Search results for: load-bearing biological materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8694

Search results for: load-bearing biological materials

8394 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials

Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi

Abstract:

Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.

Keywords: building materials, heat transfer, moisture diffusion, numerical solution

Procedia PDF Downloads 269
8393 Microdosimetry in Biological Cells: A Monte Carlo Method

Authors: Hamidreza Jabal Ameli, Anahita Movahedi

Abstract:

Purpose: In radionuclide therapy, radioactive atoms are coupled to monoclonal antibodies (mAbs) for treating cancer tumor while limiting radiation to healthy tissues. We know that tumoral and normal tissues are not equally sensitive to radiation. In fact, biological effects such as cellular repair processes or the presence of less radiosensitive cells such as hypoxic cells should be taken account. For this reason, in this paper, we want to calculate biological effect dose (BED) inside tumoral area and healthy cells around tumors. Methods: In this study, deposited doses of a radionuclide, gold-198, inside cells lattice and surrounding healthy tissues were calculated with Monte Carlo method. The elemental compositions and density of malignant and healthy tissues were obtained from ICRU Report 44. For reaching to real condition of oxygen effects, the necrosis and hypoxia area inside tumors has been assessed. Results: With regard to linear-quadratic expression which was defined in Monte Carlo, results showed that a large amount of BED is deposited in the well-oxygenated part of the hypoxia area compared to necrosis area. Moreover, there is a significant difference between the curves of absorbed dose with BED and without BED.

Keywords: biological dose, monte carlo, hypoxia, radionuclide therapy

Procedia PDF Downloads 466
8392 Biological Activities of Species in the Genus Tulbaghia: A Review

Authors: S. Takaidza, M. Pillay, F. Mtunzi

Abstract:

Since time immemorial, plants have been used by several communities to treat a large number of diseases. Numerous studies on the pharmacology of medicinal plants have been done. Medicinal plants constitute a potential source for the production of new medicines and may complement conventional antimicrobials and probably decrease health costs. Phytochemical compounds in plants are known to be biologically active aiding, for example, as antioxidants and antimicrobials. The overwhelming challenge of drug resistance has resulted in an increasing trend towards using medicinal plants to treat various diseases, especially in developing countries. Species of the genus Tulbaghia has been widely used in traditional medicine to treat various ailments such rheumatism, fits, fever, earache, tuberculosis etc. It is believed that the species possess several therapeutic properties. This paper evaluates some of the biological activities of the genus Tulbaghia. It is evident from current literature that T. violacea is the most promising species. The other species of Tulbaghia still require further studies to ascertain their medicinal potential.

Keywords: biological activities, antimicrobial, antioxidant, phytochemicals, tulbaghia

Procedia PDF Downloads 357
8391 Test of Biological Control against Brachytrupes Megacephalus Lefèbre, 1827 (Orthoptera, Gryllinae) by Using Entomopathogenic Fungi

Authors: W. Lakhdari, B. Doumendji-Mitich, A. Dahliz, S. Doumendji, Y. Bouchikh, R. M'lik, H. Hammi, A. Soud

Abstract:

This work was done in order to fight against Brachytrupes megacephalus, a major pest in the Algerian oasis and promote one aspect of biological control against it. He wears a hand on the isolation and identification of indigenous fungi on imagos of this insect harvested in the station of INRAA Touggourt and secondly, the study of the pathogenicity of these strains fungal on this orthoptère adults. The results obtained showed the presence of six different species of entomopathogenic fungi, it is: Aspergillus flavus, Fusarium sp, Beauveria bassiana, Penicillium sp, Metharizium anisopliae and Aspergillus Niger. The pathogenicity test using fungi Beauveria bassiana strains and Metharizium anisopliae. On adult of B. megacephalus highlights the effectiveness of these strains of predatory adults, with a mortality rate approaching 100% after 11 days.

Keywords: biological control, brachytrupes megacephalus, entomopathogenic fungi, Southeastern Algeria

Procedia PDF Downloads 392
8390 Air-Coupled Ultrasonic Testing for Non-Destructive Evaluation of Various Aerospace Composite Materials by Laser Vibrometry

Authors: J. Vyas, R. Kazys, J. Sestoke

Abstract:

Air-coupled ultrasonic is the contactless ultrasonic measurement approach which has become widespread for material characterization in Aerospace industry. It is always essential for the requirement of lightest weight, without compromising the durability. To archive the requirements, composite materials are widely used. This paper yields analysis of the air-coupled ultrasonics for composite materials such as CFRP (Carbon Fibre Reinforced Polymer) and GLARE (Glass Fiber Metal Laminate) and honeycombs for the design of modern aircrafts. Laser vibrometry could be the key source of characterization for the aerospace components. The air-coupled ultrasonics fundamentals, including principles, working modes and transducer arrangements used for this purpose is also recounted in brief. The emphasis of this paper is to approach the developed NDT techniques based on the ultrasonic guided waves applications and the possibilities of use of laser vibrometry in different materials with non-contact measurement of guided waves. 3D assessment technique which employs the single point laser head using, automatic scanning relocation of the material to assess the mechanical displacement including pros and cons of the composite materials for aerospace applications with defects and delaminations.

Keywords: air-coupled ultrasonics, contactless measurement, laser interferometry, NDT, ultrasonic guided waves

Procedia PDF Downloads 216
8389 Evaluation of the Inhibitory Activity of Natural Extracts From Spontaneous Plant on the Α-Amylase and Α–Glucosidase and Their Antioxidant Activities

Authors: Ihcen Khacheba, Amar Djeridane, Abdelkarim Kamli, Mohamed Yousfi

Abstract:

Plant materials constitute an important source of natural bioactive molecules. Thus plants have been used from antiquity as sources of medicament against various diseases. These properties are usually attributed to secondary metabolites that are the subject of a lot of research in this field. This is particularly the case of phenolic compounds plants that are widely renowned in therapeutics as anti-inflammatories, enzyme inhibitors, and antioxidants, particularly flavonoïds. With the aim of acquiring a better knowledge of the secondary metabolism of the vegetable kingdom in the region of Laghouat and of the discovering of new natural therapeutics, 10 extracts from 5 Saharan plant species were submitted to chemical screening.The analysis of the preceding biological targets led to the evaluation of the biological activity of the extracts of the species Genista Corsica. The first step, consists in extracting and quantifying phenolic compounds. The second step has been devoted to stugying the effects of phenolic compounds on the kinetics catalyzed by two enzymes belonging to the class of hydrolase (the α-amylase and α-glucosidase) responsible for the digestion of sugars and finally we evaluate the antiantioxidant potential. The analysis results of phenolic extracts show clearly a low content of phenolic compounds in investigated plants. Average total phenolics ranged from 0.0017 to 11.35 mg equivalent gallic acid/g of the crude extract. Whereas the total flavonoids content lie between 0.0015 and 10.,96 mg/g equivalent of rutin. The results of the kinetic study of enzymatic reactions show that the extracts have inhibitory effects on both enzymes, with IC50 values ranging from 95.03 µg/ml to 1033.53 µg/ml for the α-amylase and 279.99 µg/ml to 1215.43 µg/ml for α-glucosidase whose greatest inhibition was found for the acetone extract of June (IC50 = 95.03 µg/ml). The results the antioxidant activity determined by ABTS, DPPH, and phosphomolybdenum tests clearly showed a good antioxidant capacity comparatively to antioxidants taken as reference the biological potential of these plants and could find their use in medicine to replace synthetic products.

Keywords: phenolic extracts, inhibition effect, α-amylase, α-glucosidase, antioxidant activity

Procedia PDF Downloads 362
8388 Sound Absorbing and Thermal Insulating Properties of Natural Fibers (Coir/Jute) Hybrid Composite Materials for Automotive Textiles

Authors: Robel Legese Meko

Abstract:

Natural fibers have been used as end-of-life textiles and made into textile products which have become a well-proven and effective way of processing. Nowadays, resources to make primary synthetic fibers are becoming less and less as the world population is rising. Hence it is necessary to develop processes to fabricate textiles that are easily converted to composite materials. Acoustic comfort is closely related to the concept of sound absorption and includes protection against noise. This research paper presents an experimental study on sound absorption coefficients, for natural fiber composite materials: a natural fiber (Coir/Jute) with different blend proportions of raw materials mixed with rigid polyurethane foam as a binder. The natural fiber composite materials were characterized both acoustically (sound absorption coefficient SAC) and also in terms of heat transfer (thermal conductivity). The acoustic absorption coefficient was determined using the impedance tube method according to the ASTM Standard (ASTM E 1050). The influence of the structure of these materials on the sound-absorbing properties was analyzed. The experimental results signify that the porous natural coir/jute composites possess excellent performance in the absorption of high-frequency sound waves, especially above 2000 Hz, and didn’t induce a significant change in the thermal conductivity of the composites. Thus, the sound absorption performances of natural fiber composites based on coir/jute fiber materials promote environmentally friendly solutions.

Keywords: coir/jute fiber, sound absorption coefficients, compression molding, impedance tube, thermal insulating properties, SEM analysis

Procedia PDF Downloads 77
8387 Carbon Electrode Materials for Supercapacitors

Authors: Yu. Mateyshina, A. Ulihin, N. Uvarov

Abstract:

Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013.

Keywords: supercapacitors, carbon electrode, mesoporous carbon, electrochemistry

Procedia PDF Downloads 276
8386 Bacterial Cellulose/Silver-Doped Hydroxyapatite Composites for Tissue Engineering Application

Authors: Adrian Ionut Nicoara, Denisa Ionela Ene, Alina Maria Holban, Cristina Busuioc

Abstract:

At present, the development of materials with biomedical applications is a domain of interest that will produce a full series of benefits in engineering and medicine. In this sense, it is required to use a natural material, and this paper is focused on the development of a composite material based on bacterial cellulose – hydroxyapatite and silver nanoparticles with applications in hard tissue. Bacterial cellulose own features like biocompatibility, non-toxicity character and flexibility. Moreover, the bacterial cellulose can be conjugated with different forms of active silver to possess antimicrobial activity. Hydroxyapatite is well known that can mimic at a significant level the activity of the initial bone. The material was synthesized by using an ultrasound probe and finally characterized by several methods. Thereby, the morphological properties were analyzed by using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Because the synthesized material has medical application in restore the tissue and to fight against microbial invasion, the samples were tested from the biological point of view by evaluating the biodegradability in phosphate-buffered saline (PBS) and simulated body fluid (SBF) and moreover the antimicrobial effect was performed on Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and fungi Candida albicans. The results reveal that the obtained material has specific characteristics for bone regeneration.

Keywords: bacterial cellulose, biomaterials, hydroxyapatite, scaffolds materials

Procedia PDF Downloads 109
8385 Discovering Groundbreaking Geopolymer-Based Materials with Versatile Designs, Ideal for the Construction and Infrastructure Industry

Authors: Maryam Kiani

Abstract:

Geopolymer has gained significant prominence worldwide and is now widely regarded as a potential alternative to conventional Portland cement. Nevertheless, for it to be widely accepted and incorporated into national and international standards, it is crucial to establish precise definitions and dependable mix design methodologies for geopolymer materials. The lack of a common definition and methodology has led to inconsistencies and perplexity across various areas of research. Addressing this concern is imperative for several reasons. To overcome the existing inconsistencies and confusion, concerted efforts should be made to establish clear definitions and robust mix design methodologies for geopolymer materials. This can be achieved through collaborative research, knowledge sharing, and engagement with industry experts. By doing so, we can pave the way for the widespread acceptance and utilization of geopolymer materials, revolutionizing the construction and infrastructure industry in a sustainable and environmentally friendly manner. The primary goal of this article is to offer clear explanations regarding the different meanings of geopolymer and the various methodologies used in geopolymer processes. Its main aim is to improve comprehension of both unary and binary geopolymer systems. By thoroughly exploring existing research, this article strives to illuminate the diverse methods and techniques utilized in the exciting field of geopolymer science.

Keywords: geopolymer, nanomaterials, structural materials, mechanical properties

Procedia PDF Downloads 83
8384 Torsional Behavior of Reinforced Concrete (RC) Beams Strengthened by Fiber Reinforced Cementitious Materials– a Review

Authors: Sifatullah Bahij, Safiullah Omary, Francoise Feugeas, Amanullah Faqiri

Abstract:

Reinforced concrete (RC) is commonly used material in the construction sector, due to its low-cost and durability, and allowed the architectures and designers to construct structural members with different shapes and finishing. Usually, RC members are designed to sustain service loads efficiently without any destruction. However, because of the faults in the design phase, overloading, materials deficiencies, and environmental effects, most of the structural elements will require maintenance and repairing over their lifetime. Therefore, strengthening and repair of the deteriorated and/or existing RC structures are much important to extend their life cycle. Various techniques are existing to retrofit and strengthen RC structural elements such as steel plate bonding, external pre-stressing, section enlargement, fiber reinforced polymer (FRP) wrapping, etc. Although these configurations can successfully improve the load bearing capacity of the beams, they are still prone to corrosion damage which results in failure of the strengthened elements. Therefore, many researchers used fiber reinforced cementitious materials due to its low-cost, corrosion resistance, and result in improvement of the tensile and fatigue behaviors. Various types of cementitious materials have been used to strengthen or repair structural elements. This paper has summarized to accumulate data regarding on previously published research papers concerning the torsional behaviors of RC beams strengthened by various types of cementitious materials.

Keywords: reinforced concrete beams, strengthening techniques, cementitious materials, torsional strength, twisting angle

Procedia PDF Downloads 100
8383 Fluidized-Bed Combustion of Biomass with Elevated Alkali Content: A Comparative Study between Two Alternative Bed Materials

Authors: P. Ninduangdee, V. I. Kuprianov

Abstract:

Palm kernel shell is an important bioenergy resource in Thailand. However, due to elevated alkali content in biomass ash, this oil palm residue shows high tendency to bed agglomeration in a fluidized-bed combustion system using conventional bed material (silica sand). In this study, palm kernel shell was burned in the conical fluidized-bed combustor (FBC) using alumina and dolomite as alternative bed materials to prevent bed agglomeration. For each bed material, the combustion tests were performed at 45kg/h fuel feed rate with excess air within 20–80%. Experimental results revealed rather weak effects of the bed material type but substantial influence of excess air on the behaviour of temperature, O2, CO, CxHy, and NO inside the reactor, as well as on the combustion efficiency and major gaseous emissions of the conical FBC. The optimal level of excess air ensuring high combustion efficiency (about 98.5%) and acceptable level of the emissions was found to be about 40% when using alumina and 60% with dolomite. By using these alternative bed materials, bed agglomeration can be prevented when burning the shell in the proposed conical FBC. However, both bed materials exhibited significant changes in their morphological, physical and chemical properties in the course of the time.

Keywords: palm kernel shell, fluidized-bed combustion, alternative bed materials, combustion and emission performance, bed agglomeration prevention

Procedia PDF Downloads 230
8382 Chemical and Mechanical Characterization of Composites Reinforced with Coconut Fiber in the Polymeric Matrix of Recycled PVC

Authors: Luiz C. G. Pennafort Jr., Alexandre de S. Rios, Enio P. de Deus

Abstract:

In the search for materials that replace conventional polymers in order to preserve natural resources, combined with the need to minimize the problems arising from environmental pollution generated by plastic waste, comes the recycled materials biodegradable, especially the composites reinforced with natural fibers. However, such materials exhibit properties little known, requiring studies of manufacturing methods and characterization of these composites. This article shows informations about preparation and characterization of a composite produced by extrusion, which consists of recycled PVC derived from the recycling of materials discarded, added of the micronized coconut fiber. The recycled PVC with 5% of micronized fiber were characterized by X-ray diffraction, thermogravimetric, differential scanning calorimetry, mechanical analysis and optical microscopy. The use of fiber in the composite caused a decrease in its specific weight, due to the lower specific weight of fibers and the appearance of porosity, in addition to the decrease of mechanical properties.

Keywords: recycled PVC, coconut fiber, characterization, composites

Procedia PDF Downloads 440
8381 Study of Drawing Characteristics due to Friction between the Materials by FEM

Authors: Won Jin Ryu, Mok Tan Ahn, Hyeok Choi, Joon Hong Park, Sung Min Kim, Jong Bae Park

Abstract:

Pipes for offshore plants require specifications that satisfy both high strength and high corrosion resistance. Therefore, currently, clad pipes are used in offshore plants. Clad pipes can be made using either overlay welding or clad plates. The present study was intended to figure out the effects of friction between two materials, which is a factor that affects two materials, were figured out using FEM to make clad pipes through heterogenous material drawing instead of the two methods mentioned above. Therefore, FEM has conducted while all other variables that the variable friction was fixed. The experimental results showed increases in pullout force along with increases in the friction in the boundary layer.

Keywords: clad pipe, FEM, friction, pullout force

Procedia PDF Downloads 469
8380 Recent Development on Application of Microwave Energy on Process Metallurgy

Authors: Mamdouh Omran, Timo Fabritius

Abstract:

A growing interest in microwave heating has emerged recently. Many researchers have begun to pay attention to microwave energy as an alternative technique for processing various primary and secondary raw materials. Compared to conventional methods, microwave processing offers several advantages, such as selective heating, rapid heating, and volumetric heating. The present study gives a summary on our recent works related to the use of microwave energy for the recovery of valuable metals from primary and secondary raw materials. The research is mainly focusing on: Application of microwave for the recovery and recycling of metals from different metallurgical industries wastes (i.e. electric arc furnace (EAF) dust, blast furnace (BF), basic oxygen furnace (BOF) sludge). Application of microwave for upgrading and recovery of valuable metals from primary raw materials (i.e. iron ore). The results indicated that microwave heating is a promising and effective technique for processing primary and secondary steelmaking wastes. After microwave treatment of iron ore for 60 s and 900 W, about a 28.30% increase in grindability.Wet high intensity magnetic separation (WHIMS) indicated that the magnetic separation increased from 34% to 98% after microwave treatment for 90 s and 900 W. In the case of EAF dust, after microwave processing at 1100 W for 20 min, Zinc removal from 64 % to ~ 97 %, depending on mixture ratio and treatment time.

Keywords: dielectric properties, microwave heating, raw materials, secondary raw materials

Procedia PDF Downloads 62
8379 Synthesis and in-Vitro Biological Activity of Novel Gallic Acid Derivatives

Authors: Hossein Mostafavi

Abstract:

A diversity of biological activities and pharmaceutical uses have been attributed to gallic acid derivatives such as antibacterial, anticancer, anti inflammatory. A series of gallic acid derivatives were synthesized, and their structure was confirmed by FT-IR, HNMR, CNMR, elemental analysis. In vitro biological activity of compounds was determined against Proteus vulgaris ATCC 7829, Escherichia coli ATCC 25922, as (Gram-negative) bacteria and bacillus cereus ATCC 11778, Staphylococus aureus ATCC 6538 as (Gram-positive) bacteria. Antibacterial susceptibility tests were done by use of the paper disc diffusion method on Mueller Hinton agar (Merck). Chloramiphenicol, Penicilline, Streptomycin and Tetracycline were standard reference antibiotics. The zone of inhibition against bacteria was measured after 24 hours at 37 °C. Compounds 3, 4, 5 were the main antibacterial compounds against Gram-negative bacteria but not Gram-positive.

Keywords: gallic acid derivatives, antibacterial, antibiotics, inhibition

Procedia PDF Downloads 115
8378 Chiral Carbon Quantum Dots for Paper-Based Photoluminescent Sensing Platforms

Authors: Erhan Zor, Funda Copur, Asli I. Dogan, Haluk Bingol

Abstract:

Current trends in the wide-scale sensing technologies rely on the development of miniaturized, rapid and easy-to-use sensing platforms. Quantum dots (QDs) with strong and easily tunable luminescence and high emission quantum yields have become a well-established photoluminescent nanomaterials for sensor applications. Although the majority of the reports focused on the cadmium-based QDs which have toxic effect on biological systems and eventually would cause serious environmental problems, carbon-based quantum dots (CQDs) that do not contain any toxic class elements have attracted substantial research interest in recent years. CQDs are small carbon nanostructures (less than 10 nm in size) with various unique properties and are widely-used in different fields during the last few years. In this respect, chiral nanostructures have become a promising class of materials in various areas such as pharmacology, catalysis, bioanalysis and (bio)sensor technology due to the vital importance of chirality in living systems. We herein report the synthesis of chiral CQDs with D- or L-tartaric acid as precursor materials. The optimum experimental conditions were examined and the purification procedure was performed using ethanol/water by column chromatography. The purified chiral CQDs were characterized by UV-Vis, FT-IR, XPS, PL and TEM techniques. The resultants display different photoluminescent characteristics due to the size and conformational difference. Considering the results, it can be concluded that chiral CQDs is expected to be used as optical chiral sensor in different platforms.

Keywords: carbon quantum dots, chirality, sensor, tartaric acid

Procedia PDF Downloads 219
8377 Impacts of Low-Density Polyethylene (Plastic Shopping Bags) on Structural Strength and Permeability of Hot-Mix-Asphalt Pavements

Authors: Chayanon Boonyuid

Abstract:

This paper experiments the effects of low-density polyethylene (LDPE) on the structural strength and permeability of hot-mix-asphalt (HMA) pavements. Different proportions of bitumen (4%, 4.5%, 5%, 5.5% and 6% of total aggregates) and plastic (5%, 10% and 15% of bitumen) contents in HMA mixtures were investigated to estimate the optimum mixture of bitumen and plastic in HMA pavement with long-term performance. Marshall Tests and Falling Head Tests were performed to experiment the structure strength and permeability of HMA mixtures with different percentages of plastic materials and bitumen. The laboratory results show that the optimum binder content was 5.5% by weight of aggregates with higher contents of plastic materials, increase structural stability, reduce permanent deformation, increase ductility, and improve fatigue life of HMA pavements. The use of recycled plastic shopping bags can reduce the use of bitumen content by 0.5% - 1% in HMA mixtures resulting in cheaper material costs with better long-term performance. The plastic materials increase the impermeability of HMA pavements. This study has two-fold contributions: optimum contents of both bitumen and plastic materials in HMA mixtures and the impacts of plastic materials on the permeability of HMA pavements.

Keywords: plastic bags, bitumen, structural strength, permeability

Procedia PDF Downloads 126
8376 Adsoption Tests of Two Industrial Dyes by Metallic Hydroxyds

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated mud, the Lagunage as biological processes and coagulation-floculation as a physic-chemical process. These processes are very expensive and an treatment efficiency which decreases along with the increase of the initial pollutants’ concentration. This is the reason why research has been reoriented towards the use of a process by adsorption as an alternative solution instead of the other traditional processes. In our study, we have tempted to exploit the characteristics of two metallic hydroxides Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: Metallic Hydroxydes, industrial dyes, purification, lagunage

Procedia PDF Downloads 443
8375 Structural Optimization Using Natural Shapes

Authors: Mitchell Gohnert

Abstract:

This paper reviews some fundamental concepts of structural optimization, which is based on the type of materials used in construction and the shape of the structure. The first step in structural optimization is to break down all internal forces in a structure into fundamental stresses, which are tensions and compressions. Knowing the stress patterns directs our selection of structural shapes, and the most appropriate type of construction material. In our selection of materials, it is essential to understand all construction materials have flaws, or micro-cracks, which reduce the capacity of the material, especially when subjected to tensions. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated. Bending stresses produce high peak stresses at each face of the member, and therefore substantially more material is required to resist bending. The shape of the structure also has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.

Keywords: Shell structures, structural optimization, Stress flow, Construction materials, catenary shapes

Procedia PDF Downloads 12
8374 Development of Impervious Concrete Using Micro Silica and GGBS as Cement Replacement Materials

Authors: Muhammad Rizwan Akram, Saim Raza, Hamza Hanif Chauhan

Abstract:

This paper describes the aim of research to evaluate the performance of ordinary Portland concretes containing cement replacement materials in both binary and ternary system. Blocks of concrete were prepared to have a constant water-binder ratio of 0.30. The test variables included the type and the amount of the supplementary cementious materials (SCMs) such as class of Silica Fume (SF) and ground granulated blast furnace slag (GGBS). Portland cement was replaced with Silica Fume (SF) upto 7.5% and GGBS up to a level of 50%. Then physical properties are assessed from the compressive strength and permeability tests.

Keywords: silica fume, GGBS, compressive strength, permeability

Procedia PDF Downloads 356
8373 Trichoderma spp Consortium and Its Efficacy as Biological Control Agent of Ganoderma Disease of Oil Palm (Elaies guineensis Jacquin)

Authors: Habu Musa, Nusaibah Binti Syd Ali

Abstract:

Oil palm industries particularly in Malaysia and Indonesia are being devastated by Ganoderma disease caused by Ganoderma spp. To date, this disease has been causing serious oil palm yield losses and collapse of oil palm trees, thus affecting its contribution to the producer’s economy. Research on sustainable and eco-friendly remedy to counter Ganoderma disease is on the upsurge to avoid the current control measures via synthetic fungicides. Trichoderma species have been the most studied and valued microbes as biological control agents in an effort to combat a wide range of plant diseases sustainably. Therefore, in this current study, the potential of Trichoderma spp. (Trichoderma asperellum, Trichoderma harzianum, and Trichoderma virens) as a consortium approach was evaluated as biological control agents against Ganoderma disease on oil palm. The consortium of Trichoderma spp. applied found to be the most effective treatment in suppressing Ganoderma disease with 83.03% and 89.16% from the foliar and bole symptoms respectively. Besides, it exhibited tremendous enhancement in the oil palm seedling vegetative growth parameters. Also, it had highly induced significant activity of peroxidase, polyphenol oxidase and total phenolic content was recorded in the consortium treatment compared to the control treatment. Disease development was slower in the seedlings treated with consortium of Trichoderma spp. compared to the positive control, which exhibited with the highest percentage of disease severity.

Keywords: biological control, ganoderma disease, trichoderma, disease severity

Procedia PDF Downloads 254
8372 Creation of Computerized Benchmarks to Facilitate Preparedness for Biological Events

Authors: B. Adini, M. Oren

Abstract:

Introduction: Communicable diseases and pandemics pose a growing threat to the well-being of the global population. A vital component of protecting the public health is the creation and sustenance of a continuous preparedness for such hazards. A joint Israeli-German task force was deployed in order to develop an advanced tool for self-evaluation of emergency preparedness for variable types of biological threats. Methods: Based on a comprehensive literature review and interviews with leading content experts, an evaluation tool was developed based on quantitative and qualitative parameters and indicators. A modified Delphi process was used to achieve consensus among over 225 experts from both Germany and Israel concerning items to be included in the evaluation tool. Validity and applicability of the tool for medical institutions was examined in a series of simulation and field exercises. Results: Over 115 German and Israeli experts reviewed and examined the proposed parameters as part of the modified Delphi cycles. A consensus of over 75% of experts was attained for 183 out of 188 items. The relative importance of each parameter was rated as part of the Delphi process, in order to define its impact on the overall emergency preparedness. The parameters were integrated in computerized web-based software that enables to calculate scores of emergency preparedness for biological events. Conclusions: The parameters developed in the joint German-Israeli project serve as benchmarks that delineate actions to be implemented in order to create and maintain an ongoing preparedness for biological events. The computerized evaluation tool enables to continuously monitor the level of readiness and thus strengths and gaps can be identified and corrected appropriately. Adoption of such a tool is recommended as an integral component of quality assurance of public health and safety.

Keywords: biological events, emergency preparedness, bioterrorism, natural biological events

Procedia PDF Downloads 402
8371 Economic Activities Associated with Extraction of Riverbed Materials in the Tinau River, Nepal

Authors: Khet Raj Dahal, Dhruva Dhital, Chhatra Mani Sharma

Abstract:

A study was conducted during 2012 to 2013 in the selected reach of Tinau River, Nepal. The main objective of the study was to quantify employment and income generation from the extraction of construction materials from the river. A 10 km stretch of the river was selected for the study. Sample survey with a semi-structured questionnaire and field observation were the main tools used during field investigation. Extraction of riverbed materials from the banks, beds and floodplain areas of the river has provided many kinds of job opportunities for the people living in the vicinity of the river. It has also generated an adequate amount of revenues. The collected revenue has been invested for many kinds of social and infrastructures development for years. Though extraction of riverbed materials is beneficial for income and employment generation, it has also negative environmental impacts in and around the river. Furthermore, the study concluded that river bed extraction should be continued with special monitoring and evaluation in the areas where there is still room for extraction.

Keywords: extraction, crusher plants, economic activities, Tinau River

Procedia PDF Downloads 676
8370 Data and Biological Sharing Platforms in Community Health Programs: Partnership with Rural Clinical School, University of New South Wales and Public Health Foundation of India

Authors: Vivian Isaac, A. T. Joteeshwaran, Craig McLachlan

Abstract:

The University of New South Wales (UNSW) Rural Clinical School has a strategic collaborative focus on chronic disease and public health. Our objectives are to understand rural environmental and biological interactions in vulnerable community populations. The UNSW Rural Clinical School translational model is a spoke and hub network. This spoke and hub model connects rural data and biological specimens with city based collaborative public health research networks. Similar spoke and hub models are prevalent across research centers in India. The Australia-India Council grant was awarded so we could establish sustainable public health and community research collaborations. As part of the collaborative network we are developing strategies around data and biological sharing platforms between Indian Institute of Public Health, Public Health Foundation of India (PHFI), Hyderabad and Rural Clinical School UNSW. The key objective is to understand how research collaborations are conducted in India and also how data can shared and tracked with external collaborators such as ourselves. A framework to improve data sharing for research collaborations, including DNA was proposed as a project outcome. The complexities of sharing biological data has been investigated via a visit to India. A flagship sustainable project between Rural Clinical School UNSW and PHFI would illustrate a model of data sharing platforms.

Keywords: data sharing, collaboration, public health research, chronic disease

Procedia PDF Downloads 424
8369 Advanced Oxidation Processes as a Pre-oxidation Step for Biological Treatment of Leachate from Technical Landfills

Authors: Ala Abdessemed, Mohamed Seddik Oussama Belahmadi, Nabil Charchar, Abdefettah Gherib, Bradai Fares, Boussadia Chouaib Nour El-Islem

Abstract:

Algerian cities are confronted with large quantities of waste generated by the disposal of household and similar residues in technical landfills (CET), such as the one in the location of Batna. The interaction between waste components and incoming water generates leachates rich in organic matter and trace elements, which require treatment before discharge. The aim of this study was to propose an effective process for treating the leachates, which were subjected to an initial chemical treatment using the (H₂O₂/UV) system. Optimal treatment conditions were determined at [H₂O₂] of 0.3 M and pH of 8.6. Next, two hybrid biological treatment systems were applied: hybrid system I (H₂O₂/UV/bacteria) and hybrid system II (H₂O₂/UV/bacteria/microalgae). The three processes resulted in the following degradation rates, expressed in terms of total organic carbon (TOC) 27.4% for the (H₂O₂/UV) system; 58.1% for the hybrid system I (H₂O₂/UV/Bacteria); 67.86% for the hybrid system II (H₂O₂/UV/Bacteria/Microalgae). This study demonstrates that a hybrid approach combining advanced oxidation processes and biological treatments is a highly effective alternative to achieve satisfactory treatment.

Keywords: leachate, landfill, advanced oxidation processes, biological treatment, bacteria, microalgae, total organic carbon

Procedia PDF Downloads 45
8368 Identification of Biological Pathways Causative for Breast Cancer Using Unsupervised Machine Learning

Authors: Karthik Mittal

Abstract:

This study performs an unsupervised machine learning analysis to find clusters of related SNPs which highlight biological pathways that are important for the biological mechanisms of breast cancer. Studying genetic variations in isolation is illogical because these genetic variations are known to modulate protein production and function; the downstream effects of these modifications on biological outcomes are highly interconnected. After extracting the SNPs and their effect on different types of breast cancer using the MRBase library, two unsupervised machine learning clustering algorithms were implemented on the genetic variants: a k-means clustering algorithm and a hierarchical clustering algorithm; furthermore, principal component analysis was executed to visually represent the data. These algorithms specifically used the SNP’s beta value on the three different types of breast cancer tested in this project (estrogen-receptor positive breast cancer, estrogen-receptor negative breast cancer, and breast cancer in general) to perform this clustering. Two significant genetic pathways validated the clustering produced by this project: the MAPK signaling pathway and the connection between the BRCA2 gene and the ESR1 gene. This study provides the first proof of concept showing the importance of unsupervised machine learning in interpreting GWAS summary statistics.

Keywords: breast cancer, computational biology, unsupervised machine learning, k-means, PCA

Procedia PDF Downloads 120
8367 Sudden Death and Chronic Disseminated Intravascular Coagulation (DIC): Two Case Reports

Authors: Saker Lilia, Youcef Mellouki, Lakhdar Sellami, Yacine Zerairia, Abdelhaid Zetili, Fatma Guahria, Fateh Kaious, Nesrine Belkhodja, Abdelhamid Mira

Abstract:

Background: Sudden death is regarded as a suspicious demise necessitating autopsy, as stipulated by legal authorities. Chronic disseminated intravascular coagulation (DIC) is an acquired clinical and biological syndrome characterized by a severe and fatal prognosis, stemming from systemic, uncontrolled, diffuse coagulation activation. Irrespective of their origins, DIC is associated with a diverse spectrum of manifestations, encompassing minor biological coagulation alterations to profoundly severe conditions wherein hemorrhagic complications may take precedence. Simultaneously, microthrombi contribute to the development of multi-organ failures. Objective This study seeks to evaluate the role of autopsy in determining the causes of death. Materials and Methods: We present two instances of sudden death involving females who underwent autopsy at the Forensic Medicine Department of the University Hospital of Annaba, Algeria. These autopsies were performed at the request of the prosecutor, aiming to determine the causes of death and illuminate the exact circumstances surrounding it. Methods Utilized: Analysis of the initial information report; Findings from postmortem examinations; Histological assessments and toxicological analyses. Results: The presence of DIC was noted, affecting nearly all veins with distinct etiologies. Conclusion: For the establishment of a meaningful diagnosis: • Thorough understanding of the subject matter is imperative; • Precise alignment with medicolegal data is essential.

Keywords: chronic disseminated intravascular coagulation, sudden death, autopsy, causes of death

Procedia PDF Downloads 56
8366 Valorization of the Waste Generated in Building Energy-Efficiency Rehabilitation Works as Raw Materials for Gypsum Composites

Authors: Paola Villoria Saez, Mercedes Del Rio Merino, Jaime Santacruz Astorqui, Cesar Porras Amores

Abstract:

In construction the Circular Economy covers the whole cycle of the building construction: from production and consumption to waste management and the market for secondary raw materials. The circular economy will definitely contribute to 'closing the loop' of construction product lifecycles through greater recycling and re-use, helping to build a market for reused construction materials salvaged from demolition sites, boosting global competitiveness and fostering sustainable economic growth. In this context, this paper presents the latest research of 'Waste to resources (W2R)' project funded by the Spanish Government, which seeks new solutions to improve energy efficiency in buildings by developing new building materials and products that are less expensive, more durable, with higher quality and more environmentally friendly. This project differs from others as its main objective is to reduce to almost zero the Construction and Demolition Waste (CDW) generated in building rehabilitation works. In order to achieve this objective, the group is looking for new ways of CDW recycling as raw materials for new conglomerate materials. With these new materials, construction elements reducing building energy consumption will be proposed. In this paper, the results obtained in the project are presented. Several tests were performed to gypsum samples containing different percentages of CDW waste generated in Spanish building retroffiting works. Results were further analyzed and one of the gypsum composites was highlighted and discussed. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under 'Waste 2 Resources' Project (BIA2013-43061-R).

Keywords: building waste, CDW, gypsum, recycling, resources

Procedia PDF Downloads 306
8365 Water Equivalent from the Point of View of Fast Neutron Removal Cross-Section

Authors: Mohammed Alrajhi

Abstract:

Radiological properties of gel dosimeters and phantom materials are often evaluated in terms of effective atomic number, electron density, photon mass attenuation coefficient, photon mass energy absorption coefficient and total stopping power of electrons. To evaluate the water equivalence of such materials for fast neutron attenuation 19 different types of gel dosimeters and phantom materials were considered. Macroscopic removal cross-sections for fast neutrons (ΣR cm-1) have been calculated for a range of ferrous-sulphate and polymeric gel dosimeters using Nxcom Program. The study showed that the value of ΣR/ρ (cm2.g-1) for all polymer gels were in close agreement (1.5- 2.8%) with that of water. As such, the slight differences in ΣR/ρ between water and gels are small and may be considered negligible. Also, the removal cross-section of the studied phantom materials were very close (~ ±1.5%) to that of water except bone (cortical) which had about 38% variation. Finally, the variation of removal cross-section with hydrogen content was studied.

Keywords: cross-section, neutron, photon, coefficient, mathematics

Procedia PDF Downloads 351