Search results for: Basma Abdel Hadi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 408

Search results for: Basma Abdel Hadi

108 Antihyperglycemic Potential of Chrysin and Diosmin alone or in Combination against Streptozotocin-Induced Hyperglycemia in Rats: Anti-Inflammatory and Antioxidant Mechanisms

Authors: Sally A. El Awdan, Gehad A. Abdel Jaleel, Dalia O Saleh, Manal Badawi

Abstract:

Background: Diabetes is a metabolic disease that affects a wide range of people worldwide and results in serious complications. Streptozotocin (STZ) causes selective cytotoxicity in the pancreatic β-cell, and it has been extensively used to induce diabetes mellitus in rats. The present study investigated the effects of diosmin and chrysin alone or in combination with each other on glucose level and on liver in STZ diabetic rats. Methods: In this study, rats were divided into six experimental groups (normal, untreated STZ-diabetic (60 mg/kg B.W., IP), treated STZ-diabetic with glycazide (10 mg/kg B.W, oral), treated STZ-diabetic with diosmin (100 mg/kg B. W., oral), treated STZ-diabetic with chrysin (80 mg/kg B.W., oral), treated STZ-diabetic with diosmin (50 mg/kg B.W, oral) + chrysin (40 mg/kg B.W., oral). After 2 weeks blood samples were withdrawn and glucose was measured. Animals were anaesthetized with an intraperitoneal injection of sodium pentobarbital (60 mg/kg), and sacrificed for dissecting liver. Results: Throughout the experimental period, all treatments significantly (P<0.05) lowered serum glucose, AST, ALT, triglyceride, cholesterol, IL-6, TNF-α and IL-1β. Moreover, the treated diabetic rats showed higher levels of reduced glutathione (P<0.05) in the liver compared to the diabetic control rats and inhibited diabetes-induced elevation in the levels of malondialdehyde in liver. The results of this study clearly demonstrated that diosmin and chrysin possess several treatment-oriented properties, including the control of hyperglycemia, antioxidant effects and anti-inflammatory effects. Conclusion: Considering these observations, it appears that diosmin and chrysin may be a useful supplement to delay the developmentof diabetes and its complications.

Keywords: diabetes, streptozocin, chrysin, rat, diosmin, cytokines

Procedia PDF Downloads 247
107 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery

Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang

Abstract:

Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.

Keywords: solar, pothothermal, membrane, MWCNT

Procedia PDF Downloads 72
106 Electron-Ion Recombination for Photoionized and Collisionally Ionized Plasmas

Authors: Shahin A. Abdel-Naby, Asad T. Hassan

Abstract:

Astrophysical plasma environments can be classified into collisionally ionized (CP) and photoionizedplasmas (PP). In the PP, ionization is caused by an external radiation field, while it is caused by electron collision in the CP. Accurate and reliable laboratory astrophysical data for electron-ion recombination is needed for plasma modeling for low and high-temperatures. Dielectronic recombination (DR) is the dominant recombination process for the CP for most of the ions. When a free electron is captured by an ion with simultaneous excitation of its core, a doubly-exited intermediate state may be formed. The doubly excited state relaxes either by electron emission (autoionization) or by radiative decay (photon emission). DR process takes place when the relaxation occurs to a bound state by a photon emission. DR calculations at low-temperatures are problematic and challenging since small uncertaintiesin the low-energy DR resonance positions can produce huge uncertainties in DR rate coefficients.DR rate coefficients for N²⁺ and O³⁺ ions are calculated using state-of-the-art multi-configurationBreit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. Level-resolved calculations for RR and DR rate coefficients from the ground and metastable initial states are produced in an intermediate coupling scheme associated withn = 0 and n = 1 core-excitations. DR cross sections for these ions are convoluted with the experimental electron-cooler temperatures to produce DR rate coefficients. Good agreements are foundbetween these rate coefficients and theexperimental measurements performed at CRYRING heavy-ionstorage ring for both ions.

Keywords: atomic data, atomic process, electron-ion collision, plasmas

Procedia PDF Downloads 74
105 Design and Analysis of a Combined Cooling, Heating and Power Plant for Maximum Operational Flexibility

Authors: Salah Hosseini, Hadi Ramezani, Bagher Shahbazi, Hossein Rabiei, Jafar Hooshmand, Hiwa Khaldi

Abstract:

Diversity of energy portfolio and fluctuation of urban energy demand establish the need for more operational flexibility of combined Cooling, Heat, and Power Plants. Currently, the most common way to achieve these specifications is the use of heat storage devices or wet operation of gas turbines. The current work addresses using variable extraction steam turbine in conjugation with a gas turbine inlet cooling system as an alternative way for enhancement of a CCHP cycle operating range. A thermodynamic model is developed and typical apartments building in PARDIS Technology Park (located at Tehran Province) is chosen as a case study. Due to the variable Heat demand and using excess chiller capacity for turbine inlet cooling purpose, the mentioned steam turbine and TIAC system provided an opportunity for flexible operation of the cycle and boosted the independence of the power and heat generation in the CCHP plant. It was found that the ratio of power to the heat of CCHP cycle varies from 12.6 to 2.4 depending on the City heating and cooling demands and ambient condition, which means a good independence between power and heat generation. Furthermore, selection of the TIAC design temperature is done based on the amount of ratio of power gain to TIAC coil surface area, it was found that for current cycle arrangement the TIAC design temperature of 15 C is most economical. All analysis is done based on the real data, gathered from the local weather station of the PARDIS site.

Keywords: CCHP plant, GTG, HRSG, STG, TIAC, operational flexibility, power to heat ratio

Procedia PDF Downloads 258
104 Assessment of Knowledge, Awareness about Hemorrhoids Causes and Stages among the General Public of Saudi Arabia

Authors: Asaiel Mubark Al Hadi

Abstract:

Background: A frequent anorectal condition known as hemorrhoids, sometimes known as piles, is characterized by a weakening of the anal cushion and the supporting tissue as well as spasms of the internal sphincter. Hemorrhoids are most frequently identified by painless bright red bleeding, prolapse, annoying grape-like tissue prolapse, itching, or a combination of symptoms. digital rectal examination (DRE) and anoscope are used to diagnose it. Constipation, a low-fiber diet, a high body- mass index (BMI), pregnancy, and a reduced physical activity are among the factors that are typically thought to increase the risk of hemorrhoids. Golighers is the most commonly used hemorrhoid classification scheme It is 4 degrees, which determines the degree of the event. The purpose of this study is to assess knowledge and awareness level of the causes and stages of Hemorrhoids in the public of Saudi Arabia. Method: This cross-sectional study was conducted in the Saudi Arabia between Oct 2022- Dec 2022. The study group included at least 384 aged above 18 years. The outcomes of this study were analyzed using the SPSS program using a pre-tested questionnaire. Results: The study included 1410 participants, 69.9% of them were females and 30.1% were males. 53.7% of participants aged 20- 30 years old. 17% of participants had hemorrhoids and 42% had a relative who had hemorrhoids. 42.8% of participants could identify stage 1 of hemorrhoids correctly, 44.7% identified stage 2 correctly, 46.7% identified stage 3 correctly and 58.1% identified stage 4 correctly. Only 28.9% of participants had high level of knowledge about hemorrhoids, 62.7% had moderate knowledge and 8.4% had low knowledge. Conclusion: In conclusion, Saudi general population has poor knowledge of hemorrhoids, their causes and their management approach. There was a significant association between knowledge scores of hemorrhoids with age, gender, residence area and employment.

Keywords: hemorrhoids, external hemorrhoid, internal hemorrhoid, anal fissure, hemorrhoid stages, prolapse, rectal bleeding

Procedia PDF Downloads 63
103 Comparison of Various Landfill Ground Improvement Techniques for Redevelopment of Closed Landfills to Cater Transport Infrastructure

Authors: Michael D. Vinod, Hadi Khabbaz

Abstract:

Construction of infrastructure above or adjacent to landfills is becoming more common to capitalize on the limited space available within urban areas. However, development above landfills is a challenging task due to large voids, the presence of organic matter, heterogeneous nature of waste and ambiguity surrounding landfill settlement prediction. Prior to construction of infrastructure above landfills, ground improvement techniques are being employed to improve the geotechnical properties of landfill material. Although the ground improvement techniques have little impact on long term biodegradation and creep related landfill settlement, they have shown some notable short term success with a variety of techniques, including methods for verifying the level of effectiveness of ground improvement techniques. This paper provides geotechnical and landfill engineers a guideline for selection of landfill ground improvement techniques and their suitability to project-specific sites. Ground improvement methods assessed and compared in this paper include concrete injected columns (CIC), dynamic compaction, rapid impact compaction (RIC), preloading, high energy impact compaction (HEIC), vibro compaction, vibro replacement, chemical stabilization and the inclusion of geosynthetics such as geocells. For each ground improvement technique a summary of the existing theory, benefits, limitations, suitable modern ground improvement monitoring methods, the applicability of ground improvement techniques for landfills and supporting case studies are provided. The authors highlight the importance of implementing cost-effective monitoring techniques to allow observation and necessary remediation of the subsidence effects associated with long term landfill settlement. These ground improvement techniques are primarily for the purpose of construction above closed landfills to cater for transport infrastructure loading.

Keywords: closed landfills, ground improvement, monitoring, settlement, transport infrastructure

Procedia PDF Downloads 187
102 Role of Zinc in Catch-Up Growth of Low-Birth Weight Neonates

Authors: M. A. Abdel-Wahed, Nayera Elmorsi Hassan, Safaa Shafik Imam, Ola G. El-Farghali, Khadija M. Alian

Abstract:

Low-birth-weight is a challenging public health problem. Aim: to clarify role of zinc on enhancing catch-up growth of low-birth-weight and find out a proposed relationship between zinc effect on growth and the main growth hormone mediator, IGF-1. Methods: Study is a double-blind-randomized-placebo-controlled trial conducted on low-birth-weight-neonates delivered at Ain Shams University Maternity Hospital. It comprised 200 Low-birth-weight-neonates selected from those admitted to NICU. Neonates were randomly allocated into one of the following two groups: group I: low-birth-weight; AGA or SGA on oral zinc therapy at dose of 10 mg/day; group II: Low-birth-weight; AGA or SGA on placebo. Anthropometric measurements were taken including birth weight, length; head, waist, chest, mid-upper arm circumferences, triceps and sub-scapular skin-fold thicknesses. Results: At 12-month-old follow-up visit, mean weight, length; head (HC), waist, chest, mid-upper arm circumferences and triceps; also, infant’s proportions had values ≥ 10th percentile for weight, length and HC were significantly higher among infants of group I when compared to those of group II. Oral zinc therapy was associated with 24.88%, 25.98% and 19.6% higher proportion of values ≥ 10th percentile regarding weight, length and HC at 12-month-old visit, respectively [NNT = 4, 4 and 5, respectively]. Median IGF-1 levels measured at 6 months were significantly higher in group I compared to group II (median (range): 90 (19 – 130) ng/ml vs. 74 (21 – 130) ng/ml, respectively, p=0.023). Conclusion: Oral zinc therapy in low-birth-weight neonates was associated with significantly more catch-up growth at 12-months-old and significantly higher serum IGF-1 at 6-month-old.

Keywords: low-birth-weight, zinc, catch-up growth, neonates

Procedia PDF Downloads 389
101 Bone Mineral Density in Type 2 Diabetes Mellitus Postmenopausal Egyptian Female Patients: Correlation with Fetuin-A Level and Metabolic Parameters

Authors: Ahmed A. M. Shoaib, Heba A. Esaily, Mahmoud M. Emara, Eman A. E. Badr, Amany S. Khalifa, Mayada M. M., Abdel-Raizk

Abstract:

Background: DM is associated with metabolic bone diseases, osteoporosis, low-impact fractures and falls in geriatrics. Fetuin-A, which is a serum protein produced by the liver and promotes bone mineralization, is an independent risk factor for type 2 diabetes. Aim: Evaluation of fetuin-A level and bone mineral density in postmenopausal Egyptian female patients with type 2 diabetes mellitus and their correlation with each other & with other metabolic parameters. Patients and methods: Seventy postmenopausal female patients with type II diabetes and thirty postmenopausal female as control were included in this study. Measurement of Fetuin-A together with metabolic parameters and DXA in wrist, hip and spine, ALP, CBC, FBS, PP2H and HBA1c was done in all participants. Results: - Fetuin-A level was found to be highly significant (p< 0.001) between diabetic and nondiabetic groups and negatively correlated with BMD in spine. No difference in BMD was found between patients and control groups while significant negative correlation was found between FBS and hip BMD (<0.05) and between 2hpp and HBA1c with spine BMD in the diabetic group (<0.05). Osteoporosis represented 12.9% in spine area and 7.2% in hip and wrist areas in diabetic patients, while osteopenia were found in 58.5%, 57.1%, and 37.1% in diabetic patients in spine, wrist, and hip respectively. Conclusion: - type II diabetes cannot be considered as a risk factor for osteoporosis; while glycemic parameters (FBS, 2hpp & HBA1c) and serum Fetuin-A levels were correlated with BMD in diabetics. Good glycemic control can be protective against osteoporosis in diabetic elderly.

Keywords: fetuin-A, BMD, postmenopausal, DM type II

Procedia PDF Downloads 240
100 High-Resolution Flood Hazard Mapping Using Two-Dimensional Hydrodynamic Model Anuga: Case Study of Jakarta, Indonesia

Authors: Hengki Eko Putra, Dennish Ari Putro, Tri Wahyu Hadi, Edi Riawan, Junnaedhi Dewa Gede, Aditia Rojali, Fariza Dian Prasetyo, Yudhistira Satya Pribadi, Dita Fatria Andarini, Mila Khaerunisa, Raditya Hanung Prakoswa

Abstract:

Catastrophe risk management can only be done if we are able to calculate the exposed risks. Jakarta is an important city economically, socially, and politically and in the same time exposed to severe floods. On the other hand, flood risk calculation is still very limited in the area. This study has calculated the risk of flooding for Jakarta using 2-Dimensional Model ANUGA. 2-Dimensional model ANUGA and 1-Dimensional Model HEC-RAS are used to calculate the risk of flooding from 13 major rivers in Jakarta. ANUGA can simulate physical and dynamical processes between the streamflow against river geometry and land cover to produce a 1-meter resolution inundation map. The value of streamflow as an input for the model obtained from hydrological analysis on rainfall data using hydrologic model HEC-HMS. The probabilistic streamflow derived from probabilistic rainfall using statistical distribution Log-Pearson III, Normal and Gumbel, through compatibility test using Chi Square and Smirnov-Kolmogorov. Flood event on 2007 is used as a comparison to evaluate the accuracy of model output. Property damage estimations were calculated based on flood depth for 1, 5, 10, 25, 50, and 100 years return period against housing value data from the BPS-Statistics Indonesia, Centre for Research and Development of Housing and Settlements, Ministry of Public Work Indonesia. The vulnerability factor was derived from flood insurance claim. Jakarta's flood loss estimation for the return period of 1, 5, 10, 25, 50, and 100 years, respectively are Rp 1.30 t; Rp 16.18 t; Rp 16.85 t; Rp 21.21 t; Rp 24.32 t; and Rp 24.67 t of the total value of building Rp 434.43 t.

Keywords: 2D hydrodynamic model, ANUGA, flood, flood modeling

Procedia PDF Downloads 245
99 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forward osmosis, membrane, solar, water treatement

Procedia PDF Downloads 75
98 Application of an Educational Program for Al Jouf University Students regarding Scientific Writing and Presentation Skills

Authors: Fatma Abdel Moneim Al Tawil

Abstract:

This study was undertaken to evaluate an educational program regarding scientific writing and presentation skills among university students. This interventional study used a one-group, pretest/posttest design and was conducted in Al Jouf University among four colleges in Saudi Arabia. Baseline students’ assessment was conducted for developing educational program. Interventional, one group, pretest/posttest study was designed to evaluate the effectiveness of the educational program. Three parts evaluation sheet with total scores of 30 was used for 113 students for the development of the program and 52 students for test pretest phase. Wilcoxon signed ranks showed statistically significant improvement in the combined overall program skills score from a median of 56.7 pre to a median of 86.7 post, (z = 6.231, p < 0.001). When compared to preprogram intervention, post interventions 51.9 % of students achieve excellent performance. While pre intervention no students (0.0 %) achieve this score. Regarding to scientific writing skills, Wilcoxon signed ranks showed statistically significant improvement in the score from a median of 60 pre to a median of 90 post, (z = 6.122, p < 0.001). None of students had excellent performance changed to 73.1%. Regarding to oral presentation skills, Wilcoxon signed ranks showed statistically significant improvement in the score from a median of 50 pre to a median of 80 post, (z = 6.153, p < 0.001). None of students had excellent performance changed to 48.1%. Such educational program needs to be incorporated into classroom delivery of the students’ curriculum. Scientific writing skills book needed to be developed to be recommended as a basic educational strategy for all university faculties.

Keywords: scientific writing, presentation skills, university students, educational program

Procedia PDF Downloads 424
97 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm

Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei

Abstract:

In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.

Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes

Procedia PDF Downloads 49
96 Finite Element Model to Evaluate Gas Conning Phenomenon in Naturally Fractured Oil Reservoirs

Authors: Reda Abdel Azim

Abstract:

Gas conning phenomenon considered one of the prevalent matter in oil field applications as it significantly affects the amount of produced oil, increase cost of production operation and it has a direct effect on oil reservoirs recovery efficiency as well. Therefore, evaluation of such phenomenon and study the reservoir mechanisms that may strongly affect invading gas to the producing formation is crucial. Gas conning is a result of an imbalance between two major forces controlling the oil production: gravitational and viscous forces especially in naturally fractured reservoirs where the capillary pressure forces are negligible. Once the gas invading the producing formation near the wellbore due to large producing oil rate, the oil gas contact will change and such reservoirs are prone to gas conning. Moreover, the oil volume expected to be produced requires the use of long horizontal perforated well. This work presents a numerical simulation study to predict and propose solutions to gas coning in naturally fractured oil reservoirs. The simulation work is based on discrete fractures and permeability tensors approaches. The governing equations are discretized using finite element approach and Galerkin’s least square technique (GLS) is employed to stabilize the equation solutions. The developed simulator is validated against Eclipse-100 using horizontal fractures. The matrix and fracture properties are modelled. Critical rate, breakthrough time and GOR are determined to be used in investigation of the effect of matrix and fracture properties on gas coning. Results show that fracture distribution in terms of diverse dip and azimuth has a great effect on conning occurring. In addition, fracture porosity, anisotropy ratio, and fracture aperture.

Keywords: gas conning, finite element, fractured reservoirs, multiphase

Procedia PDF Downloads 175
95 Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold

Authors: Morteza Malek Yarand, Hadi Saebi Monfared

Abstract:

This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth.

Keywords: mechanical force gauge, mold, reshaped fruit, square watermelon

Procedia PDF Downloads 252
94 Hydro-Geochemistry of Qare-Sou Catchment and Gorgan Gulf, Iran: Examining Spatial and Temporal Distribution of Major Ions and Determining the River’s Hydro-Chemical Type

Authors: Milad Kurdi, Hadi Farhadian, Teymour Eslamkish

Abstract:

This study examined the hydro-geochemistry of Qare-Sou catchment and Gorgan Gulf in order to determine the spatial distribution of major ions. In this regard, six hydrometer stations in the catchment and four stations in Gorgan Gulf were chosen and the samples were collected. Results of spatial and temporal distribution of major ions have shown similar variation trends for calcium, magnesium, and bicarbonate ions. Also, the spatial trend of chloride, sulfate, sodium and potassium ions were same as Electrical Conductivity (EC) and Total Dissolved Solid (TDS). In Nahar Khoran station, the concentrations of ions were more than other stations which may be related to human activities and the role of geology. The Siah Ab station’s ions showed high concentration which is may be related to the station’s close proximity to Gorgan Gulf and the return of water to Qare-Sou River. In order to determine the interaction of water and rock, the Gibbs diagram was used and the results showed that water of the river falls in the rock range and it is affected more by weathering and reaction between water and stone and less by evaporation and crystallization. Assessment of the quality of river water by using graphic methods indicated that the type of water in this area is Ca-HCO3-Mg. Major ions concentration in Qare-Sou in the universal average was more than but not more than the allowed limit by the World Health Organization and China Standard Organization. A comparison of ions concentration in Gorgan Gulf, seas and oceans showed that the pH in Gorgan Gulf was more than the other seas but in Gorgan Gulf the concentration of anion and cation was less than other seas.

Keywords: hydro-geochemistry, Qare-Sou river, Gorgan gulf, major ions, Gibbs diagram, water quality, graphical methods

Procedia PDF Downloads 286
93 Nutrition Role in the Management of Psychiatric Disorders

Authors: Abeer Mohammed, Nevein Mustafa Elashery, Mona Hassan Abdel Aal, Ereny Wilson Nagib

Abstract:

The Aim of the current study is to investigate nutrition role in the management of psychiatric disorders. Research Design: A quasi- experimental research design was utilized for this study. Setting The study was conducted at outpatient clinic at Institute of Psychiatry affiliated to Ain Shams University hospitals, using a convenient sample of 50 psychiatric patients with depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders. Tools: data were collected through; first, an interview questionnaire covering socio-demographic characteristics, second, nutrition assessment tools Third, nutrition risk assessment. Fourth, nutrition management program Results showed that there were highly statistically significant improvements in modified nutritional supplements for patients with depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders' patients after conducting the nutrition management program. Regarding psychiatric patients’ knowledge about healthy food, healthy nutritional habits, and patients’ awareness & readiness for change, there were highly statistically significant improvements. Concerning signs and symptoms of psychiatric disorders, there were highly statistically significant improvements for depression, schizophrenia, bipolar disorders, and obsessive-compulsive patients after conducting the management program. In conclusion, the nutrition management program was effective in improving symptoms associated with, depression, schizophrenia, bipolar disorders, and obsessive compulsive disorders. The study recommended that nurses should have more contribution in counseling psychiatric patients, and their families about healthy diet and healthy habits. Further research should recommend studying the effectiveness of herbs on enhancing mental health for psychiatric patients.

Keywords: nutrition, role, management, psychiatric disorders

Procedia PDF Downloads 306
92 Land Suitability Scaling and Modeling for Assessing Crop Suitability in Some New Reclaimed Areas, Egypt

Authors: W. A. M. Abdel Kawy, Kh. M. Darwish

Abstract:

Adequate land use selection is an essential step towards achieving sustainable development. The main object of this study is to develop a new scale for land suitability system, which can be compatible with the local conditions. Furthermore, it aims to adapt the conventional land suitability systems to match the actual environmental status in term of soil types, climate and other conditions to evaluate land suitability for newly reclaimed areas. The new system suggests calculation of land suitability considering 20 factors affecting crop selection grouping into five categories; crop-agronomic, land management, development, environmental conditions and socio – economic status. Each factor is summed by each other to calculate the total points. The highest rating for each factor indicates the highest preference for the evaluated crop. The highest rated crops for each group are those with the highest points for the actual suitability. This study was conducted to assess the application efficiency of the new land suitability scale in recently reclaimed sites in Egypt. Moreover, 35 representative soil profiles were examined, and soil samples were subjected to some physical and chemical analysis. Actual and potential suitabilities were calculated by using the new land suitability scale. Finally, the obtained results confirmed the applicability of a new land suitability system to recommend the most promising crop rotation that can be applied in the study areas. The outputs of this research revealed that the integration of different aspects for modeling and adapting a proposed model provides an effective and flexible technique, which contribute to improve land suitability assessment for several crops to be more accurate and reliable.

Keywords: analytic hierarchy process, land suitability, multi-criteria analysis, new reclaimed areas, soil parameters

Procedia PDF Downloads 113
91 Soil Erosion Assessment Using the RUSLE Model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran)

Authors: Hadi Allafta, Christian Opp

Abstract:

Soil erosion is a major concern in the Shatt Al-Arab basin owing to the steepness of its topography as well as the remarkable altitudinal deference between the upstream and downstream parts of the basin. Such conditions resulted in soil vulnerability to erosion; huge amounts of soil are annually transported, creating enormous implications such as land degradation, structure damage, biodiversity loss, productivity decline, etc. Thus, evaluation of soil erosion risk and its spatial distribution is crucial to build adatabase for efficient control measures. The present study used revised universal soil loss equation (RUSLE) model integrated with Geographic Information System (GIS) for depicting soil erosion hazard zones in the Shatt Al-Arab basin. The RUSLE model incorporated several parameters such as rainfall-runoff erosivity, soil erodibility, slope length and steepness, land cover and management, and conservation support practice for soil erosion zonation. High to medium soil loss of 100 to 20 ton perhectare per year represents around 25% of the basin area, while the areas of low soil loss of less than 20 ton per hectare per year occupied the rest of the total area. The high soil loss rates are linked to areas of high rainfall levels, loamy soil domination, elevated terrains/plateau margins with steep side slope, and high cultivation activities. The findings of the current study can be useful for managers and policy makers in the implementation of a suitable conservation program to reduce soil erosion or to recommend soil conservation acts if development projects are to be continued at regions of high soil erosion risk.

Keywords: geographic information system, revised universal soil loss equation, shatt Al-Arab basin, soil erosion

Procedia PDF Downloads 98
90 Effect of High Intensity Ultrasonic Treatment on the Micro Structure, Corrosion and Mechanical Behavior of ac4c Aluminium Alloy

Authors: A.Farrag Farrag, A. M. El-Aziz Abdel Aziz, W. Khlifa Khlifa

Abstract:

Ultrasonic treatment is a promising process nowadays in the engineering field due to its high efficiency and it is a low-cost process. It enhances mechanical properties, corrosion resistance, and homogeneity of the microstructure. In this study, the effect of ultrasonic treatment and several casting conditions on microstructure, hardness and corrosion behavior of AC4C aluminum alloy was examined. Various ultrasonic treatments of the AC4C alloys were carried out to prepare billets for thixocasting process. Treatment temperatures varied from about 630oC and cooled down to under ultrasonic field. Treatment time was about 90s. A 600-watts ultrasonic system with 19.5 kHz and intensity of 170 W/cm2 was used. Billets were reheated to semisolid state and held for 5 minutes at 582 oC and temperatures (soaking) using high-frequency induction system, then thixocasted using a die casting machine. Microstructures of the thixocast parts were studied using optical and SEM microscopes. On the other hand, two samples were conventionally cast and poured at 634 oC and 750 oC. The microstructure showed a globular none dendritic grains for AC4C with the application of UST at 630-582 oC, Less dendritic grains when the sample was conventionally cast without the application of UST and poured at 624 oC and a fully dendritic microstructure When the sample was cast and poured at 750 oC without UST .The ultrasonic treatment during solidification proved that it has a positive influence on the microstructure as it produced the finest and globular grains thus it is expected to increase the mechanical properties of the alloy. Higher values of corrosion resistance and hardness were recorded for the ultrasound-treated sample in comparison to cast one.

Keywords: ultrasonic treatment, aluminum alloys, corrosion behaviour, mechanical behaviour, microstructure

Procedia PDF Downloads 327
89 Protective Effect of Rosemary Extract against Toxicity Induced by Egyptian Naja haje Venom

Authors: Walaa H. Salama, Azza M. Abdel-Aty, Afaf S. Fahmy

Abstract:

Background: Egyptian Cobra; Naja haje (Elapidae) is one of most common snakes, widely distributed in Egypt and its envenomation causes multi-organ failure leading to rapid death. Thus, Different medicinal plants showed a protective effect against venom toxicity and may complement the conventional antivenom therapy. Aim: The present study was designed to assess both the antioxidant capacity of methanolic extract of rosemary leaves and evaluate the neutralizing ability of the extract against hepatotoxicity induced by Naja haje venom. Methods: The total phenolic and flavonoid contents and the antioxidant capacity of the methanolic rosemary extract were estimated by DPPH and ABTS Scavenging methods. In addition, the rosemary extract were assessed for anti-venom properties under in vitro and in vivo standard assays. Results: The rosemary extract had high total phenolic and flavonoid content as 12 ± 2 g of gallic acid equivalent per 100 gram of dry weight (g GAE/100g dw) and 5.5 ± 0.8 g of catechin equivalent per 100 grams of dry weight (g CE/100g dw), respectively. In addition, the rosemary extract showed high antioxidant capacity. Furthermore, The rosemary extract were inhibited in vitro the enzymatic activities of phospholipase A₂, L-amino acid oxidase, and hyaluronidase of the venom in a dose-dependent manner. Moreover, indirect hemolytic activity, hepatotoxicity induced by venom were completely neutralized as shown by histological studies. Conclusion: The phenolic compounds of rosemary extract with potential antioxidant activity may be considered as a promising candidate for future therapeutics in snakebite therapy.

Keywords: antioxidant activity, neutralization, phospholipase A₂ enzyme, snake venom

Procedia PDF Downloads 151
88 The Role of Bone Marrow Stem Cells Transplantation in the Repair of Damaged Inner Ear in Albino Rats

Authors: Ahmed Gaber Abdel Raheem, Nashwa Ahmed Mohamed

Abstract:

Introduction: Sensorineural hearing loss (SNHL) is largely caused by the degeneration of the cochlea. Therapeutic options for SNHL are limited to hearing aids and cochlear implants. The cell transplantation approach to the regeneration of hair cells has gained considerable attention because stem cells are believed to accumulate in the damaged sites and have the potential for the repair of damaged tissues. The aim of the work: was to assess the use of bone marrow transplantation in repair of damaged inner ear hair cells in rats after the damage had been inflicted by Amikacin injection. Material and Methods: Thirty albino rats were used in this study. They were divided into three groups. Each group ten rats. Group I: used as control. Group II: Were given Amikacin- intratympanic injection till complete loss of hearing function. This could be assessed by Distortion product Otoacoustic Emission (DPOAEs) and / or auditory brain stem evoked potential (ABR). GroupIII: were given intra-peritoneal injection of bone marrow stem cell after complete loss of hearing caused by Amikacin. Clinical assessment was done using DPOAEs and / or auditory brain stem evoked potential (ABR), before and after bone marrow injection. Histological assessment of the inner ear was done by light and electron microscope. Also, Detection of stem cells in the inner ear by immunohistochemistry. Results: Histological examination of the specimens showed promising improvement in the structure of cochlea that may be responsible for the improvement of hearing function in rats detected by DPOAEs and / or ABR. Conclusion: Bone marrow stem cells transplantation might be useful for the treatment of SNHL.

Keywords: amikacin, hair cells, sensorineural hearing loss, stem cells

Procedia PDF Downloads 427
87 Greywater Reuse for Sunflower Irrigation Previously Radiated with Helium-Neon Laser: Evaluation of Growth, Flowering, and Chemical Constituents

Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien Ibrahim Abdel-Shafy

Abstract:

This study was carried out at the pilot plant area in the National Research Centre during the two successive seasons, 2020 and 2022. The aim is to investigate the response of vegetative growth and chemical constituents of sunflowers plants irrigated by two types of wastewater, namely: black wastewater W1 (Bathroom) and grey wastewater W1, under irradiation conditions of helium-neon (He-Ne) laser. The examined data indicated that irrigation of W1 significantly increased the growth and flowering parameters (plant height, leaves number, leaves area, leaves fresh and dry weight, flower diameter, flower stem length, flower stem thickness, number of days to flower, and total chlorophyll). Treated sunflower plants with 0 to 10 min. recorded an increase in the fresh weight and dry weight of leaves. However, the superiority of increasing vase life and delaying flowers were recorded by prolonging exposure time by up to 10 min. Regarding the effect of interaction treatments, the data indicated that the highest values on almost growth parameters were obtained from plants treated with W1+0 laser followed by W2+10 min. laser, compared with all interaction treatments. As for flowering parameters, the interactions between W2+2 min. time exposure, W1+0 time, w1+10 min., and w1+2 min. exposures recorded the highest values on flower diameter, flower stem length, flower stem thickness, vase life, and delaying flowering.

Keywords: greywater, sunflower plant, water reuse, vegetative growth, laser radiation

Procedia PDF Downloads 51
86 Identification of Body Fluid at the Crime Scene by DNA Methylation Markers for Use in Forensic Science

Authors: Shirin jalili, Hadi Shirzad, Mahasti Modarresi, Samaneh Nabavi, Somayeh Khanjani

Abstract:

Identifying the source tissue of biological material found at crime scenes can be very informative in a number of cases. Despite their usefulness, current visual, catalytic, enzymatic, and immunologic tests for presumptive and confirmatory tissue identification are applicable only to a subset of samples, might suffer limitations such as low specificity, lack of sensitivity, and are substantially impacted by environmental insults. In addition their results are operator-dependent. Recently the possibility of discriminating body fluids using mRNA expression differences in tissues has been described but lack of long term stability of that Molecule and the need to normalize samples for each individual are limiting factors. The use of DNA should solve these issues because of its long term stability and specificity to each body fluid. Cells in the human body have a unique epigenome, which includes differences in DNA methylation in the promoter of genes. DNA methylation, which occurs at the 5′-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers.The presence or absence of a methyl group on the 5’ carbon of the cytosine pyridine ring in CpG dinucleotide regions called ‘CpG islands’ dictates whether the gene is expressed or silenced in the particular body fluid. Were described methylation patterns at tissue specific differentially methylated regions (tDMRs) to be stable and specific, making them excellent markers for tissue identification. The results demonstrate that methylation-based tissue identification is more than a proof-of-concept. The methodology holds promise as another viable forensic DNA analysis tool for characterization of biological materials.

Keywords: DNA methylation, forensic science, epigenome, tDMRs

Procedia PDF Downloads 403
85 Protective Impact of Some Natural Extracts Against Acute Hepatotoxicity in Wistar Rats: DNA Protecting, Antioxidant and Anti-Inflammatory Effects

Authors: Yara Mohamed Taha, Mohamed Ali El Desouky, Heba Kamal Abdel Hakim, Maha Hanafy Mahmoud

Abstract:

Hepatotoxicity due to drugs and toxic chemicals constitutes a crucial health problem nowadays. Medicinal plants are widely used recently for protecting against many liver disorders and inflammatory conditions. This study aims to evaluate hepatoprotective impact of green tea extract (GTE), rosemary extract (RE) and rosmarinic acid (RA) against hepatotoxins; ferric nitrilotriacetate (Fe-NTA) and diethylnitrosamine (DEN) in rats. Five groups of male Wistar rats were included; one control negative, while the other groups were treated intraperitoneally with DEN as 160 mg.kg-1 b.w. on 15th day and Fe-NTA as 5 mg.kg-1 b.w. on 33rd day. One of them was control positive. The other three groups were pre-administered with daily protective oral doses of either 200 mg.kg-1 b.w. of RE or 1 g.kg- 1 b.w. of GTE or 50 mg.kg-1 b.w. of RA two weeks prior to DEN exposure and continued till the end of the experimental period. The obtained data revealed a highly significant increase of MDA, 8-OHdG, DNA damage percent, a significant depletion of GSH and elevated Gr-1 protein expression in hepatocytes with liver tissue histopathological changes of rats exposed to DEN+Fe-NTA. Pre-administration of protective doses of RE, GTE and RA to DEN+Fe-NTA treated rats could normalize the altered biochemical, histopathological and immunohistochemical parameters. In conclusion, RE, GTE and RA showed a hepatoprotective effect against liver toxicity induced by DEN+Fe-NTA, with the best antioxidant and anti-inflammatory impact were for RA and GTE. Therefore, the current study declared that rosemary, green tea and products enriched with rosmarinic acid should be involved daily in diet of people who are exposed to chemicals and environmental toxins to protect themselves from hepatotoxicity.

Keywords: hepatotoxicity, diethylnitrosamine and ferric nitrilotriacetate, rosemary extract (RE), green tea extract (GTE), rosmarinic acid (RA)

Procedia PDF Downloads 60
84 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent

Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar

Abstract:

Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.

Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics

Procedia PDF Downloads 371
83 Neuroprotective Effect of Crocus sativus against Cerebral Ischemia in Rats

Authors: Rehab F. Abdel-Rahman, Sally A. El Awdan, Rehab R. Hegazy, Dina F. Mansour, Hanan A. Ogaly, Marwan Abdelbaset

Abstract:

Disorders of the cerebral circulation are the leading cause of numerous neurological and psychiatric illnesses. The transient middle cerebral artery occlusion model (MCAO) is considered to be a reliable and reproducible rodent model of cerebral ischemia. The purpose of the current study was to examine the neuroprotective effects of Crocus sativus (saffron) in a rat model of left middle cerebral artery MCAO. Male Wistar rats were anesthetized and subjected to 1 h of MCAO followed by 48 h reperfusion or sham surgery. One group of the ischemia operated animals was kept as left brain ischemia/reperfusion (I/R). Another 2 operated groups received saffron extract (100 or 200 mg/kg, i.p) four times (60 min before the surgery, during the surgery, and on days 1 and 2 after the occlusion). During the experiment, behavioral tests were performed. After 72 h the animals were euthanized and their left brain hemispheres were used in the biochemical, histopathological, and immunohistochemical studies. Saffron administration revealed an improvement in I/R-induced alteration of locomotor balance and coordination ability of rats. Moreover, saffron decreased the brain content of malondialdehyde, nitric oxide, brain natriuretic peptide and vascular endothelial growth factor with significant increase of reduced glutathione. Immunohistochemical evaluation of caspase-3 and Bax protein expression revealed reduction in I/R-enhanced apoptosis in saffron treated rats. In conclusion, saffron treatment decreases ischemic brain injury in association with inhibition of apoptotic and oxidative cell death in a dose dependent manner.

Keywords: caspase-3, cerebral ischemia, Crocus sativus, rats, vascular endothelial growth factor

Procedia PDF Downloads 240
82 Predicting Stem Borer Density in Maize Using RapidEye Data and Generalized Linear Models

Authors: Elfatih M. Abdel-Rahman, Tobias Landmann, Richard Kyalo, George Ong’amo, Bruno Le Ru

Abstract:

Maize (Zea mays L.) is a major staple food crop in Africa, particularly in the eastern region of the continent. The maize growing area in Africa spans over 25 million ha and 84% of rural households in Africa cultivate maize mainly as a means to generate food and income. Average maize yields in Sub Saharan Africa are 1.4 t/ha as compared to global average of 2.5–3.9 t/ha due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In East Africa, yield losses due to stem borers are currently estimated between 12% to 40% of the total production. The objective of the present study was therefore to predict stem borer larvae density in maize fields using RapidEye reflectance data and generalized linear models (GLMs). RapidEye images were captured for a test site in Kenya (Machakos) in January and in February 2015. Stem borer larva numbers were modeled using GLMs assuming Poisson (Po) and negative binomial (NB) distributions with error with log arithmetic link. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were employed to assess the models performance using a leave one-out cross-validation approach. Results showed that NB models outperformed Po ones in all study sites. RMSE and RPD ranged between 0.95 and 2.70, and between 2.39 and 6.81, respectively. Overall, all models performed similar when used the January and the February image data. We conclude that reflectance data from RapidEye data can be used to estimate stem borer larvae density. The developed models could to improve decision making regarding controlling maize stem borers using various integrated pest management (IPM) protocols.

Keywords: maize, stem borers, density, RapidEye, GLM

Procedia PDF Downloads 467
81 Thorium Extraction with Cyanex272 Coated Magnetic Nanoparticles

Authors: Afshin Shahbazi, Hadi Shadi Naghadeh, Ahmad Khodadadi Darban

Abstract:

In the Magnetically Assisted Chemical Separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. In the present study, Cyanex272 or C272 (bis (2,4,4-trimethylpentyl) phosphinic acid) coated magnetic particles are being evaluated for the possible application in the extraction of Thorium (IV) from nuclear waste streams. The uptake behaviour of Th(IV) from nitric acid solutions was investigated by batch studies. Adsorption of Thorium (IV) from aqueous solution onto adsorbent was investigated in a batch system. Adsorption isotherm and adsorption kinetic studies of Thorium (IV) onto nanoparticles coated Cyanex272 were carried out in a batch system. The factors influencing Thorium (IV) adsorption were investigated and described in detail, as a function of the parameters such as initial pH value, contact time, adsorbent mass, and initial Thorium (IV) concentration. Magnetically Assisted Chemical Separation (MACS) process adsorbent showed best results for the fast adsorption of Th (IV) from aqueous solution at aqueous phase acidity value of 0.5 molar. In addition, more than 80% of Th (IV) was removed within the first 2 hours, and the time required to achieve the adsorption equilibrium was only 140 minutes. Langmuir and Frendlich adsorption models were used for the mathematical description of the adsorption equilibrium. Equilibrium data agreed very well with the Langmuir model, with a maximum adsorption capacity of 48 mg.g-1. Adsorption kinetics data were tested using pseudo-first-order, pseudo-second-order and intra-particle diffusion models. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step.

Keywords: Thorium (IV) adsorption, MACS process, magnetic nanoparticles, Cyanex272

Procedia PDF Downloads 309
80 Commercial Law Between Custom and Islamic Law

Authors: Shimaa Abdel-Rahman Amin El-Badawy

Abstract:

Commercial law is the set of legal rules that apply to business and regulates the trade of trade. The meaning of this is that the commercial law regulates certain relations only that arises as a result of carrying out certain businesses. which are business, as it regulates the activity of a specific sect, the sect of merchants, and the commercial law as other branches of the law has characteristics that distinguish it from other laws and various, and various sources from which its basis is derived from It is the objective or material source. the historical source, the official source and the interpretative source, and we are limited to official sources and explanatory sources. so what do you see what these sources are, and what is their degree and strength in taking it in commercial disputes. The first topic / characteristics of commercial law. Commercial law has become necessary for the world of trade and economics, which cannot be dispensed with, given the reasons that have been set as legal rules for commercial field.In fact, it is sufficient to refer to the stability and stability of the environment, and in exchange for the movement and the speed in which the commercial environment is in addition to confidence and credit. the characteristic of speed and the characteristic of trust, and credit are the ones that justify the existence of commercial law.Business is fast, while civil business is slow, stable and stability. The person concludes civil transactions in his life only a little. And before doing any civil action. he must have a period of thinking and scrutiny, and the investigation is the person who wants the husband, he must have a period of thinking and scrutiny. as if the person who wants to acquire a house to live with with his family, he must search and investigate. Discuss the price before the conclusion of a purchase contract. In the commercial field, transactions take place very quickly because the time factor has an important role in concluding deals and achieving profits. This is because the merchant in contracting about a specific deal would cause a loss to the merchant due to the linkage of the commercial law with the fluctuations of the economy and the market. The merchant may also conclude more than one deal in one and short time. And that is due to the absence of commercial law from the formalities and procedures that hinder commercial transactions.

Keywords: law, commercial law, Islamic law, custom and Islamic law

Procedia PDF Downloads 47
79 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 491