Search results for: GLCM texture features
4040 Degradation of Heating, Ventilation, and Air Conditioning Components across Locations
Authors: Timothy E. Frank, Josh R. Aldred, Sophie B. Boulware, Michelle K. Cabonce, Justin H. White
Abstract:
Materials degrade at different rates in different environments depending on factors such as temperature, aridity, salinity, and solar radiation. Therefore, predicting asset longevity depends, in part, on the environmental conditions to which the asset is exposed. Heating, ventilation, and air conditioning (HVAC) systems are critical to building operations yet are responsible for a significant proportion of their energy consumption. HVAC energy use increases substantially with slight operational inefficiencies. Understanding the environmental influences on HVAC degradation in detail will inform maintenance schedules and capital investment, reduce energy use, and increase lifecycle management efficiency. HVAC inspection records spanning 14 years from 21 locations across the United States were compiled and associated with the climate conditions to which they were exposed. Three environmental features were explored in this study: average high temperature, average low temperature, and annual precipitation, as well as four non-environmental features. Initial insights showed no correlations between individual features and the rate of HVAC component degradation. Using neighborhood component analysis, however, the most critical features related to degradation were identified. Two models were considered, and results varied between them. However, longitude and latitude emerged as potentially the best predictors of average HVAC component degradation. Further research is needed to evaluate additional environmental features, increase the resolution of the environmental data, and develop more robust models to achieve more conclusive results.Keywords: climate, degradation, HVAC, neighborhood component analysis
Procedia PDF Downloads 4314039 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods
Authors: Bin Liu
Abstract:
Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)
Procedia PDF Downloads 1644038 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks
Procedia PDF Downloads 3384037 Intelligent Grading System of Apple Using Neural Network Arbitration
Authors: Ebenezer Obaloluwa Olaniyi
Abstract:
In this paper, an intelligent system has been designed to grade apple based on either its defective or healthy for production in food processing. This paper is segmented into two different phase. In the first phase, the image processing techniques were employed to extract the necessary features required in the apple. These techniques include grayscale conversion, segmentation where a threshold value is chosen to separate the foreground of the images from the background. Then edge detection was also employed to bring out the features in the images. These extracted features were then fed into the neural network in the second phase of the paper. The second phase is a classification phase where neural network employed to classify the defective apple from the healthy apple. In this phase, the network was trained with back propagation and tested with feed forward network. The recognition rate obtained from our system shows that our system is more accurate and faster as compared with previous work.Keywords: image processing, neural network, apple, intelligent system
Procedia PDF Downloads 3994036 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 3334035 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 1114034 Rheological Study of Wheat-Chickpea Flour Blend Bread for People with Type-2 Diabetes
Authors: Tasleem Zafar, Jiwan Sidhu
Abstract:
Introduction: Chickpea flour is known to offer many benefits to diabetic persons, especially in maintaining their blood sugar levels in the acceptable range. Under this project we have studied the chemical composition and antioxidant capacity of white flour (WF), whole wheat flour (WWF) and chickpea flour (BF), in addition to the effect of replacement of WF and WWF with BF on the rheological characteristics of these flour blends, with the ultimate objective of producing acceptable quality flat as well as pan-bread for the diabetic consumers. Methods: WF and WWF were replaced with BF ranging from 0 to 40%, to investigate its effect on the rheological properties and functionality of blended flour dough using farinograph, viscoamylograph, mixograph and falling number apparatus as per the AACC standard methods. Texture Profile Analysis (TPA) was carried on the WF, WWF, and their blends with BF using Stable Micro System Texture Analyzer. Effect of certain additives, such as freeze-dried amla fruit powder (Phyllanthus emblica L.), guar gum, and xanthan gum on the dough rheological properties were also studied. Results: Freeze-dried amla fruit powder was found to be very rich in ascorbic acid and other phenolics having higher antioxidant activity. A decreased farinograph water absorption, increased dough development time, higher mixing tolerance index (i.e., weakening of dough), decreased resistance to extension, lower ratio numbers were obtained when the replacement with BF was increased from 0 to 40%. The BF gave lower peak viscosity, lower paste breakdown, and lower setback values when compared with WF. The falling number values were significantly lower in WWF (meaning higher α-amylase activity) than both the WF and BF. Texture Profile Analysis (TPA) carried on the WF, WWF, and their blends with BF showed significant variations in hardness and compressibility values, dough becoming less hard and less compressible when the replacement of WF and WWF with BF was increased from 0 to 40%. Conclusions: To overcome the deleterious effects of adding BF to WF and WWF on the rheological properties will be an interesting challenge when good quality pan bread and Arabic flatbread have to be commercially produced in a bakery. Use of freeze-dried amla fruit powder, guar gum, and xanthan gum did show some promise to improve the mixing characteristics of WF, WWF, and their blends with BF, and these additives are expected to be useful in producing an acceptable quality flat as well as pan-bread on a commercial scale.Keywords: wheat flour, chickpea flour, amla fruit, rheology
Procedia PDF Downloads 1604033 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale
Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize
Abstract:
Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy
Procedia PDF Downloads 1004032 Offline Signature Verification Using Minutiae and Curvature Orientation
Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee
Abstract:
A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.Keywords: signature, ridge breaks, minutiae, orientation
Procedia PDF Downloads 1484031 Analyzing Conflict Text; ‘Akunyili Memo: State of the Nation’: an Approach from CDA
Authors: Nengi A. H. Ejiobih
Abstract:
Conflict is one of the defining features of human societies. Often, the use or misuse of language in interaction is the genesis of conflict. As such, it is expected that when people use language they do so in socially determined ways and with almost predictable social effects. The objective of this paper was to examine the interest at work as manifested in language choice and collocations in conflict discourse. It also scrutinized the implications of linguistic features in conflict discourse as it concerns ideology and power relations in political discourse in Nigeria. The methodology used for this paper is an approach from Critical discourse analysis because of its multidisciplinary model of analysis, linguistic features and its implications were analysed. The datum used is a text from the Sunday Sun Newspaper in Nigeria, West Africa titled Akunyili Memo: State of the Nation. Some of the findings include; different ideologies are inherent in conflict discourse, there is the presence of power relations being produced, exercised, maintained and produced throughout the discourse and the use of pronouns in conflict discourse is valuable because it is used to initiate and maintain relationships in social context. This paper has provided evidence that, taking into consideration the nature of the social actions and the way these activities are translated into languages, the meanings people convey by their words are identified by their immediate social, political and historical conditions.Keywords: conflicts, discourse, language, linguistic features, social context
Procedia PDF Downloads 4834030 Development of Standard Thai Appetizer in Rattanakosin Era‘s Standard: Case Study of Thai Steamed Dumpling
Authors: Nunyong Fuengkajornfung, Pattama Hirunyophat, Tidarat Sanphom
Abstract:
The objectives of this research were: To study of the recipe standard of Thai steamed dumpling, to study the ratio of modified starch in Thai steamed dumpling, to study chemical elements analyzing and Escherichia coli in Thai steamed dumpling. The experimental processes were designed in two stages as follows: To study the recipe standard of Thai steamed dumpling and to study the ratio of rice flour: modify starch by three levels 90:10, 73:30, and 50:50. The evaluation test used 9 Points Hedonic Scale method by the sensory evaluation test such as color, smell, taste, texture and overall liking. An experimental by Randomized Complete Block Design (RCBD). The statistics used in data analyses were means, standard deviation, one-way ANOVA and Duncan’s New Multiple Range Test. Regression equation, at a statistically significant level of .05. The results showed that the recipe standard was studied from three recipes by the sensory evaluation test such as color, odor, taste, spicy, texture and total acceptance. The result showed that the recipe standard of second was suitably to development. The ratio of rice flour: modified starch had 3 levels 90:10, 73:30, and 50:50 which the process condition of 50:50 had well scores (like moderately to like very much; used 9 Points Hedonic Scale method for the sensory test). Chemical elements analyzing, it showed that moisture 58.63%, fat 5.45%, protein 4.35%, carbohydrate 30.45%, and Ash 1.12%. The Escherichia coli is not found in lab testing.Keywords: Thai snack in Rattanakosin era, Thai steamed dumpling, modify starch, recipe standard
Procedia PDF Downloads 3244029 Processing and Modeling of High-Resolution Geophysical Data for Archaeological Prospection, Nuri Area, Northern Sudan
Authors: M. Ibrahim Ali, M. El Dawi, M. A. Mohamed Ali
Abstract:
In this study, the use of magnetic gradient survey, and the geoelectrical ground methods used together to explore archaeological features in Nuri’s pyramids area. Research methods used and the procedures and methodologies have taken full right during the study. The magnetic survey method was used to search for archaeological features using (Geoscan Fluxgate Gradiometer (FM36)). The study area was divided into a number of squares (networks) exactly equal (20 * 20 meters). These squares were collected at the end of the study to give a major network for each region. Networks also divided to take the sample using nets typically equal to (0.25 * 0.50 meter), in order to give a more specific archaeological features with some small bipolar anomalies that caused by buildings built from fired bricks. This definition is important to monitor many of the archaeological features such as rooms and others. This main network gives us an integrated map displayed for easy presentation, and it also allows for all the operations required using (Geoscan Geoplot software). The parallel traverse is the main way to take readings of the magnetic survey, to get out the high-quality data. The study area is very rich in old buildings that vary from small to very large. According to the proportion of the sand dunes and the loose soil, most of these buildings are not visible from the surface. Because of the proportion of the sandy dry soil, there is no connection between the ground surface and the electrodes. We tried to get electrical readings by adding salty water to the soil, but, unfortunately, we failed to confirm the magnetic readings with electrical readings as previously planned.Keywords: archaeological features, independent grids, magnetic gradient, Nuri pyramid
Procedia PDF Downloads 4844028 Deep Neural Network Approach for Navigation of Autonomous Vehicles
Authors: Mayank Raj, V. G. Narendra
Abstract:
Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence
Procedia PDF Downloads 1594027 Deciphering Orangutan Drawing Behavior Using Artificial Intelligence
Authors: Benjamin Beltzung, Marie Pelé, Julien P. Renoult, Cédric Sueur
Abstract:
To this day, it is not known if drawing is specifically human behavior or if this behavior finds its origins in ancestor species. An interesting window to enlighten this question is to analyze the drawing behavior in genetically close to human species, such as non-human primate species. A good candidate for this approach is the orangutan, who shares 97% of our genes and exhibits multiple human-like behaviors. Focusing on figurative aspects may not be suitable for orangutans’ drawings, which may appear as scribbles but may have meaning. A manual feature selection would lead to an anthropocentric bias, as the features selected by humans may not match with those relevant for orangutans. In the present study, we used deep learning to analyze the drawings of a female orangutan named Molly († in 2011), who has produced 1,299 drawings in her last five years as part of a behavioral enrichment program at the Tama Zoo in Japan. We investigate multiple ways to decipher Molly’s drawings. First, we demonstrate the existence of differences between seasons by training a deep learning model to classify Molly’s drawings according to the seasons. Then, to understand and interpret these seasonal differences, we analyze how the information spreads within the network, from shallow to deep layers, where early layers encode simple local features and deep layers encode more complex and global information. More precisely, we investigate the impact of feature complexity on classification accuracy through features extraction fed to a Support Vector Machine. Last, we leverage style transfer to dissociate features associated with drawing style from those describing the representational content and analyze the relative importance of these two types of features in explaining seasonal variation. Content features were relevant for the classification, showing the presence of meaning in these non-figurative drawings and the ability of deep learning to decipher these differences. The style of the drawings was also relevant, as style features encoded enough information to have a classification better than random. The accuracy of style features was higher for deeper layers, demonstrating and highlighting the variation of style between seasons in Molly’s drawings. Through this study, we demonstrate how deep learning can help at finding meanings in non-figurative drawings and interpret these differences.Keywords: cognition, deep learning, drawing behavior, interpretability
Procedia PDF Downloads 1674026 Investigating Medical Students’ Perspectives toward University Teachers’ Talking Features in an English as a Foreign Language Context in Urmia, Iran
Authors: Ismail Baniadam, Nafisa Tadayyon, Javid Fereidoni
Abstract:
This study aimed to investigate medical students’ attitudes toward some teachers’ talking features regarding their gender in the Iranian context. To do so, 60 male and 60 female medical students of Urmia University of Medical Sciences (UMSU) participated in the research. A researcher made Likert-type questionnaire which was initially piloted and was used to gather the data. Comparing the four different factors regarding the features of teacher talk, it was revealed that visual and extra-linguistic information factor, Lexical and syntactic familiarity, Speed of speech, and the use of Persian language had the highest to the lowest mean score, respectively. It was also indicated that female students rather than male students were significantly more in favor of speed of speech and lexical and syntactic familiarity.Keywords: attitude, gender, medical student, teacher talk
Procedia PDF Downloads 1784025 Use of Galileo Advanced Features in Maritime Domain
Authors: Olivier Chaigneau, Damianos Oikonomidis, Marie-Cecile Delmas
Abstract:
GAMBAS (Galileo Advanced features for the Maritime domain: Breakthrough Applications for Safety and security) is a project funded by the European Space Program Agency (EUSPA) aiming at identifying the search-and-rescue and ship security alert system needs for maritime users (including operators and fishing stakeholders) and developing operational concepts to answer these needs. The general objective of the GAMBAS project is to support the deployment of Galileo exclusive features in the maritime domain in order to improve safety and security at sea, detection of illegal activities and associated surveillance means, resilience to natural and human-induced emergency situations, and develop, integrate, demonstrate, standardize and disseminate these new associated capabilities. The project aims to demonstrate: improvement of the SAR (Search And Rescue) and SSAS (Ship Security Alert System) detection and response to maritime distress through the integration of new features into the beacon for SSAS in terms of cost optimization, user-friendly aspects, integration of Galileo and OS NMA (Open Service Navigation Message Authentication) reception for improved authenticated localization performance and reliability, and at sea triggering capabilities, optimization of the responsiveness of RCCs (Rescue Co-ordination Centre) towards the distress situations affecting vessels, the adaptation of the MCCs (Mission Control Center) and MEOLUT (Medium Earth Orbit Local User Terminal) to the data distribution of SSAS alerts.Keywords: Galileo new advanced features, maritime, safety, security
Procedia PDF Downloads 934024 Critical Evaluation of Key Performance Indicators in Procurement Management Information System: In Case of Bangladesh
Authors: Qazi Mahdia Ghyas
Abstract:
Electronic Government Procurement (e-GP) has implemented in Bangladesh to ensure the good Governance. e-GP has transformed Bangladesh's procurement process electronically. But, to our best knowledge, there is no study to understand the key features of e-GP in Bangladesh. So, this study tries to identify the features of performance improvement after implementing an e-GP system that will help for further improvements. Data was collected from the PROMIS Overall Report (Central Procurement Technical Unit website) for the financial year from Q1 _July- Sep 2015-16 to Q4 _Apr- Jun 2021-22. This study did component factor analysis on KPIs and found nineteen KPIs that are statistically significant and represent time savings, efficiency, accountability, anti-corruption and compliance key features in procurement activities of e-GP. Based on the analysis, some practical measures have been recommended for better improvement of e-GP. This study has some limitations. Because of having multicollinearity issues, all the 42 KPIs (except 19) did not show a good fit for component factor analysis.Keywords: public procurement, electronic government procurement, KPI, performance evaluation
Procedia PDF Downloads 994023 Automated Classification of Hypoxia from Fetal Heart Rate Using Advanced Data Models of Intrapartum Cardiotocography
Authors: Malarvizhi Selvaraj, Paul Fergus, Andy Shaw
Abstract:
Uterine contractions produced during labour have the potential to damage the foetus by diminishing the maternal blood flow to the placenta. In order to observe this phenomenon labour and delivery are routinely monitored using cardiotocography monitors. An obstetrician usually makes the diagnosis of foetus hypoxia by interpreting cardiotocography recordings. However, cardiotocography capture and interpretation is time-consuming and subjective, often lead to misclassification that causes damage to the foetus and unnecessary caesarean section. Both of these have a high impact on the foetus and the cost to the national healthcare services. Automatic detection of foetal heart rate may be an objective solution to help to reduce unnecessary medical interventions, as reported in several studies. This paper aim is to provide a system for better identification and interpretation of abnormalities of the fetal heart rate using RStudio. An open dataset of 552 Intrapartum recordings has been filtered with 0.034 Hz filters in an attempt to remove noise while keeping as much of the discriminative data as possible. Features were chosen following an extensive literature review, which concluded with FIGO features such as acceleration, deceleration, mean, variance and standard derivation. The five features were extracted from 552 recordings. Using these features, recordings will be classified either normal or abnormal. If the recording is abnormal, it has got more chances of hypoxia.Keywords: cardiotocography, foetus, intrapartum, hypoxia
Procedia PDF Downloads 2174022 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling
Authors: Amin Nezarat, Naeime Seifadini
Abstract:
Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.Keywords: predicting, deep learning, neural network, urban trip
Procedia PDF Downloads 1394021 Pre-Transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel
Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury
Abstract:
Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its microstructure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation
Procedia PDF Downloads 4984020 Effects of Adding Gypsum in Agricultural Land on Mitigating Splash Erosion on Sandy Loam and Loam Soil Textures, Afghanistan
Authors: Abdul Malik Dawlatzai, Shafiqullah Rahmani
Abstract:
Splash erosion in field has affected by factors; slope, rain intensity, soil properties, and plant cover. And also, soil erosion affects not only farmland productivity but also water quality downstream. There are a number of potential soil conservation practices, but many of these are complicated and relatively expensive, such as buffer strips, agro-forestry, counter banking, catchment canal, terracing, surface mulching, reduced tillage, etc. However, mitigation soil and water loss in agricultural land, particularly in arid and semi-arid climatic conditions, is indispensable for environmental protection and agricultural production. The objective of this study is to evaluate the effects of adding gypsum mineral on mitigating splash erosion caused by rain drop. The research was conducted in soil laboratory Badam Bagh Agricultural Researching Farm, Kabul, Afghanistan. The stainless steel cores were used, and constant water pressure was controlled by a Mariotte’s bottle with kinetic energy of raindrops 2.36 x 10⁻⁵J. Gypsum mineral was applied at a rate of 5 and 10 t ha⁻¹ and using a sandy loam and loam soil textures. The result was showed an average soil loss from sandy loam soil texture; control was 8.22%, 4.31% and 4.06% similar from loam soil texture, control was 7.26%, 2.89%, and 2.72% respectively. The application of gypsum mineral significantly (P < 0.05) reduced dispersion of soil particles caused by the impact of raindrops compared to control. Therefore, it was concluded that the addition of gypsum was effective as a measure for mitigating splash erosion.Keywords: gypsum, soil loss, splash erosion, Afghanistan
Procedia PDF Downloads 1334019 Effects of Ethylene Scavengering Packaging on the Shelf Life of Edible Mushroom
Authors: Majid Javanmard
Abstract:
Edible mushrooms are those agricultural products which contain high quantity of protein and can have special role in human diet. So search for methods to increase their shelf life is important. One of these strategies can be use of active packaging for absorb the ethylene which has been studied in present study. In this study, initially, production of impregnating zeolite with potassium permanganate has been studied with zeolite clinoptiolite available in iran. After that, these ethylene scavengers were placed in the package of edible mushrooms and then transferred to the refrigerator with temperature 4c for a period of 20 days. Each 5 days, several experiments accomplished on edible mushrooms such as weight loss, moisture content, color, texture, bacterial experiments and sensory evaluation. After production of impregnating zeolite with potassium permanganate (with a concentration of %2.5, %5, %7.5, %10 and %12.5) by zeolite type clinoptiolite (with mesh 35 and 60), samples have been analyzed with gas chromatography and titration with sodium oxalate. The results showed that zeolite by concentration of %5, %7.5 and %10 potassium permanganate and mesh 60 have a higher efficiency. Results from the experiments on edible mushrooms proved that impregnated zeolite with potassium permanganate have a meaningful influence in prevent the weight loss, decrease of moisture content and L-value, increase of a-value and overall color change (ΔE) and decrease of firmness texture of mushrooms. In addition, these absorbents can influence on decrease microbial load (mesophilic bacteria) rather than control. Generally, concluded that the impregnated zeolite with 10% permanganate potassium has a high efficiency on increase the shelf life of fresh edible mushrooms.Keywords: active packaging, ethylene scavenger, zeolite clinoptiolite, permanganate potassium, shelf life
Procedia PDF Downloads 4174018 A Relationship Extraction Method from Literary Fiction Considering Korean Linguistic Features
Authors: Hee-Jeong Ahn, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The knowledge of the relationship between characters can help readers to understand the overall story or plot of the literary fiction. In this paper, we present a method for extracting the specific relationship between characters from a Korean literary fiction. Generally, methods for extracting relationships between characters in text are statistical or computational methods based on the sentence distance between characters without considering Korean linguistic features. Furthermore, it is difficult to extract the relationship with direction from text, such as one-sided love, because they consider only the weight of relationship, without considering the direction of the relationship. Therefore, in order to identify specific relationships between characters, we propose a statistical method considering linguistic features, such as syntactic patterns and speech verbs in Korean. The result of our method is represented by a weighted directed graph of the relationship between the characters. Furthermore, we expect that proposed method could be applied to the relationship analysis between characters of other content like movie or TV drama.Keywords: data mining, Korean linguistic feature, literary fiction, relationship extraction
Procedia PDF Downloads 3834017 Testing Capabilities and Limitations of EBM Technology to Guide Design with a Test Artifact Design including Unique Features
Authors: Kadir Akkuş, Burcu A. Hamat, Kaan Ciloglu
Abstract:
Additive Manufacturing (AM) is the respectable improvement of this century in the field of manufacturing and regarded as a breakthrough that represents the third industrial revolution by the leading authorities such as Wohlers Associates Inc., The Economist, and MIT Technology Review. Thanks to the stacking and unifying methodology of AM, design of lighter but stiffer parts with really more complex shapes and geometrical features, which were not possible by traditional subtractive manufacturing methods, became achievable. Through analysis of the AM process must be performed and mechanical properties of manufactured test parts must be studied to provide input for design. Furthermore, process capabilities, constraints, limitations and challenges regarding AM must be examined so that the design must be compatible with the process to be able to take all the advantages of the AM. In this paper, capabilities and limitations of AM will be investigated through a test part including unique features and manufactured from Ti-6Al-4V by employing Electron Beam Melting (EBM) technology by comparing to the test parts introduced in literature.Keywords: additive manufacturing, DfAM, EBM, test artifact, Ti-6Al-4V
Procedia PDF Downloads 1134016 Soil Quality Status under Dryland Vegetation of Yabello District, Southern Ethiopia
Authors: Mohammed Abaoli, Omer Kara
Abstract:
The current research has investigated the soil quality status under dryland vegetation of Yabello district, Southern Ethiopia in which we should identify the nature and extent of salinity problem of the area for further research bases. About 48 soil samples were taken from 0-30, 31-60, 61-90 and 91-120 cm soil depths by opening 12 representative soil profile pits at 1.5 m depth. Soil color, texture, bulk density, Soil Organic Carbon (SOC), Cation Exchange Capacity (CEC), Na, K, Mg, Ca, CaCO3, gypsum (CaSO4), pH, Sodium Adsorption Ratio (SAR), Exchangeable Sodium Percentage (ESP) were analyzed. The dominant soil texture was silty-clay-loam. Bulk density varied from 1.1 to 1.31 g/cm3. High SOC content was observed in 0-30 cm. The soil pH ranged from 7.1 to 8.6. The electrical conductivity shows indirect relationship with soil depth while CaCO3 and CaSO4 concentrations were observed in a direct relationship with depth. About 41% are non-saline, 38.31% saline, 15.23% saline-sodic and 5.46% sodic soils. Na concentration in saline soils was greater than Ca and Mg in all the soil depths. Ca and Mg contents were higher above 60 cm soil depth in non-saline soils. The concentrations of SO2-4 and HCO-3 were observed to be higher at the most lower depth than upper. SAR value tends to be higher at lower depths in saline and saline-sodic soils, but decreases at lower depth of the non-saline soils. The distribution of ESP above 60 cm depth was in an increasing order in saline and saline-sodic soils. The result of the research has shown the direction to which extent of salinity we should consider for the Commiphora plant species we want to grow on the area.Keywords: commiphora species, dryland vegetation, ecological significance, soil quality, salinity problem
Procedia PDF Downloads 1964015 Growth Patterns of Pyrite Crystals Studied by Electron Back Scatter Diffraction (EBSD)
Authors: Kirsten Techmer, Jan-Erik Rybak, Simon Rudolph
Abstract:
Natural formed pyrites (FeS2) are frequent sulfides in sedimentary and metamorphic rocks. Growth textures of idiomorphic pyrite assemblages reflect the conditions during their formation in the geologic sequence, furtheron the local texture analyses of the growth patterns of pyrite assemblages by EBSD reveal the possibility to resolve the growth conditions during the formation of pyrite at the micron scale. The spatial resolution of local texture measurements in the Scanning Electron Microscope used can be in the nanomete scale. Orientation contrasts resulting from domains of smaller misorientations within larger pyrite crystals can be resolved as well. The electron optical studies have been carried out in a Field-Emission Scanning Electron Microscope (FEI Quanta 200) equipped with a CCD camera to study the orientation contrasts along the surfaces of pyrite. Idiomorphic cubic single crystals of pyrite, polycrystalline assemblages of pyrite, spherically grown spheres of pyrite as well as pyrite-bearing ammonites have been studied by EBSD in the Scanning Electron Microscope. Samples were chosen to show no or minor secondary deformation and an idiomorphic 3D crystal habit, so the local textures of pyrite result mainly from growth and minor from deformation. The samples studied derived from Navajun (Spain), Chalchidiki (Greece), Thüringen (Germany) and Unterkliem (Austria). Chemical analyses by EDAX show pyrite with minor inhomogeneities e.g., single crystals of galena and chalcopyrite along the grain boundaries of larger pyrite crystals. Intergrowth between marcasite and pyrite can be detected in one sample. Pyrite may form intense growth twinning lamellae on {011}. Twinning, e.g., contact twinning is abundant within the crystals studied and the individual twinning lamellaes can be resolved by EBSD. The ammonites studied show a replacement of the shale by newly formed pyrite resulting in an intense intergrowth of calcite and pyrite. EBSD measurements indicate a polycrystalline microfabric of both minerals, still reflecting primary surface structures of the ammonites e.g, the Septen. Discs of pyrite (“pyrite dollar”) as well as pyrite framboids show growth patterns comprising a typical microfabric. EBSD studies reveal an equigranular matrix in the inner part of the discs of pyrite and a fiber growth with larger misorientations in the outer regions between the individual segments. This typical microfabric derived from a formation of pyrite crystals starting at a higher nucleation rate and followed by directional crystal growth. EBSD studies show, that the growth texture of pyrite in the samples studied reveals a correlation between nucleation rate and following growth rate of the pyrites, thus leading to the characteristic crystal habits. Preferential directional growth at lower nucleation rates may lead to the formation of 3D framboids of pyrite. Crystallographic misorientations between the individual fibers are similar. In ammonites studied, primary anisotropies of the substrates like e.g., ammonitic sutures, influence the nucleation, crystal growth and habit of the newly formed pyrites along the surfaces.Keywords: Electron Back Scatter Diffraction (EBSD), growth pattern, Fe-sulfides (pyrite), texture analyses
Procedia PDF Downloads 2934014 Musical Instruments Classification Using Machine Learning Techniques
Authors: Bhalke D. G., Bormane D. S., Kharate G. K.
Abstract:
This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.Keywords: feature extraction, SVM, KNN, musical instruments
Procedia PDF Downloads 4804013 Evaluation of the Skid Resistance of Asphalt Concrete Made of Local Low-Performance Aggregates Based on New Accelerated Polishing Machine
Authors: Saci Abdelhakim Ferkous, Khedoudja Soudani, Smail Haddadi
Abstract:
This paper presents the results of a laboratory experimental study that explores the skid resistance of asphalt concrete mixtures made of local low-performance aggregates by partially replacing sand with olive mill waste (OMW). OMW was mixed with aggregates using a dry process by replacing sand with contents of 5%, 7%, 10% and 15%. The mechanical performances of the mixtures were evaluated using the Marshall and Duriez tests. A modified accelerated polishing machine was used as polishing equipment, and a British pendulum tester (BPT) was used to test the skid resistance of the samples. Finally, texture parameter analysis was performed using scanning electron microscopy (SEM) and Mountains Map software to assess the effect of OMW on the friction coefficient evolution. Using a distinct road wheel for a modified version of an accelerated polishing machine, which is normally used to determine the polished stone value of aggregates, the results showed that the addition of OMW up to 10% conferred a better skid resistance in comparison to normal asphalt concrete. The presence of olive mill waste in the mixture until 15% guarantees a gain of 22%-29% in skid resistance after polishing compared with the reference mix. Indeed, from texture parameter analysis, it was observed that there was differential wear of the lightweight aggregates (OMW) compared to the other aggregates during the polishing process, which created a new surface microtexture that had new peaks and led to a good level of friction compared to the mixtures without OMW. In general, it was found that OMW is a promising modifier for asphalt mixtures with both engineering and economic merits.Keywords: skid resistance, olive mill waste, polishing resistance, accelerated polishing machine, local materials, sustainable development.
Procedia PDF Downloads 564012 Variant Selection and Pre-transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel
Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury
Abstract:
Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its micro structure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation
Procedia PDF Downloads 4904011 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion Detection System (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw data set for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. These optimal feature subset used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.Keywords: Particle Swarm Optimization (PSO), Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP)
Procedia PDF Downloads 367