Search results for: multi features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7645

Search results for: multi features

4405 Popular eReaders

Authors: Tom D. Gedeon, Ujala Rampaul

Abstract:

The evaluation of electronic consumer goods are most often done from the perspective of analysing the latest models, comparing their advantages and disadvantages with respect to price. This style of evaluation is often performed by one or a few product experts on a wide range of features that may not be applicable to each user. We instead used a scenario-based approach to evaluate a number of e-readers. The setting is similar to a user who is interested in a new product or technology and has allocated a limited budget. We evaluate the quality and usability of e-readers available within that budget range. This is based on the assumption of a rational market which prices older second hand devices the same as functionally equivalent new devices. We describe our evaluation and comparison of four branded eReaders, as the initial stage of a larger project. The scenario has a range of tasks approximating a busy person who does not bother to read the manual. We found that navigation within books to be the most significant differentiator between the eReaders in our scenario based evaluation process.

Keywords: eReader, scenario based, price comparison, Kindle, Kobo, Nook, Sony, technology adoption

Procedia PDF Downloads 530
4404 Lithological Mapping and Iron Deposits Identification in El-Bahariya Depression, Western Desert, Egypt, Using Remote Sensing Data Analysis

Authors: Safaa M. Hassan; Safwat S. Gabr, Mohamed F. Sadek

Abstract:

This study is proposed for the lithological and iron oxides detection in the old mine areas of El-Bahariya Depression, Western Desert, using ASTER and Landsat-8 remote sensing data. Four old iron ore occurrences, namely; El-Gedida, El-Haraa, Ghurabi, and Nasir mine areas found in the El-Bahariya area. This study aims to find new high potential areas for iron mineralization around El-Baharyia depression. Image processing methods such as principle component analysis (PCA) and band ratios (b4/b5, b5/b6, b6/b7, and 4/2, 6/7, band 6) images were used for lithological identification/mapping that includes the iron content in the investigated area. ASTER and Landsat-8 visible and short-wave infrared data found to help mapping the ferruginous sandstones, iron oxides as well as the clay minerals in and around the old mines area of El-Bahariya depression. Landsat-8 band ratio and the principle component of this study showed well distribution of the lithological units, especially ferruginous sandstones and iron zones (hematite and limonite) along with detection of probable high potential areas for iron mineralization which can be used in the future and proved the ability of Landsat-8 and ASTER data in mapping these features. Minimum Noise Fraction (MNF), Mixture Tuned Matched Filtering (MTMF), pixel purity index methods as well as Spectral Ange Mapper classifier algorithm have been successfully discriminated the hematite and limonite content within the iron zones in the study area. Various ASTER image spectra and ASD field spectra of hematite and limonite and the surrounding rocks are compared and found to be consistent in terms of the presence of absorption features at range from 1.95 to 2.3 μm for hematite and limonite. Pixel purity index algorithm and two sub-pixel spectral methods, namely Mixture Tuned Matched Filtering (MTMF) and matched filtering (MF) methods, are applied to ASTER bands to delineate iron oxides (hematite and limonite) rich zones within the rock units. The results are validated in the field by comparing image spectra of spectrally anomalous zone with the USGS resampled laboratory spectra of hematite and limonite samples using ASD measurements. A number of iron oxides rich zones in addition to the main surface exposures of the El-Gadidah Mine, are confirmed in the field. The proposed method is a successful application of spectral mapping of iron oxides deposits in the exposed rock units (i.e., ferruginous sandstone) and present approach of both ASTER and ASD hyperspectral data processing can be used to delineate iron-rich zones occurring within similar geological provinces in any parts of the world.

Keywords: Landsat-8, ASTER, lithological mapping, iron exploration, western desert

Procedia PDF Downloads 145
4403 Management of Intellectual Property Rights: Strategic Patenting

Authors: Waheed Oseni

Abstract:

This article reviews emergent global trends in intellectual property protection and identifies patenting as a strategic initiative. Recent developments in software and method of doing business patenting are fast transforming the e‐business landscape. The article discusses the emergent global regulatory framework concerning intellectual property rights and the strategic value of patenting. Important features of a corporate patenting portfolio are described. Superficially, the e‐commerce landscape appears to be dominated by dotcom start-ups or the “dotcomization” of existing brick and mortar companies. But, in reality, at its very bedrock is intellectual property (IP). In this connection, the recent avalanche of patenting of software and method‐of‐doing‐business (MDB) in the USA is a very significant development with regard to rules governing IP rights and, therefore, e‐commerce. Together with the World Trade Organization’s (WTO) IP rules, there is an emerging global regulatory framework for IP rights, an understanding of which is necessary for designing effective e‐commerce strategies.

Keywords: intellectual property, patents, methods, computer software

Procedia PDF Downloads 526
4402 Artificial Intelligence Methods in Estimating the Minimum Miscibility Pressure Required for Gas Flooding

Authors: Emad A. Mohammed

Abstract:

Utilizing the capabilities of Data Mining and Artificial Intelligence in the prediction of the minimum miscibility pressure (MMP) required for multi-contact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding using Fuzzy Logic models and Artificial Neural Network models will help a lot in giving accurate results. The factors affecting the (MMP) as it is proved from the literature and from the dataset are as follows: XC2-6: Intermediate composition in the oil-containing C2-6, CO2 and H2S, in mole %, XC1: Amount of methane in the oil (%),T: Temperature (°C), MwC7+: Molecular weight of C7+ (g/mol), YC2+: Mole percent of C2+ composition in injected gas (%), MwC2+: Molecular weight of C2+ in injected gas. Fuzzy Logic and Neural Networks have been used widely in prediction and classification, with relatively high accuracy, in different fields of study. It is well known that the Fuzzy Inference system can handle uncertainty within the inputs such as in our case. The results of this work showed that our proposed models perform better with higher performance indices than other emprical correlations.

Keywords: MMP, gas flooding, artificial intelligence, correlation

Procedia PDF Downloads 144
4401 Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction

Authors: Zhengrong Wu, Haibo Yang

Abstract:

In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response.

Keywords: large language model, knowledge graph, disaster, deep learning

Procedia PDF Downloads 56
4400 Islamic Banking: An Ultimate Source of Financial Inclusion

Authors: Tasawar Nawaz

Abstract:

Promotion of socioeconomic justice through redistribution of wealth is one of the most salient features of Islamic economic system. Islamic financial institutions known as Islamic banks are used to implement this in practice under the guidelines of Islamic Shariah law. Islamic banking systems strive to promote and achieve financial inclusion among the society by offering interest-free banking and risk-sharing financing solutions. Shariah-compliant micro finance is one of the most popular financial instruments used by Islamic banks to enhance access to finance. Benevolent loan (or Qard-al-Hassanah) is one of the popular financial tools used by the Islamic banks to promote financial inclusion. This aspect of Islamic banking is empirically examined in this paper with specific reference to firm’s resources, largely defined here as intellectual capital. The paper finds that Islamic banks promote financial inclusion by exploiting available resources especially, the human intellectual capital.

Keywords: financial inclusion, intellectual capital, Qard-al-Hassanah, Islamic banking

Procedia PDF Downloads 321
4399 Clinical and Analytical Performance of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 Biomarkers for Traumatic Brain Injury in the Alinity Traumatic Brain Injury Test

Authors: Raj Chandran, Saul Datwyler, Jaime Marino, Daniel West, Karla Grasso, Adam Buss, Hina Syed, Zina Al Sahouri, Jennifer Yen, Krista Caudle, Beth McQuiston

Abstract:

The Alinity i TBI test is Therapeutic Goods Administration (TGA) registered and is a panel of in vitro diagnostic chemiluminescent microparticle immunoassays for the measurement of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) in plasma and serum. The Alinity i TBI performance was evaluated in a multi-center pivotal study to demonstrate the capability to assist in determining the need for a CT scan of the head in adult subjects (age 18+) presenting with suspected mild TBI (traumatic brain injury) with a Glasgow Coma Scale score of 13 to 15. TBI has been recognized as an important cause of death and disability and is a growing public health problem. An estimated 69 million people globally experience a TBI annually1. Blood-based biomarkers such as glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase L1 (UCH-L1) have shown utility to predict acute traumatic intracranial injury on head CT scans after TBI. A pivotal study using prospectively collected archived (frozen) plasma specimens was conducted to establish the clinical performance of the TBI test on the Alinity i system. The specimens were originally collected in a prospective, multi-center clinical study. Testing of the specimens was performed at three clinical sites in the United States. Performance characteristics such as detection limits, imprecision, linearity, measuring interval, expected values, and interferences were established following Clinical and Laboratory Standards Institute (CLSI) guidance. Of the 1899 mild TBI subjects, 120 had positive head CT scan results; 116 of the 120 specimens had a positive TBI interpretation (Sensitivity 96.7%; 95% CI: 91.7%, 98.7%). Of the 1779 subjects with negative CT scan results, 713 had a negative TBI interpretation (Specificity 40.1%; 95% CI: 37.8, 42.4). The negative predictive value (NPV) of the test was 99.4% (713/717, 95% CI: 98.6%, 99.8%). The analytical measuring interval (AMI) extends from the limit of quantitation (LoQ) to the upper LoQ and is determined by the range that demonstrates acceptable performance for linearity, imprecision, and bias. The AMI is 6.1 to 42,000 pg/mL for GFAP and 26.3 to 25,000 pg/mL for UCH-L1. Overall, within-laboratory imprecision (20 day) ranged from 3.7 to 5.9% CV for GFAP and 3.0 to 6.0% CV for UCH-L1, when including lot and instrument variances. The Alinity i TBI clinical performance results demonstrated high sensitivity and high NPV, supporting the utility to assist in determining the need for a head CT scan in subjects presenting to the emergency department with suspected mild TBI. The GFAP and UCH-L1 assays show robust analytical performance across a broad concentration range of GFAP and UCH-L1 and may serve as a valuable tool to help evaluate TBI patients across the spectrum of mild to severe injury.

Keywords: biomarker, diagnostic, neurology, TBI

Procedia PDF Downloads 66
4398 A Mimetic Textuality in Robert Frost's 'Nothing Gold Can Stay'

Authors: Kurt S. Candilas

Abstract:

This study is a critical analysis of the work of Robert Frost, 'Nothing Gold Can Stay'. It subjects the literary piece into a qualitative analysis using the critical theory of mimesis. In effect, this study is proposed to find out and shed light on the mimetic feature of the poem’s textuality. Generally, it aims to analyze the poem’s deeper meaning in the context of the reality of life from birth to death. For the most part, this critical analysis discerns, investigates, and highlights the features which present the imitation of life in detail and from a deeper view. Based on the result of analysis, it shows that Frost has portrayed the cycle of life from birth to midst life as about proving oneself to others as far as achievements and accomplishments are concerned; secondly, at some point of one’s life, successes and achievements are just one’s perfect signature of living. As Frost discloses his poem, his message of the reality of life from birth to death is clear enough, that nothing is going to last forever.

Keywords: Nothing Gold Can Stay, mimesis, birth, death

Procedia PDF Downloads 472
4397 Core Number Optimization Based Scheduler to Order/Mapp Simulink Application

Authors: Asma Rebaya, Imen Amari, Kaouther Gasmi, Salem Hasnaoui

Abstract:

Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores.

Keywords: computation time, hardware/software system, latency, optimization, multi-cores platform, scheduling

Procedia PDF Downloads 283
4396 The Design and Implementation of Interactive Storybook Reading to Develop the Reading Comprehension of ESL Learners

Authors: A. van Staden, A. A. van Rhyn

Abstract:

The numerous challenges South African, ESL learners experience were highlighted by the results of several literacy surveys and tests, which demonstrated that our learners’ literacy abilities are far below standard and very weak compared to other international countries. This study developed and implemented an interactive storybook intervention program to support the reading development of ESL learners. The researchers utilized an experimental pre-test/post-test research design, whereby 80 ESL learners from five participating schools, were purposively sampled to take part in this study. This paper, inter alia, discusses the key features of this intervention program whilst also reporting the results of the experimental investigation. Results are promising and show a significant improvement in the mean scores of the learners in the experimental group. Moreover, the results show the value of interactive storybook reading in creating responsive literacy environments to develop the literacy skills of ESL learners.

Keywords: ESL learners, reading comprehension, Interactive story book reading, South Africa

Procedia PDF Downloads 134
4395 A Review Paper on Data Security in Precision Agriculture Using Internet of Things

Authors: Tonderai Muchenje, Xolani Mkhwanazi

Abstract:

Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.

Keywords: precision agriculture, security, IoT, EIDE

Procedia PDF Downloads 90
4394 Multi-Objectives Genetic Algorithm for Optimizing Machining Process Parameters

Authors: Dylan Santos De Pinho, Nabil Ouerhani

Abstract:

Energy consumption of machine-tools is becoming critical for machine-tool builders and end-users because of economic, ecological and legislation-related reasons. Many machine-tool builders are seeking for solutions that allow the reduction of energy consumption of machine-tools while preserving the same productivity rate and the same quality of machined parts. In this paper, we present the first results of a project conducted jointly by academic and industrial partners to reduce the energy consumption of a Swiss-Type lathe. We employ genetic algorithms to find optimal machining parameters – the set of parameters that lead to the best trade-off between energy consumption, part quality and tool lifetime. Three main machining process parameters are considered in our optimization technique, namely depth of cut, spindle rotation speed and material feed rate. These machining process parameters have been identified as the most influential ones in the configuration of the Swiss-type machining process. A state-of-the-art multi-objective genetic algorithm has been used. The algorithm combines three fitness functions, which are objective functions that permit to evaluate a set of parameters against the three objectives: energy consumption, quality of the machined parts, and tool lifetime. In this paper, we focus on the investigation of the fitness function related to energy consumption. Four different energy consumption related fitness functions have been investigated and compared. The first fitness function refers to the Kienzle cutting force model. The second fitness function uses the Material Removal Rate (RMM) as an indicator of energy consumption. The two other fitness functions are non-deterministic, learning-based functions. One fitness function uses a simple Neural Network to learn the relation between the process parameters and the energy consumption from experimental data. Another fitness function uses Lasso regression to determine the same relation. The goal is, then, to find out which fitness functions predict best the energy consumption of a Swiss-Type machining process for the given set of machining process parameters. Once determined, these functions may be used for optimization purposes – determine the optimal machining process parameters leading to minimum energy consumption. The performance of the four fitness functions has been evaluated. The Tornos DT13 Swiss-Type Lathe has been used to carry out the experiments. A mechanical part including various Swiss-Type machining operations has been selected for the experiments. The evaluation process starts with generating a set of CNC (Computer Numerical Control) programs for machining the part at hand. Each CNC program considers a different set of machining process parameters. During the machining process, the power consumption of the spindle is measured. All collected data are assigned to the appropriate CNC program and thus to the set of machining process parameters. The evaluation approach consists in calculating the correlation between the normalized measured power consumption and the normalized power consumption prediction for each of the four fitness functions. The evaluation shows that the Lasso and Neural Network fitness functions have the highest correlation coefficient with 97%. The fitness function “Material Removal Rate” (MRR) has a correlation coefficient of 90%, whereas the Kienzle-based fitness function has a correlation coefficient of 80%.

Keywords: adaptive machining, genetic algorithms, smart manufacturing, parameters optimization

Procedia PDF Downloads 147
4393 Ensemble-Based SVM Classification Approach for miRNA Prediction

Authors: Sondos M. Hammad, Sherin M. ElGokhy, Mahmoud M. Fahmy, Elsayed A. Sallam

Abstract:

In this paper, an ensemble-based Support Vector Machine (SVM) classification approach is proposed. It is used for miRNA prediction. Three problems, commonly associated with previous approaches, are alleviated. These problems arise due to impose assumptions on the secondary structural of premiRNA, imbalance between the numbers of the laboratory checked miRNAs and the pseudo-hairpins, and finally using a training data set that does not consider all the varieties of samples in different species. We aggregate the predicted outputs of three well-known SVM classifiers; namely, Triplet-SVM, Virgo and Mirident, weighted by their variant features without any structural assumptions. An additional SVM layer is used in aggregating the final output. The proposed approach is trained and then tested with balanced data sets. The results of the proposed approach outperform the three base classifiers. Improved values for the metrics of 88.88% f-score, 92.73% accuracy, 90.64% precision, 96.64% specificity, 87.2% sensitivity, and the area under the ROC curve is 0.91 are achieved.

Keywords: MiRNAs, SVM classification, ensemble algorithm, assumption problem, imbalance data

Procedia PDF Downloads 349
4392 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: magnetic resonance image (MRI), c-means model, image segmentation, information entropy

Procedia PDF Downloads 226
4391 The Fibonacci Network: A Simple Alternative for Positional Encoding

Authors: Yair Bleiberg, Michael Werman

Abstract:

Coordinate-based Multi-Layer Perceptrons (MLPs) are known to have difficulty reconstructing high frequencies of the training data. A common solution to this problem is Positional Encoding (PE), which has become quite popular. However, PE has drawbacks. It has high-frequency artifacts and adds another hyper hyperparameter, just like batch normalization and dropout do. We believe that under certain circumstances, PE is not necessary, and a smarter construction of the network architecture together with a smart training method is sufficient to achieve similar results. In this paper, we show that very simple MLPs can quite easily output a frequency when given input of the half-frequency and quarter-frequency. Using this, we design a network architecture in blocks, where the input to each block is the output of the two previous blocks along with the original input. We call this a Fibonacci Network. By training each block on the corresponding frequencies of the signal, we show that Fibonacci Networks can reconstruct arbitrarily high frequencies.

Keywords: neural networks, positional encoding, high frequency intepolation, fully connected

Procedia PDF Downloads 98
4390 Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks

Authors: Sunmyeng Kim

Abstract:

IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.

Keywords: cooperative communications, MAC protocol, relay node, WLAN

Procedia PDF Downloads 333
4389 Comparison of Parallel CUDA and OpenMP Implementations of Memetic Algorithms for Solving Optimization Problems

Authors: Jason Digalakis, John Cotronis

Abstract:

Memetic algorithms (MAs) are useful for solving optimization problems. It is quite difficult to search the search space of the optimization problem with large dimensions. There is a challenge to use all the cores of the system. In this study, a sequential implementation of the memetic algorithm is converted into a concurrent version, which is executed on the cores of both CPU and GPU. For this reason, CUDA and OpenMP libraries are operated on the parallel algorithm to make a concurrent execution on CPU and GPU, respectively. The aim of this study is to compare CPU and GPU implementation of the memetic algorithm. For this purpose, fourteen benchmark functions are selected as test problems. The obtained results indicate that our approach leads to speedups up to five thousand times higher compared to one CPU thread while maintaining a reasonable results quality. This clearly shows that GPUs have the potential to acceleration of MAs and allow them to solve much more complex tasks.

Keywords: memetic algorithm, CUDA, GPU-based memetic algorithm, open multi processing, multimodal functions, unimodal functions, non-linear optimization problems

Procedia PDF Downloads 101
4388 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section

Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert

Abstract:

Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.

Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics

Procedia PDF Downloads 258
4387 Planning a Supply Chain with Risk and Environmental Objectives

Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali

Abstract:

The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.

Keywords: environmental indicators, optimization, risk, supply chain

Procedia PDF Downloads 351
4386 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 141
4385 Geometric Continuity in the Form of Iranian Domes, Study of Prominent Safavid and Sasanian Domes

Authors: Nima Valibeig, Haniyeh Mohammadi, Neda Sadat Abdelahi

Abstract:

Persian domes follow different forms depending on the materials used to construct and other factors. One of the factors that shape the form of a dome is the geometric proportion used in the drawing and construction of the dome. Some commonly used proportions are revealed by analysing the shapes and geometric ratio of the monuments’ domes. The proportions are achieved by the proficiency of the skilled architects of the buildings. These proportions can be used to reconstruct damaged parts of the historical monuments. Most of the research on domes is about the historical or stability features of domes, and less attention is made to the geometric system in domes. Therefore, in this study, we study the explicit and implicit geometric proportions in Iranian dome structures for the first time. The study is done based on a literature review and field survey. This research reveals that the permanent geometric rules are perfectly used in the design and construction of the prominent domes.

Keywords: geometry in architecture, architectural proportions, prominent domes, iranian golden ratio, geometric proportion

Procedia PDF Downloads 284
4384 Blockchain Technology in Supply Chain Management: A Systematic Review And Meta-Analysis

Authors: Mohammad Yousuf Khan, Bhavya Alankar

Abstract:

Blockchain is a promising technology with its features such as immutability and decentralized database. It has applications in various fields such as pharmaceutical, finance, & the food industry. At the core of its heart lies its feature, traceability which is the most desired key in supply chains. However, supply chains have always been hit rock bottom by scandals and controversies. In this review paper, we have explored the advancement and research gaps of blockchain technology (BT) in supply chain management (SCM). We have used the Prisma framework for systematic literature review (SLR) and included a minuscule amount of grey literature to reduce publication bias. We found that supply chain traceability and transparency is the most researched objective in SCM. There was hardly any research in supply chain resilience. Further, we found that 40 % of the papers were application based. Most articles have focused on the advantages of BT, rather than analyzing it critically. This study will help identify gaps and suitable actions to be followed for an efficient implementation of BT in SCM.

Keywords: blockchain technology, supply chain management, supply chain transparency, supply chain resilience

Procedia PDF Downloads 161
4383 Factors Impacting Shopping Behavior for Luxury Fashion Brands: A Case of National Capital Region in India

Authors: Manoj Kumar, Preeti Goel

Abstract:

National Capital Region of India is one of the most populous urban agglomerations in the world. This region has residents from all the parts of India, and their shopping behaviors are quite different. The region also has the substantial population of people from other countries. Due to high purchasing power of a large number of people, NCR is one the major markets for luxury fashion brands. Marketers of luxury fashion brands keep on adding innovative features to their products to attract the buyers. This research is an attempt to understand the major factors which impact the brand selection for these brands and other buying decisions like purchasing time and location. The research is based on primary data collected from potential buyers of luxury fashion brands and the people involved in the marketing of these brands in various roles. The research has tried to identify the relative strength of various factors on the shopping behavior for these brands.

Keywords: luxury brands, fashion, shopping, National Capital Region (NCR)

Procedia PDF Downloads 408
4382 Quality Characteristics of Road Runoff in Coastal Zones: A Case Study in A25 Highway, Portugal

Authors: Pedro B. Antunes, Paulo J. Ramísio

Abstract:

Road runoff is a linear source of diffuse pollution that can cause significant environmental impacts. During rainfall events, pollutants from both stationary and mobile sources, which have accumulated on the road surface, are dragged through the superficial runoff. Road runoff in coastal zones may present high levels of salinity and chlorides due to the proximity of the sea and transported marine aerosols. Appearing to be correlated to this process, organic matter concentration may also be significant. This study assesses this phenomenon with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included thirty rainfall events, in different weather, traffic and salt deposition conditions in a three years period. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological and traffic parameters were continuously measured. The salt deposition rates (SDR) were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The SDR, variable throughout the year, appears to show a high correlation with wind speed and direction, but mostly with wave propagation, so that it is lower in the summer, in spite of the favorable wind direction in the case study. The distance to the sea, topography, ground obstacles and the platform altitude seems to be also relevant. It was confirmed the high salinity in the runoff, increasing the concentration of the water quality parameters analyzed, with significant amounts of seawater features. In order to estimate the correlations and patterns of different water quality parameters and variables related to weather, road section and salt deposition, the study included exploratory data analysis using different techniques (e.g. Pearson correlation coefficients, Cluster Analysis and Principal Component Analysis), confirming some specific features of the investigated road runoff. Significant correlations among pollutants were observed. Organic matter was highlighted as very dependent of salinity. Indeed, data analysis showed that some important water quality parameters could be divided into two major clusters based on their correlations to salinity (including organic matter associated parameters) and total suspended solids (including some heavy metals). Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed. Based on the results of a monitoring case study, in a coastal zone, it was proven that SDR, associated with the hydrological characteristics of road runoff, can contribute for a better knowledge of the runoff characteristics, and help to estimate the specific nature of the runoff and related water quality parameters.

Keywords: coastal zones, monitoring, road runoff pollution, salt deposition

Procedia PDF Downloads 239
4381 Production Plan and Technological Variants Optimization by Goal Programming Methods

Authors: Tunjo Perić, Franjo Bratić

Abstract:

In this paper the goal programming methodology for solving multiple objective problem of the technological variants and production plan optimization has been applied. The optimization criteria are determined and the multiple objective linear programming model for solving a problem of the technological variants and production plan optimization is formed and solved. Then the obtained results are analysed. The obtained results point out to the possibility of efficient application of the goal programming methodology in solving the problem of the technological variants and production plan optimization. The paper points out on the advantages of the application of the goal programming methodolohy compare to the Surrogat Worth Trade-off method in solving this problem.

Keywords: goal programming, multi objective programming, production plan, SWT method, technological variants

Procedia PDF Downloads 379
4380 Utilizing Grid Computing to Enhance Power Systems Performance

Authors: Rafid A. Al-Khannak, Fawzi M. Al-Naima

Abstract:

Power load is one of the most important controlling keys which decide power demands and illustrate power usage to shape power market. Hence, power load forecasting is the parameter which facilitates understanding and analyzing all these aspects. In this paper, power load forecasting is solved under MATLAB environment by constructing a neural network for the power load to find an accurate simulated solution with the minimum error. A developed algorithm to achieve load forecasting application with faster technique is the aim for this paper. The algorithm is used to enable MATLAB power application to be implemented by multi machines in the Grid computing system, and to accomplish it within much less time, cost and with high accuracy and quality. Grid Computing, the modern computational distributing technology, has been used to enhance the performance of power applications by utilizing idle and desired Grid contributor(s) by sharing computational power resources.

Keywords: DeskGrid, Grid Server, idle contributor(s), grid computing, load forecasting

Procedia PDF Downloads 475
4379 The Video Database for Teaching and Learning in Football Refereeing

Authors: M. Armenteros, A. Domínguez, M. Fernández, A. J. Benítez

Abstract:

The following paper describes the video database tool used by the Fédération Internationale de Football Association (FIFA) as part of the research project developed in collaboration with the Carlos III University of Madrid. The database project began in 2012, with the aim of creating an educational tool for the training of instructors, referees and assistant referees, and it has been used in all FUTURO III courses since 2013. The platform now contains 3,135 video clips of different match situations from FIFA competitions. It has 1,835 users (FIFA instructors, referees and assistant referees). In this work, the main features of the database are described, such as the use of a search tool and the creation of multimedia presentations and video quizzes. The database has been developed in MySQL, ActionScript, Ruby on Rails and HTML. This tool has been rated by users as "very good" in all courses, which prompt us to introduce it as an ideal tool for any other sport that requires the use of video analysis.

Keywords: assistants referees, cloud computing, e-learning, instructors, FIFA, referees, soccer, video database

Procedia PDF Downloads 439
4378 Dual-Polarized Multi-Antenna System for Massive MIMO Cellular Communications

Authors: Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell

Abstract:

In this paper, a multiple-input/multiple-output (MIMO) antenna design with polarization and radiation pattern diversity is presented for future smartphones. The configuration of the design consists of four double-fed circular-ring antenna elements located at different edges of the printed circuit board (PCB) with an FR-4 substrate and overall dimension of 75×150 mm2. The antenna elements are fed by 50-Ohm microstrip-lines and provide polarization and radiation pattern diversity function due to the orthogonal placement of their feed lines. A good impedance bandwidth (S11 ≤ -10 dB) of 3.4-3.8 GHz has been obtained for the smartphone antenna array. However, for S11 ≤ -6 dB, this value is 3.25-3.95 GHz. More than 3 dB realized gain and 80% total efficiency are achieved for the single-element radiator. The presented design not only provides the required radiation coverage but also generates the polarization diversity characteristic.

Keywords: cellular communications, multiple-input/multiple-output systems, mobile-phone antenna, polarization diversity

Procedia PDF Downloads 142
4377 Artificial Intelligence in Duolingo

Authors: Elana Mahboub, Lamar Bakhurji, Hind Alhindi, Sara Alesayi

Abstract:

Duolingo is a revolutionary language learning platform that offers an interactive and accessible learning experience. Its gamified approach makes language learning engaging and enjoyable, with a diverse range of languages available. The platform's adaptive learning system tailors lessons to individual proficiency levels, ensuring a personalized and efficient learning journey. The incorporation of multimedia elements enhances the learning experience and promotes practical language application. Duolingo's success is attributed to its mobile accessibility, offering basic access to language courses for free, with optional premium features for those seeking additional resources. Research shows positive outcomes for users, and the app's global impact extends beyond individual learning to formal language education initiatives. Duolingo is a transformative force in language education, breaking down barriers and making language learning an attainable goal for millions worldwide.

Keywords: duolingo, artificial intelligence, artificial intelligence in duolingo, benefit of artificial intelligence

Procedia PDF Downloads 72
4376 The Cult of St. Agata as Cultural Mark of Heritage Community Resilience in Abruzzo (Italy, Central Apennine)

Authors: Carmen Soria

Abstract:

The aim of this paper is the study of the cultural and anthropological consequences of the historical natural disasters in Abruzzo (Italy, Central Apennine). These events have left cultural marks in local traditions as well as mythological stories, specific cults, or sanctuary areas in apotropaic function to prevent catastrophic events. Despite the difficult to find archaeological evidence of natural disasters, neverthless, the analisys of micro placenames, directly or indirectly related to such events, represents an integrated and interdisciplinary approach between seismology studies and landscape analysis. Toponymic data, indeed, highlight the strong relation between geomorphological features of areas affected by natural disasters and heritage community resilience, such as, for example, the cult of St. Agatha, widespread in the nearby of healing spring-water and ancient caves as a place of worship, in continuity with pagan rituals.

Keywords: abruzzo, heritage community resilience, seismic planames, St. agata

Procedia PDF Downloads 98