Search results for: disease prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5885

Search results for: disease prediction

5585 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome

Abstract:

This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: stock market prediction, social moods, regression model, DJIA

Procedia PDF Downloads 548
5584 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: diabetes, glucose level, linear, near-infrared, non-invasive, prediction system

Procedia PDF Downloads 159
5583 Bias-Corrected Estimation Methods for Receiver Operating Characteristic Surface

Authors: Khanh To Duc, Monica Chiogna, Gianfranco Adimari

Abstract:

With three diagnostic categories, assessment of the performance of diagnostic tests is achieved by the analysis of the receiver operating characteristic (ROC) surface, which generalizes the ROC curve for binary diagnostic outcomes. The volume under the ROC surface (VUS) is a summary index usually employed for measuring the overall diagnostic accuracy. When the true disease status can be exactly assessed by means of a gold standard (GS) test, unbiased nonparametric estimators of the ROC surface and VUS are easily obtained. In practice, unfortunately, disease status verification via the GS test could be unavailable for all study subjects, due to the expensiveness or invasiveness of the GS test. Thus, often only a subset of patients undergoes disease verification. Statistical evaluations of diagnostic accuracy based only on data from subjects with verified disease status are typically biased. This bias is known as verification bias. Here, we consider the problem of correcting for verification bias when continuous diagnostic tests for three-class disease status are considered. We assume that selection for disease verification does not depend on disease status, given test results and other observed covariates, i.e., we assume that the true disease status, when missing, is missing at random. Under this assumption, we discuss several solutions for ROC surface analysis based on imputation and re-weighting methods. In particular, verification bias-corrected estimators of the ROC surface and of VUS are proposed, namely, full imputation, mean score imputation, inverse probability weighting and semiparametric efficient estimators. Consistency and asymptotic normality of the proposed estimators are established, and their finite sample behavior is investigated by means of Monte Carlo simulation studies. Two illustrations using real datasets are also given.

Keywords: imputation, missing at random, inverse probability weighting, ROC surface analysis

Procedia PDF Downloads 416
5582 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: rice disease, data analysis system, mobile application, iOS operating system

Procedia PDF Downloads 287
5581 Experience of Hydatid Disease of Liver at a Tertiary Care Center 7 Years Experience

Authors: Jibran Abbasy, Rizwan Sultan, Ammar Humayun, Tabish Chawla

Abstract:

Background: Hydatid disease caused by Echinococcus Granulosus affects liver in 70-90% of cases. Dogs are the definitive host while humans are the accidental host. Modalities used for its treatment are especially important for our population as the disease is endemic in many Asian countries. The aim of the study was to perform an audit of the various modalities used for treatment of hydatid disease of liver and the response to each modality in tertiary care center of Pakistan. Materials and Methods: Retrospective audit of patients diagnosed and treated for Hydatid disease of the liver at Aga Khan University Hospital from 1st January 2007 to 31st December 2014 was completed. All patients aged 16 and above were included. Patients who had extra hepatic disease and missing records were excluded. Outcome measures were morbidity, mortality and recurrence of the disease. Results: During the study period 56 patients were treated for isolated hepatic hydatid disease and were included. Mean age was 39 years with 48% being females and 52% males. Most common presenting complaint was abdominal pain seen in 53% of patients(n=41). Duration of symptoms was less than 6 months in 74% (n=38). Mostly right lobe was involved in 69% (n=38).Most common treatment modality used was surgery in 34 patients followed by PAIR in 14 patients while 8 patients were treated medically. At a median follow up of 34 months recurrence was seen in 2 patients treated with PAIR while no patient treated with surgery had recurrence with the median follow up of 20 months. While no morbidity and mortality were observed in PAIR, but in surgery 5 patients had morbidity while 1 patient had mortality. Conclusion: Our data is comparative to other studies in terms of morbidity, mortality, and recurrence. We had adequate follow up. In our study PAIR and surgery both are effective and have less complications and recurrence rate. Surgery is still the gold standard in terms of recurrence.

Keywords: echinococcous granulosus, puncture aspiration irrigation reaspiration (PAIR), surgery, hydatid disease

Procedia PDF Downloads 266
5580 Meniere's Disease and its Prevalence, Symptoms, Risk Factors and Associated Treatment Solutions for this Disease

Authors: Amirreza Razzaghipour Sorkhab

Abstract:

One of the most common disorders among humans is hearing impairment. This paper provides an evidence base that recovers understanding of Meniere’s disease and highlights the physical and mental health correlates of the disorder. Meniere's disease is more common in the elderly. The term idiopathic endolymphatic hydrops has been attributed to this disease by some in the previous. Meniere’s disease demonstrations a genetic tendency, and a family history is found in 10% of cases, with an autosomal dominant inheritance pattern. The COCH gene may be one of the hereditary factors contributing to Meniere’s disease, and the possibility of a COCH mutation should be considered in patients with Meniere’s disease symptoms. Should be considered Missense mutations in the COCH gene cause the autosomal dominant sensorineural hearing loss and vestibular disorder. Meniere’s disease is a complex, heterogeneous disorder of the inner ear and that is characterized by episodes of vertigo lasting from minutes to hours, fluctuating sensorineural hearing loss, tinnitus, and aural fullness. The existing evidence supports the suggestion that age and sleep disorder are risk factors for Meniere's disease. Many factors have been reported to precipitate the progress of Menier, including endolymphatic hydrops, immunology, viral infection, inheritance, vestibular migraine, and altered intra-labyrinthine fluid dynamics. Although there is currently no treatment that has a proven helpful effect on hearing levels or on the long-term evolution of the disease, however, in the primary stages, the hearing may improve among attacks, but a permanent hearing loss occurs in the majority of cases. Current publications have proposed a role for the intratympanic use of medicine, mostly aminoglycosides, for the control of vertigo. more than 85% of patients with Meniere's disease are helped by either changes in lifestyle and medical treatment or minimally aggressive surgical procedures such as intratympanic steroid therapy, intratympanic gentamicin therapy, and endolymphatic sac surgery. However, unilateral vestibular extirpation methods (intratympanic gentamicin, vestibular nerve section, or labyrinthectomy) are more predictable but invasive approaches to control the vertigo attacks. Medical therapy aimed at reducing endolymph volume, such as low-sodium diet, diuretic use, is the typical initial treatment.

Keywords: meniere's disease, endolymphatic hydrops, hearing loss, vertigo, tinnitus, COCH gene

Procedia PDF Downloads 91
5579 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events

Procedia PDF Downloads 261
5578 Screening of Different Native Genotypes of Broadleaf Mustard against Different Diseases

Authors: Nisha Thapa, Ram Prasad Mainali, Prakriti Chand

Abstract:

Broadleaf mustard is a commercialized leafy vegetable of Nepal. However, its utilization is hindered in terms of production and productivity due to the high intensity of insects, pests, and diseases causing great loss. The plant protection part of the crop’s disease and damage intensity has not been studied much from research perspectives in Nepal. The research aimed to evaluate broadleaf mustard genotypes for resistance against different diseases. A total of 35 native genotypes of broadleaf mustard were screened at weekly intervals by scoring the plants for ten weeks. Five different diseases, such as Rhizoctonia root rot, Alternaria blight, black rot, turnip mosaic virus disease, and white rust, were reported from the broad leaf mustard genotypes. Out of 35 genotypes, 23 genotypes were found with very high Rhizoctonia Root Rot severity, whereas 8 genotypes showed very high Alternaria blight severity. Likewise, 3 genotypes were found with high Black rot severity, and 1 genotype was found with very high Turnip mosaic virus disease incidence. Similarly, 2 genotypes were found to have very high White rust severity. Among the disease of national importance, Rhizoctonia root rot was found to be the most severe disease with the greatest loss. Broadleaf mustard genotypes like Rato Rayo, CO 1002, and CO 11007 showed average to the high level of field resistance; therefore, these genotypes should be used, conserved, and stored in a mustard improvement program as the disease resistance quality or susceptibility of these genotypes can be helpful for seed producing farmers, companies and other stakeholders through varietal improvement and developmental works that further aids in sustainable disease management of the vegetable.

Keywords: genotype, disease resistance, Rhizoctonia root rot severity, varietal improvement

Procedia PDF Downloads 80
5577 Iron Deficiency and Iron Deficiency Anaemia/Anaemia as a Diagnostic Indicator for Coeliac Disease: A Systematic Review With Meta-Analysis

Authors: Sahar Shams

Abstract:

Coeliac disease (CD) is a widely reported disease particularly in countries with predominant Caucasian populations. It presents with many signs and symptoms including iron deficiency (ID) and iron deficiency anaemia/anaemia (IDA/A). The exact association between ID, IDA/A and CD and how accurate these signs are in diagnosing CD is not fully known. This systematic review was conducted to investigate the accuracy of both ID & IDA/A as a diagnostic indicator for CD and whether it warrants point of care testing. A systematic review was performed looking at studies published in MEDLINE, Embase, Cochrane Library, and Web of Science. QUADAS-2 tool was used to assess risk of bias in each study. ROC curve and forest plots were generated as part of the meta-analysis after data extraction. 16 studies were identified in total, 13 of which were IDA/A studies and 3 ID studies. The prevalence of CD regardless of diagnostic indicator was assumed as 1%. The QUADAS-2 tool indicated most of studies as having high risk of bias. The PPV for CD was higher in those with ID than for those with IDA/A. Meta-analysis showed the overall odds of having CD is 5 times higher in individuals with ID & IDA/A. The ROC curve showed that there is definitely an association between both diagnostic indicators and CD, the association is not a particularly strong one due to great heterogeneity between studies. Whilst an association between IDA/A & ID and coeliac disease was evident, the results were not deemed significant enough to prompt coeliac disease testing in those with IDA/A & ID.

Keywords: anemia, iron deficiency anemia, coeliac disease, point of care testing

Procedia PDF Downloads 129
5576 Isolation and Molecular Detection of Marek’s Disease Virus from Outbreak Cases in Chicken in South Western Ethiopia

Authors: Abdela Bulbula

Abstract:

Background: Marek’s disease virus is a devastating infection, causing high morbidity and mortality in chickens in Ethiopia. Methods: The current study was conducted from March to November, 2021 with the general objective of performing antemortem and postmortem, isolation, and molecular detection of Marek’s disease virus from outbreak cases in southwestern Ethiopia. Accordingly, based on outbreak information reported from the study sites namely, Bedelle, Yayo, and Bonga towns in southwestern Ethiopia, 50 sick chickens were sampled. The backyard and intensive farming systems of chickens were included in the sampling and priorities were given for chickens that showed clinical signs that are characteristics of Marek’s disease. Results: By clinical examinations, paralysis of legs and wings, gray eye, loss of weight, difficulty in breathing, and depression were recorded on all chickens sampled for this study and death of diseased chickens was observed. In addition, enlargement of the spleen and gross lesions of the liver and heart were recorded during postmortem examination. The death of infected chickens was observed in both vaccinated and non-vaccinated flocks. Out of 50 pooled feather follicle samples, Marek’s disease virus was isolated from 14/50 (28%) by cell culture method and out of six tissue samples, the virus was isolated from 5/6(83.30%). By Real time polymerization chain reaction technique, which was targeted to detect the Meq gene, Marek’s disease virus was detected from 18/50 feather follicles which accounts for 36% of sampled chickens. Conclusion: In general, the current study showed that the circulating Marek’s disease virus in southwestern Ethiopia was caused by the oncogenic Gallid herpesvirus-2 (Serotype-1). Further research on molecular characterization of revolving virus in current and other regions is recommended for effective control of the disease through vaccination.

Keywords: Ethioi, Marek's disease, isolation, molecular

Procedia PDF Downloads 69
5575 New to Vancouver: The Effects of Residential Relocation on Cardiovascular Disease Risk

Authors: Rachel Karasenty Saltoun, Charlotte Roddick, Chelsea D. Christie, Frances Chen

Abstract:

Moving has become an integral part of many people’s lives. This research explores whether relocating to a new city is associated with an increase in loneliness and cardiovascular disease risk and if this increased risk diminishes with continued residency. To test this, various psychosocial variables and three cardiovascular disease risk markers (C-reactive protein, albumin, blood pressure) were assessed on two groups of individuals: those who have moved to Vancouver, Canada in the previous 6 weeks (‘Movers’) and those who have lived in Vancouver for at least five years (‘Non-Movers’). It was hypothesized that individuals who had recently relocated would have heightened levels of loneliness, blood pressure (BP), albumin, and C-reactive protein (CRP) compared to those who had not recently relocated. Length of residency was hypothesized to moderate these effects, such that after a few months, loneliness levels and cardiovascular disease risk would decrease among those who had recently relocated. Correlational analysis indicated a trend between the change in CRP and albumin levels and loneliness overtime on an individual level. However, these results must be interpreted with caution due to the small sample size. As Vancouver’s immigration rates continue to grow, this study has important implications regarding the social support resources offered to new immigrants, as well as bringing awareness at the healthcare level of the potential increase in cardiovascular disease risk among those who have recently relocated.

Keywords: cardiovascular disease risk, loneliness, moving, residential mobility

Procedia PDF Downloads 107
5574 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 480
5573 Evaluating the Educational Intervention Based on Web and Integrative Model of Behavior Prediction to Promote Physical Activities and HS-CRP Factor among Nurses

Authors: Arsalan Ghaderi

Abstract:

Introduction: Inactivity is one of the most important risk factors for cardiovascular disease. According to the study prevalence of inactivity in Iran, about 67.5% and in the staff, and especially nurses, are similar. The inflammatory index (HS-CRP) is highly predictive of the progression of these diseases. Physical activity education is very important in preventing these diseases. One of the modern educational methods is web-based theory-based education. Methods: This is a semi-experimental interventional study which was conducted in Isfahan and Kurdistan universities of medical sciences in two stages. A cross-sectional study was done to determine the status of physical activity and its predictive factors. Then, intervention was performed, and six months later the data were retrieved. The data was collected using a demographic questionnaire, an integrative model of behavior prediction constructs, a standard physical activity questionnaire and (HS-CRP) test. Data were analyzed by SPSS software. Results: Physical activity was low in 66.6% of nurses, 25.4% were moderate and 8% severe. According to Pearson correlation matrix, the highest correlation was found between behavioral intention and skill structures (0.553**), subjective norms (0.222**) and self-efficacy (0.198**). The relationship between age and physical activity in the first study was reverse and significant. After intervention, there was a significant change in attitudes, self-efficacy, skill and behavioral intention in the intervention group. This change was significant in attitudes, self-efficacy and environmental conditions of the control group. HS-CRP index decreased significantly after intervention in both groups, but there was not a significant relationship between inflammatory index and physical activity score. The change in physical activity level was significant only in the control group. Conclusion: Despite the effect of educational intervention on attitude, self-efficacy, skill, and behavioral intention, the results showed that if factors such as environmental factors are not corrected, training and changing structures cannot lead to physical activity behavior. On the other hand, no correlation between physical activity and HS-CRP showed that this index can be influenced by other factors, and this should be considered in any intervention to reduce the HS-CRP index.

Keywords: HS-CRP, integrative model of behavior prediction, physical activity, nurses, web-based education

Procedia PDF Downloads 114
5572 Trigonelline: A Promising Compound for The Treatment of Alzheimer's Disease

Authors: Mai M. Farid, Ximeng Yang, Tomoharu Kuboyama, Chihiro Tohda

Abstract:

Trigonelline is a major alkaloid component derived from Trigonella foenum-graecum L. (fenugreek) and has been reported before as a potential neuroprotective agent, especially in Alzheimer’s disease (AD). However, the previous data were unclear and used model mice were not well established. In the present study, the effect of trigonelline on memory function was investigated in Alzheimer’s disease transgenic model mouse, 5XFAD which overexpresses the mutated APP and PS1 genes. Oral administration of trigonelline for 14 days significantly enhanced object recognition and object location memories. Plasma and cerebral cortex were isolated at 30 min, 1h, 3h, and 6 h after oral administration of trigonelline. LC-MS/MS analysis indicated that trigonelline was detected in both plasma and cortex from 30 min after, suggesting good penetration of trigonelline into the brain. In addition, trigonelline significantly ameliorated axonal and dendrite atrophy in Amyloid β-treated cortical neurons. These results suggest that trigonelline could be a promising therapeutic candidate for AD.

Keywords: alzheimer’s disease, cortical neurons, LC-MS/MS analysis, trigonelline

Procedia PDF Downloads 146
5571 Nonparametric Quantile Regression for Multivariate Spatial Data

Authors: S. H. Arnaud Kanga, O. Hili, S. Dabo-Niang

Abstract:

Spatial prediction is an issue appealing and attracting several fields such as agriculture, environmental sciences, ecology, econometrics, and many others. Although multiple non-parametric prediction methods exist for spatial data, those are based on the conditional expectation. This paper took a different approach by examining a non-parametric spatial predictor of the conditional quantile. The study especially observes the stationary multidimensional spatial process over a rectangular domain. Indeed, the proposed quantile is obtained by inverting the conditional distribution function. Furthermore, the proposed estimator of the conditional distribution function depends on three kernels, where one of them controls the distance between spatial locations, while the other two control the distance between observations. In addition, the almost complete convergence and the convergence in mean order q of the kernel predictor are obtained when the sample considered is alpha-mixing. Such approach of the prediction method gives the advantage of accuracy as it overcomes sensitivity to extreme and outliers values.

Keywords: conditional quantile, kernel, nonparametric, stationary

Procedia PDF Downloads 154
5570 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence

Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno

Abstract:

Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.

Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index

Procedia PDF Downloads 168
5569 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 146
5568 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry

Authors: Harneet Walia, Morteza Zihayat

Abstract:

Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.

Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis

Procedia PDF Downloads 124
5567 Epidemiological Model for Citrus Black Spot Dynamics along the Pre-Harvest Supply Chain

Authors: Nqobile Muleya, Winston Garira, Godwin Mchau

Abstract:

Citrus Black Spot (CBS) is a fungal disease that is responsible for huge economical loss and poses a threat to the citrus industry worldwide. We construct a mathematical model framework for citrus black spot between fruits to characterise the dynamics of the disease development, paying attention to the pathogen life cycle. We have made an observation from the model analysis that the initial inoculum from ascomata is very important for disease development and thereafter it is no longer important due to conidia which is responsible for secondary infection. Most importantly, the model indicated that ascospores and conidia are very important parameters in developing citrus black spot within a short distance. The basic reproductive number and its importance in relation to citrus black spot persistence are outlined. A numerical simulation of the model was done to explain the theoretical findings.

Keywords: epidemiological modelling, Guidnardia citricarpa, life cycle stage, fungal, disease development

Procedia PDF Downloads 365
5566 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks

Authors: Tanu Aneja, Harsha Malaviya

Abstract:

Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.

Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks

Procedia PDF Downloads 18
5565 Functional Relevance of Flavanones and Other Plant Products in the Remedy of Parkinson's Disease

Authors: Himanshi Allahabadi

Abstract:

Plants have found a widespread use in medicine traditionally, including the treatment of cognitive disorders, especially, neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In terms of indigenous medicine, it has been found that many potential drugs can be isolated from plant products, including those for dementia. Plant product is widely distributed in plant kingdom and forms a major antioxidant source in the human diet, is Polyphenols. There are four important groups of polyphenols: phenolic acids, flavonoids, stilbenes, and lignans. Due to their high antioxidant capacity, interest in their study has greatly increased. There are several methods for discovering and characterizing active compounds isolated from plant sources, now available. The results obtained so far seem fulfilling, but additionally, mechanism of functioning of polyphenols at the molecular level, as well as their application in human health need to be researched upon. Also, even though the neuroprotective effects of flavonoids have been much talked about, much of the data in support of this statement has come from animal studies rather than human studies. This review is based on a multi-faceted study of medicinal plants, i.e. phytochemicals, with special focus on flavanones and their relevance in remedy of Parkinson's disease.

Keywords: dementia, parkinson's disease, flavanones, polyphenols, substantia nigra

Procedia PDF Downloads 307
5564 Wheat Dihaploid and Somaclonal Lines Screening for Resistance to P. nodorum

Authors: Lidia Kowalska, Edward Arseniuk

Abstract:

Glume and leaf blotch is a disease of wheat caused by necrotrophic fungus Parastagonospora nodorum. It is a serious pathogen in many wheat-growing areas throughout the world. Use of resistant cultivars is the most effective and economical means to control the above-mentioned disease. Plant breeders and pathologists have worked intensively to incorporate resistance to the pathogen in new cultivars. Conventional methods of breeding for resistance can be supported by using the biotechnological ones, i.e., somatic embryogenesis and androgenesis. Therefore, an effort was undertaken to compare genetic variation in P. nodorum resistance among winter wheat somaclones, dihaploids and conventional varieties. For the purpose, a population of 16 somaclonal and 4 dihaploid wheat lines from six crosses were used to assess their resistance to P. nodorum under field conditions. Lines were grown in disease-free (fungicide protected) and inoculated micro plots in 2 replications of a split-plot design in a single environment. The plant leaves were inoculated with a mixture of P. nodorum isolates three times. Spore concentrations were adjusted to 4 x 10⁶ of viable spores per one milliliter. The disease severity was rated on a scale, where > 90% – susceptible, < 10% - resistant. Disease ratings of plant leaves showed statistically significant differences among all lines tested. Higher resistance to P. nodorum was observed more often on leaves of somaclonal lines than on dihaploid ones. On average, disease, severity reached 15% on leaves of somaclones and 30% on leaves of dihaploids. Some of the genotypes were showing low leaf infection, e.g. dihaploid D-33 (disease severity 4%) and a somaclone S-1 (disease severity 2%). The results from this study prove that dihaploid and somaclonal variation might be successfully used as an additional source of wheat resistance to the pathogen and it could be recommended to use in commercial breeding programs. The reported results prove that biotechnological methods may effectively be used in breeding for disease resistance of wheat to fungal necrotrophic pathogens.

Keywords: glume and leaf blotch, somaclonal, androgenic variation, wheat, resistance breeding

Procedia PDF Downloads 120
5563 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
5562 Phenotypic and Genotypic Diagnosis of Gaucher Disease in Algeria

Authors: S. Hallal, Z. Chami, A. Hadji-Lehtihet, S. Sokhal-Boudella, A. Berhoune, L. Yargui

Abstract:

Gaucher disease is the most common lysosomal storage in our population, it is due to a deficiency of β –glucosidase acid. The enzyme deficiency causes a pathological accumulation of undegraded substrate in lysosomes. This metabolic overload is responsible for a multisystemic disease with hepatosplenomegaly, anemia, thrombocytopenia, and bone involvement. Neurological involvement is rare. The laboratory diagnosis of Gaucher disease consists of phenotypic diagnosis by determining the enzymatic activity of β - glucosidase by fluorimetric method, a study by genotypic diagnosis in the GBA gene, limiting the search recurrent mutations (N370S, L444P, 84 GG); PCR followed by an enzymatic digestion. Abnormal profiles were verified by sequencing. Monitoring of treated patients is provided by the determination of chitotriosidase. Our experience spaning a period of 6 years (2007-2014) has enabled us to diagnose 78 patients out of a total of 328 requests from the various departments of pediatrics, internal medicine, neurology. Genotypic diagnosis focused on the entire family of 9 children treated at pediatric CHU Mustapha, which help define the clinical form; or 5 of them had type III disease, carrying the L444P mutation in the homozygous state. Three others were composite (N370/L444P) (N370S/other unintended mutation in our study), and only in one family no recurrent mutation has been found. This molecular study permits screening of heterozygous essential for genetic counseling.

Keywords: Gaucher disease, mutations, N370S, L444P

Procedia PDF Downloads 405
5561 Induced Systemic Resistance in Tomato Plants against Fusarium Wilt Disease Using Biotic Inducers

Authors: Mostafa A. Amer, I. A. El-Samra, I. I. Abou-ElSeoud, S. M. El-Abd, N. K. Shawertamimi

Abstract:

Tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. Lycopercisi (FOL) is considered one of the most destructive diseases in Egypt. Effect of some biotic inducers such as Bacillus megaterium var. phosphaticum, Glomus intraradices and Glomus macrocarpum at seven different mixed treatments, was tested for their ability to induce resistance in tomato plants against the disease. According to pathogenicity tests, all the tested isolates of FOL showed wilt symptoms on both of the tested cultivars; however, they considerably varied in percentages of disease incidence (DI) and disease severity (DS). Castle Rock was more susceptible than Peto 86, which was relatively resistant. Pretreatment of both cultivars, under greenhouse conditions, with the tested biotic inducers alone or in combination with each other's, significantly increased the induction of chitinase, β-1,3-glucanase, peroxidase, and polyphenoloxidase and reduced disease incidence and severity, compared with untreated noninoculated (C1) and untreated inoculated (C2) controls. Application of a combination of BMP, with GI and GM was the most effective in increasing the induction rated of the tested enzymes, compared with the other treatments. Induction of enzymes in most of the tested bioinducers treatments gradually increased, attaining maximum values after 48 or/and 72 hrs after challenging with FOL, then gradually declined. GI was the least effective bioinducer.

Keywords: F. oxysporum f. sp. lycopersici, defense enzymes, induced systemic resistance, ISR, B. megaterium var. phosphaticum, G. macrocarpum, G. intraradices

Procedia PDF Downloads 405
5560 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 113
5559 The Ebola Virus Disease and Its Outbreak in Nigeria

Authors: Osagiede Efosa Kelvin

Abstract:

The Ebola virus disease (EVD); also Ebola hemorrhagic fever, is a disease of humans and other primates caused by Ebola viruses. Signs and symptoms typically start between two days and three weeks after contracting the virus as a fever, sore throat, muscle pain, and headaches. Then, vomiting, diarrhoea and rash usually follow, along with decreased function of the liver and kidneys. At this time, some people begin to bleed both internally and externally. The first death in Nigeria was reported on 25 July 2014: a Liberian-American with Ebola flew from Liberia to Nigeria and died in Lagos soon after arrival. As part of the effort to contain the disease, possible contacts were monitored –353 in Lagos and 451 in Port Harcourt On 22 September, the World Health Organisation reported a total of 20 cases, including eight deaths. The WHO's representative in Nigeria officially declared Nigeria Ebola-free on 20 October after no new active cases were reported in the follow-up contact. This paper looks at the Ebola Virus in general and the measures taken by Nigeria to combat its spread.

Keywords: Ebola virus, hemorrhagic fever, Nigeria, outbreak

Procedia PDF Downloads 503
5558 In silico Analysis of a Causative Mutation in Cadherin-23 Gene Identified in an Omani Family with Hearing Loss

Authors: Mohammed N. Al Kindi, Mazin Al Khabouri, Khalsa Al Lamki, Tommasso Pappuci, Giovani Romeo, Nadia Al Wardy

Abstract:

Hereditary hearing loss is a heterogeneous group of complex disorders with an overall incidence of one in every five hundred newborns presented as syndromic and non-syndromic forms. Cadherin-related 23 (CDH23) is one of the listed deafness causative genes. CDH23 is found to be expressed in the stereocilia of hair cells and the retina photoreceptor cells. Defective CDH23 has been associated mostly with prelingual severe-to-profound sensorineural hearing loss (SNHL) in either syndromic (USH1D) or non-syndromic SNHL (DFNB12). An Omani family diagnosed clinically with severe-profound sensorineural hearing loss was genetically analysed by whole exome sequencing technique. A novel homozygous missense variant, c.A7451C (p.D2484A), in exon 53 of CDH23 was detected. One hundred and thirty control samples were analysed where all were negative for the detected variant. The variant was analysed in silico for pathogenicity verification using several mutation prediction software. The variant proved to be a pathogenic mutation and is reported for the first time in Oman and worldwide. It is concluded that in silico mutation prediction analysis might be used as a useful molecular diagnostics tool benefiting both genetic counseling and mutation verification. The aspartic acid 2484 alanine missense substitution might be the main disease-causing mutation that damages CDH23 function and could be used as a genetic hearing loss marker for this particular Omani family.

Keywords: Cdh23, d2484a, in silico, Oman

Procedia PDF Downloads 216
5557 A Meta-Analysis on the Efficacy and Safety of TRC101/Veverimer 6g/Day in Increasing Serum Bicarbonate Levels of Chronic Kidney Disease Patients with Metabolic Acidosis

Authors: Hazel Ann Gianelli Cu, Stephanie Co, Radcliff Cobankiat

Abstract:

Objectives: TRC101/Veverimer is an orally administered, non absorbed, sodium- and counterion-free hydrochloric acid binder for the treatment of metabolic acidosis associated with chronic kidney disease. The main objective of this study is to determine the efficacy of TRC 101/ Veverimer 6g/day in increasing serum bicarbonate levels of chronic kidney disease patients with metabolic acidosis. In this meta analysis, we also aim to look at safety outcomes, adverse effects and if the level of serum bicarbonate reached metabolic alkalosis when given TRC101/Veverimer. Methodology: Pubmed, Cochrane, Google Scholar and Science direct were used to search for randomized controlled trials about TRC101/Veverimer use in Chronic kidney disease patients with metabolic acidosis. Search strategy according to the Prisma checklist was done with evaluation of biases and synthesis of results using the Cochrane Review Manager software 5.4. Results: Two randomized controlled trials involving 371 chronic kidney disease patients were included in this study. Results show there was a significant increase in the serum bicarbonate level when given TRC101/Veverimer compared to the placebo. Both studies had a significant number of participants who completed the studies until the end. P value of <0.00001 was used in both studies with a confidence interval of 95%. Conclusion: TRC101/Veverimer 6g/day was shown to effectively and safely increase serum bicarbonate or achieve normalization in chronic kidney disease patients with metabolic acidosis as compared with a placebo. This was associated with delayed progression of kidney disease with improvement of physical functioning, however longer duration of future studies is ideal in order to assess further the long advantages and consequences of TRC 101/Veverimer.

Keywords: chronic kidney disease, metabolic acidosis, Veverimer, TRC101

Procedia PDF Downloads 196
5556 Biodiversity Affects Bovine Tuberculosis (bTB) Risk in Ethiopian Cattle: Prospects for Infectious Disease Control

Authors: Sintayehu W. Dejene, Ignas M. A. Heitkönig, Herbert H. T. Prins, Zewdu K. Tessema, Willem F. de Boer

Abstract:

Current theories on diversity-disease relationships describe host species diversity and species identity as important factors influencing disease risk, either diluting or amplifying disease prevalence in a community. Whereas the simple term ‘diversity’ embodies a set of animal community characteristics, it is not clear how different measures of species diversity are correlated with disease risk. We, therefore, tested the effects of species richness, Pielou’s evenness and Shannon’s diversity on bTB risk in cattle in the Afar Region and Awash National Park between November 2013 and April 2015. We also analysed the identity effect of a particular species and the effect of host habitat use overlap on bTB risk. We used the comparative intradermal tuberculin test to assess the number of bTB infected cattle. Our results suggested a dilution effect through species evenness. We found that the identity effect of greater kudu - a maintenance host – confounded the dilution effect of species diversity on bTB risk. bTB infection was positively correlated with habitat use overlap between greater kudu and cattle. Different diversity indices have to be considered together for assessing diversity-disease relationships, for understanding the underlying causal mechanisms. We posit that unpacking diversity metrics is also relevant for formulating control strategies to manage cattle in ecosystems characterized by seasonally limited resources and intense wildlife-livestock interactions.

Keywords: evenness, diversity, greater kudu, identity effect, maintenance hosts, multi-host disease ecology, habitat use overlap

Procedia PDF Downloads 331