS, power control, minimum spanning tree

Procedia PDF Downloads 372
17686 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network

Authors: Sajjad Baghernezhad

Abstract:

Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.

Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm

Procedia PDF Downloads 66
17685 A New Tactical Optimization Model for Bioenergy Supply Chain

Authors: Birome Holo Ba, Christian Prins, Caroline Prodhon

Abstract:

Optimization is an important aspect of logistics management. It can reduce significantly logistics costs and also be a good tool for decision support. In this paper, we address a planning problem specific to biomass supply chain. We propose a new mixed integer linear programming (MILP) model dealing with different feed stock production operations such as harvesting, packing, storage, pre-processing and transportation, with the objective of minimizing the total logistic cost of the system on a regional basis. It determines the optimal number of harvesting machine, the fleet size of trucks for transportation and the amount of each type of biomass harvested, stored and pre-processed in each period to satisfy demands of refineries in each period. We illustrate the effectiveness of the proposal model with a numerical example, a case study in Aube (France department), which gives preliminary and interesting, results on a small test case.

Keywords: biomass logistics, supply chain, modelling, optimization, bioenergy, biofuels

Procedia PDF Downloads 514
17684 Application of Machine Learning Techniques in Forest Cover-Type Prediction

Authors: Saba Ebrahimi, Hedieh Ashrafi

Abstract:

Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.

Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset

Procedia PDF Downloads 217
17683 Personalized Infectious Disease Risk Prediction System: A Knowledge Model

Authors: Retno A. Vinarti, Lucy M. Hederman

Abstract:

This research describes a knowledge model for a system which give personalized alert to users about infectious disease risks in the context of weather, location and time. The knowledge model is based on established epidemiological concepts augmented by information gleaned from infection-related data repositories. The existing disease risk prediction research has more focuses on utilizing raw historical data and yield seasonal patterns of infectious disease risk emergence. This research incorporates both data and epidemiological concepts gathered from Atlas of Human Infectious Disease (AHID) and Centre of Disease Control (CDC) as basic reasoning of infectious disease risk prediction. Using CommonKADS methodology, the disease risk prediction task is an assignment synthetic task, starting from knowledge identification through specification, refinement to implementation. First, knowledge is gathered from AHID primarily from the epidemiology and risk group chapters for each infectious disease. The result of this stage is five major elements (Person, Infectious Disease, Weather, Location and Time) and their properties. At the knowledge specification stage, the initial tree model of each element and detailed relationships are produced. This research also includes a validation step as part of knowledge refinement: on the basis that the best model is formed using the most common features, Frequency-based Selection (FBS) is applied. The portion of the Infectious Disease risk model relating to Person comes out strongest, with Location next, and Weather weaker. For Person attribute, Age is the strongest, Activity and Habits are moderate, and Blood type is weakest. At the Location attribute, General category (e.g. continents, region, country, and island) results much stronger than Specific category (i.e. terrain feature). For Weather attribute, Less Precise category (i.e. season) comes out stronger than Precise category (i.e. exact temperature or humidity interval). However, given that some infectious diseases are significantly more serious than others, a frequency based metric may not be appropriate. Future work will incorporate epidemiological measurements of disease seriousness (e.g. odds ratio, hazard ratio and fatality rate) into the validation metrics. This research is limited to modelling existing knowledge about epidemiology and chain of infection concepts. Further step, verification in knowledge refinement stage, might cause some minor changes on the shape of tree.

Keywords: epidemiology, knowledge modelling, infectious disease, prediction, risk

Procedia PDF Downloads 242
17682 Smallholder Farmers’ Adaptation Strategies and Socioeconomic Determinants of Climate Variability in Boset District, Oromia, Ethiopia

Authors: Hurgesa Hundera, Samuel Shibeshibikeko, Tarike Daba, Tesfaye Ganamo

Abstract:

The study aimed at examining the ongoing adaptation strategies used by smallholder farmers in response to climate variability in Boset district. It also assessed the socioeconomic factors that influence the choice of adaptation strategies of smallholder farmers to climate variability risk. For attaining the objectives of the study, both primary and secondary sources of data were employed. The primary data were obtained through a household questionnaire, key informant interviews, focus group discussions, and observations, while secondary data were acquired through desk review. Questionnaires were distributed and filled by 328 respondents, and they were identified through systematic random sampling technique. Descriptive statistics and binary logistic regression model were applied in this study as the main analytical methods. The findings of the study reveal that the sample households have utilized multiple adaptation strategies in response to climate variability, such as cropping early mature crops, planting drought resistant crops, growing mixed crops on the same farm lands, and others. The results of the binary logistic model revealed that education, sex, age, family size, off farm income, farm experience, access to climate information, access to farm input, and farm size were significant and key factors determining farmers’ choice of adaptation strategies to climate variability in the study area. To enable effective adaptation measures, Ministry of Agriculture and Natural Resource, with its regional bureaus and offices and concerned non–governmental organizations, should consider climate variability in their planning and budgeting in all levels of decision making.

Keywords: adaptation strategies, boset district, climate variability, smallholder farmers

Procedia PDF Downloads 87
17681 A Preliminary Report of HBV Full Genome Sequencing Derived from Iranian Intravenous Drug Users

Authors: Maryam Vaezjalali, Koroush Rahimian, Maryam Asli, Tahmineh Kandelouei, Foad Davoodbeglou, Amir H. Kashi

Abstract:

Objectives: The present study was conducted to assess the HBV molecular profiles including genotypes, subgenotypes, subtypes & mutations in hepatitis B genes. Materials/Patients and Methods: This study was conducted on 229 intravenous drug users who referred to three Drop- in-Centers and a hospital in Tehran. HBV DNA was extracted from HBsAg positive serum samples and amplified by Nested PCR. HBV genotype, subgenotypes, subtype and genes mutation were determined by direct sequencing. Phylogenetic tree was constructed using neighbor- joining (NJ) method. Statistical analyses were carried out by SPSS 20. Results: HBV DNA was found in 3 HBsAg positive cases. Phylogenetic tree of derived HBV DNAs showed the existence of genotype D (subgenotype D1, subtype ayw2). Also immune escape mutations were determined in S gene. Conclusion: There were a few variations and genotypes and subtypes among infected intravenous drug users. This study showed the predominance of genotype D among intravenous drug users. Our study concurs with other reports from Iran, that all showing currently only genotype D is the only detectable genotype in Iran.

Keywords: drug users, genotype, HBV, phylogenetic tree

Procedia PDF Downloads 326
17680 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 322
17679 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model

Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf

Abstract:

Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.

Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV

Procedia PDF Downloads 126
17678 Analysis on Thermococcus achaeans with Frequent Pattern Mining

Authors: Jeongyeob Hong, Myeonghoon Park, Taeson Yoon

Abstract:

After the advent of Achaeans which utilize different metabolism pathway and contain conspicuously different cellular structure, they have been recognized as possible materials for developing quality of human beings. Among diverse Achaeans, in this paper, we compared 16s RNA Sequences of four different species of Thermococcus: Achaeans genus specialized in sulfur-dealing metabolism. Four Species, Barophilus, Kodakarensis, Hydrothermalis, and Onnurineus, live near the hydrothermal vent that emits extreme amount of sulfur and heat. By comparing ribosomal sequences of aforementioned four species, we found similarities in their sequences and expressed protein, enabling us to expect that certain ribosomal sequence or proteins are vital for their survival. Apriori algorithms and Decision Tree were used. for comparison.

Keywords: Achaeans, Thermococcus, apriori algorithm, decision tree

Procedia PDF Downloads 290
17677 An Automatic Generating Unified Modelling Language Use Case Diagram and Test Cases Based on Classification Tree Method

Authors: Wassana Naiyapo, Atichat Sangtong

Abstract:

The processes in software development by Object Oriented methodology have many stages those take time and high cost. The inconceivable error in system analysis process will affect to the design and the implementation process. The unexpected output causes the reason why we need to revise the previous process. The more rollback of each process takes more expense and delayed time. Therefore, the good test process from the early phase, the implemented software is efficient, reliable and also meet the user’s requirement. Unified Modelling Language (UML) is the tool which uses symbols to describe the work process in Object Oriented Analysis (OOA). This paper presents the approach for automatically generated UML use case diagram and test cases. UML use case diagram is generated from the event table and test cases are generated from use case specifications and Graphic User Interfaces (GUI). Test cases are derived from the Classification Tree Method (CTM) that classify data to a node present in the hierarchy structure. Moreover, this paper refers to the program that generates use case diagram and test cases. As the result, it can reduce work time and increase efficiency work.

Keywords: classification tree method, test case, UML use case diagram, use case specification

Procedia PDF Downloads 162
17676 Angular-Coordinate Driven Radial Tree Drawing

Authors: Farshad Ghassemi Toosi, Nikola S. Nikolov

Abstract:

We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other.

Keywords: Radial drawing, Visualization, Algorithm, Use of node-link diagrams

Procedia PDF Downloads 338
17675 Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames

Authors: R. Gary Black, Abolhassan Astaneh-Asl

Abstract:

The International Building Code (IBC) and the California Building Code (CBC) both recognize four basic types of steel seismic resistant frames; moment frames, concentrically braced frames, shear walls and eccentrically braced frames. Based on specified geometries and detailing, the seismic performance of these steel frames is well understood. In 2011, the authors designed an innovative steel braced frame system with tapering members in the general shape of a branching tree as a seismic retrofit solution to an existing four story “lift-slab” building. Located in the seismically active San Francisco Bay Area of California, a frame of this configuration, not covered by the governing codes, would typically require model or full scale testing to obtain jurisdiction approval. This paper describes how the theories, protocols, and code requirements of eccentrically braced frames (EBFs) were employed to satisfy the 2009 International Building Code (IBC) and the 2010 California Building Code (CBC) for seismically resistant steel frames and permit construction of these nonconforming geometries.

Keywords: eccentrically braced frame, lift slab construction, seismic retrofit, shear link, steel design

Procedia PDF Downloads 468
17674 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining

Authors: Hina Kausher, Sangita Srivastava

Abstract:

In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.

Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments

Procedia PDF Downloads 133
17673 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius

Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė

Abstract:

With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.

Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter

Procedia PDF Downloads 53
17672 Evaluation of Collect Tree Protocol for Structural Health Monitoring System Using Wireless Sensor Networks

Authors: Amira Zrelli, Tahar Ezzedine

Abstract:

Routing protocol may enhance the lifetime of sensor network, it has a highly importance, especially in wireless sensor network (WSN). Therefore, routing protocol has a big effect in these networks, thus the choice of routing protocol must be studied before setting up our network. In this work, we implement the routing protocol collect tree protocol (CTP) which is one of the hierarchic protocols used in structural health monitoring (SHM). Therefore, to evaluate the performance of this protocol, we choice to work with Contiki system and Cooja simulator. By throughput and RSSI evaluation of each node, we will deduce about the utility of CTP in structural monitoring system.

Keywords: CTP, WSN, SHM, routing protocol

Procedia PDF Downloads 296
17671 Investigating the Impacts on Cyclist Casualty Severity at Roundabouts: A UK Case Study

Authors: Nurten Akgun, Dilum Dissanayake, Neil Thorpe, Margaret C. Bell

Abstract:

Cycling has gained a great attention with comparable speeds, low cost, health benefits and reducing the impact on the environment. The main challenge associated with cycling is the provision of safety for the people choosing to cycle as their main means of transport. From the road safety point of view, cyclists are considered as vulnerable road users because they are at higher risk of serious casualty in the urban network but more specifically at roundabouts. This research addresses the development of an enhanced mathematical model by including a broad spectrum of casualty related variables. These variables were geometric design measures (approach number of lanes and entry path radius), speed limit, meteorological condition variables (light, weather, road surface) and socio-demographic characteristics (age and gender), as well as contributory factors. Contributory factors included driver’s behavior related variables such as failed to look properly, sudden braking, a vehicle passing too close to a cyclist, junction overshot, failed to judge other person’s path, restart moving off at the junction, poor turn or manoeuvre and disobeyed give-way. Tyne and Wear in the UK were selected as a case study area. The cyclist casualty data was obtained from UK STATS19 National dataset. The reference categories for the regression model were set to slight and serious cyclist casualties. Therefore, binary logistic regression was applied. Binary logistic regression analysis showed that approach number of lanes was statistically significant at the 95% level of confidence. A higher number of approach lanes increased the probability of severity of cyclist casualty occurrence. In addition, sudden braking statistically significantly increased the cyclist casualty severity at the 95% level of confidence. The result concluded that cyclist casualty severity was highly related to approach a number of lanes and sudden braking. Further research should be carried out an in-depth analysis to explore connectivity of sudden braking and approach number of lanes in order to investigate the driver’s behavior at approach locations. The output of this research will inform investment in measure to improve the safety of cyclists at roundabouts.

Keywords: binary logistic regression, casualty severity, cyclist safety, roundabout

Procedia PDF Downloads 177
17670 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)

Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean

Abstract:

The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.

Keywords: pan evaporation, intelligent methods, shahroud, mayamey

Procedia PDF Downloads 74